

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

etails	
oduct Status	Obsolete
re Processor	dsPIC
re Size	16-Bit
eed	20 MIPS
nnectivity	CANbus, I ² C, SPI, UART/USART
ripherals	Brown-out Detect/Reset, LVD, Motor Control PWM, QEI, POR, PWM, WDT
ımber of I/O	52
ogram Memory Size	144KB (48K x 24)
gram Memory Type	FLASH
PROM Size	4K x 8
√ Size	8K x 8
age - Supply (Vcc/Vdd)	2.5V ~ 5.5V
a Converters	A/D 16x10b
cillator Type	Internal
erating Temperature	-40°C ~ 85°C (TA)
unting Type	Surface Mount
kage / Case	64-TQFP
oplier Device Package	64-TQFP (10x10)
chase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6015t-20i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5-5: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F4011/4012 AND dsPIC30F5011/5013

Bit Field	Register	Description
FCKSM<1:0>	FOSC	Clock Switching Mode 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
FOS<1:0>	FOSC	Oscillator Source Selection on POR 11 = Primary Oscillator 10 = Internal Low-Power RC Oscillator 01 = Internal Fast RC Oscillator 00 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)
FPR<3:0>	FOSC	Primary Oscillator Mode 1111 = ECIO w/PLL 16X - External Clock mode with 16X PLL. OSC2 pin is I/O 1110 = ECIO w/PLL 8X - External Clock mode with 8X PLL. OSC2 pin is I/O 1101 = ECIO w/PLL 4X - External Clock mode with 4X PLL. OSC2 pin is I/O 1100 = ECIO - External Clock mode. OSC2 pin is I/O 1011 = EC - External Clock mode. OSC2 pin is system clock output (Fosc/4) 1010 = FRC w/PLL 8x - Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 1001 = ERC - External RC Oscillator mode. OSC2 pin is system clock output (Fosc/4) 1000 = ERCIO - External RC Oscillator mode. OSC2 pin is I/O 0111 = XT w/PLL 16X - XT Crystal Oscillator mode with 16X PLL 0110 = XT w/PLL 8X - XT Crystal Oscillator mode with 8X PLL 0101 = XT w/PLL 4X - XT Crystal Oscillator mode with 4X PLL 0100 = XT - XT Crystal Oscillator mode (4 MHz-10 MHz crystal) 0011 = FRC w/PLL 16x - Internal fast RC oscillator with 16x PLL. OSC2 pin is I/O 0010 = HS - HS Crystal Oscillator mode (10 MHz-25 MHz crystal) 0001 = FRC w/PLL 4x - Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0000 = XTL - XTL Crystal Oscillator mode (200 kHz-4 MHz crystal)

TABLE 5-6: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013, dsPIC30F5015/5016, dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015

Bit Field	Register	Description
FCKSM<1:0>	FOSC	Clock Switching Mode 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
		01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
		00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
FOS<2:0>	FOSC	Oscillator Source Selection on POR
		111 = Primary Oscillator 110 = Reserved
		110 - Reserved
		100 = Reserved
		011 = Reserved
		010 = Internal Low-Power RC Oscillator
		001 = Internal Fast RC Oscillator (no PLL)
		000 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)
FPR<4:0>	FOSC	Primary Oscillator Mode (when FOS<2:0> = 111b)
		11xxx = Reserved (do not use) 10111 = HS/3 w/PLL 16X – HS/3 crystal oscillator with 16X PLL
		(10 MHz-25 MHz crystal)
		10110 = HS/3 w/PLL 8X – HS/3 crystal oscillator with 8X PLL
		(10 MHz-25 MHz crystal)
		10101 = HS/3 w/PLL 4X – HS/3 crystal oscillator with 4X PLL
		(10 MHz-25 MHz crystal)
		10100 = Reserved (do not use) 10011 = HS/2 w/PLL 16X – HS/2 crystal oscillator with 16X PLL
		(10 MHz-25 MHz crystal)
		10010 = HS/2 w/PLL 8X – HS/2 crystal oscillator with 8X PLL
		(10 MHz-25 MHz crystal
		10001 = HS/2 w/PLL 4X – HS/2 crystal oscillator with 4X PLL
		(10 MHz-25 MHz crystal)
		10000 = Reserved (do not use)
		01111 = ECIO w/PLL 16x – External clock with 16x PLL. OSC2 pin is I/O 01110 = ECIO w/PLL 8x – External clock with 8x PLL. OSC2 pin is I/O
		01110 = ECIO w/PLL 4x - External clock with 4x PLL. OSC2 pin is I/O
		01100 = Reserved (do not use)
		01011 = Reserved (do not use)
		01010 = FRC w/PLL 8x – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O
		01001 = Reserved (do not use)
		01000 = Reserved (do not use)
		00111 = XT w/PLL 16X – XT crystal oscillator with 16X PLL 00110 = XT w/PLL 8X – XT crystal oscillator with 8X PLL
		00110 - XT W/PLL 4X - XT crystal oscillator with 4X PLL
		00100 = Reserved (do not use)
		00011 = FRC w/PLL 16x – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O
		00010 = Reserved (do not use)
		00001 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O
		00000 = Reserved (do not use)

TABLE 5-7: CONFIGURATION BITS DESCRIPTION

Bit Field	Register	Description
FWPSA<1:0>	FWDT	Watchdog Timer Prescaler A 11 = 1:512 10 = 1:64 01 = 1:8 00 = 1:1
FWPSB<3:0>	FWDT	Watchdog Timer Prescaler B 1111 = 1:16 1110 = 1:15
FWDTEN	FWDT	Watchdog Enable 1 = Watchdog enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog disabled (LPRC oscillator can be disabled by clearing the SWDTEN bit in the RCON register)
MCLREN	FBORPOR	Master Clear Enable 1 = Master Clear pin (MCLR) is enabled 0 = MCLR pin is disabled
PWMPIN	FBORPOR	Motor Control PWM Module Pin Mode 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as output pins)
HPOL	FBORPOR	Motor Control PWM Module High-Side Polarity 1 = PWM module high-side output pins have active-high output polarity 0 = PWM module high-side output pins have active-low output polarity
LPOL	FBORPOR	Motor Control PWM Module Low-Side Polarity 1 = PWM module low-side output pins have active-high output polarity 0 = PWM module low-side output pins have active-low output polarity
BOREN	FBORPOR	PBOR Enable 1 = PBOR enabled 0 = PBOR disabled
BORV<1:0>	FBORPOR	Brown-out Voltage Select 11 = 2.0V (not a valid operating selection) 10 = 2.7V 01 = 4.2V 00 = 4.5V
FPWRT<1:0>	FBORPOR	Power-on Reset Timer Value Select 11 = PWRT = 64 ms 10 = PWRT = 16 ms 01 = PWRT = 4 ms 00 = Power-up Timer disabled
RBS<1:0>	FBS	Boot Segment Data RAM Code Protection (only present in dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 11 = No Data RAM is reserved for Boot Segment 10 = Small-sized Boot RAM [128 bytes of RAM are reserved for Boot Segment] 01 = Medium-sized Boot RAM [256 bytes of RAM are reserved for Boot Segment] 00 = Large-sized Boot RAM [512 bytes of RAM are reserved for Boot Segment in dsPIC30F5011/5013, and 1024 bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015]

TABLE 5-8: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F2010, dsPIC30F4011/4012 AND dsPIC30F6010/ 6011/6012/6013/ 6014)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSN	1<1:0>	_	_	-	_	FOS	S<1:0>	_	_	_	_		FPR<	3:0>	
0xF80002	FWDT	FWDTEN	_	_	_	_	_	-	_	_	_	FWPS	A<1:0>		FWPSB<3:0>		
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	<1:0>	_	-	FPWR	T<1:0>
0xF80006	FBS	_	_	Reser	ved ⁽²⁾	_	_	-	Reserved ⁽²⁾	_	_	-	_		Reserv	red ⁽²⁾	
0xF80008	FSS	_	_	Reser	ved ⁽²⁾	_	_	Rese	rved ⁽²⁾	_	_	-	_		Reserv	red ⁽²⁾	
0xF8000A	FGS	_		1	_		_	ı	_	_	_		_	_	Reserved ⁽²⁾	GCP	GWRP
0xF8000C	FICD	BKBUG	COE	_	_	_	_	_	_	_	_	_	_	_	_	ICS<	:1:0>

1: On the 6011, 6012, 6013 and 6014, these bits are reserved (read as '1' and must be programmed as '1').
2: Reserved bits read as '1' and must be programmed as '1'.

TABLE 5-9: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F5011/5013)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSM	1<1:0>	_	_	_	_	FOS	<1:0>	_	_	_	_		FPR<	3:0>	
0xF80002	FWDT	FWDTEN	_	_	_	_	_	_	_	_	_	FWPS	A<1:0>		FWPSE	3<3:0>	
0xF80004	FBORPOR	MCLREN	_	_	_	_	F	Reserved ⁽¹⁾		BOREN	_	BORV	/<1:0>	_	_	FPWR	T<1:0>
0xF80006	FBS	_	_	RBS-	<1:0>	_	_	_	EBS	_	_	_	_		BSS<2:0>		BWRP
0xF80008	FSS	_	_	RSS-	<1:0>	-	_	ESS	<1:0>	_	_	_	_		SSS<2:0>		SWRP
0xF8000A	FGS	_	_	_	_	_	_	_	_	_	_	_	_	_	GSS<	1:0>	GWRP
0xF8000C	FICD	BKBUG	COE	_	_	_	_	_	_	_	_	_	_	_	_	ICS<	:1:0>

Note 1: Reserved bits read as '1' and must be programmed as '1'.

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSM	l<1:0>	_	_		FOS<2:0>				FPR<4:0>						
0xF80002	FWDT	FWDTEN	_	_	_	_	_	_	-	-	_	FWPS	A<1:0>		FWPSE	3<3:0>	
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	/<1:0>	_	-	FPWR	T<1:0>
0xF80006	FBS	_	_	Reser	ved ⁽²⁾	_	_	_	Reserved ⁽²⁾	-	_	_	_		Resen	ved ⁽²⁾	
0xF80008	FSS	_	_	Reser	ved ⁽²⁾	_	_	Rese	rved ⁽²⁾	-	_	_	_		Resen	ved ⁽²⁾	
0xF8000A	FGS	_	_	_	ı	ı	_	ı	-	-	-	ı	-	-	Reserved ⁽³⁾	GCP	GWRP
0xF8000C	FICD	BKBUG	COE	_					-		_		_	-	_	ICS<	:1:0>

1: On the 2011, 2012, 3012, 3013, 3014 and 4013, these bits are reserved (read as '1' and must be programmed as '1').
2: Reserved bits read as '1' and must be programmed as '1'.

3: The FGS<2> bit is a read-only copy of the GCP bit (FGS<1>).

TABLE 5-11: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015)

•						,										-,	
Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSM	1<1:0>	_	_	_		FOS<2:0>		_	_	_			FPR<4:0>		<u> </u>
0xF80002	FWDT	FWDTEN	_	_	_	_	_	_	_	_	_	FWPS	A<1:0>		FWPSE	3<3:0>	
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	/<1:0>	_	_	FPWR	T<1:0>
0xF80006	FBS	_	_	RBS-	<1:0>	_	_	_	EBS	_	_	_	_		BSS<2:0>		BWRP
0xF80008	FSS	_	_	RSS-	<1:0>	_	_	ESS	S<1:0>	_	_	_	_		SSS<2:0>		SWRP
0xF8000A	FGS	_	_	_	_	_	_	_	_	_	_	_	_	_	GSS<	1:0>	GWRP
0xF8000C	FICD	BKBUG	COE	_	_	_	_	_	_	_	_	_	_	-	_	ICS<	<1:0>

Note 1: On the 6011A, 6012A, 6013A and 6014A, these bits are reserved (read as '1' and must be programmed as '1').

8.5 Command Descriptions

All commands that are supported by the programming executive are described in Section 8.5.1 "SCHECK Command" through Section 8.5.11 "QVER Command".

8.5.1 SCHECK COMMAND

15	12	11 0
	Opcode	Length

Field	Description
Opcode	0x0
Length	0x1

The SCHECK command instructs the programming executive to do nothing, but generate a response. This command is used as a "sanity check" to verify that the programming executive is operational.

Expected Response (2 words):

0x1000 0x0002

Note: This instruction is not required for programming, but is provided for development purposes only.

8.5.2 READD COMMAND

15	12	11	8	7	0
Opcod	de			Length	
Reserve	ed0			N	
F	Reser	ved1		Addr_MSB	
		Ad	ddr_	LS	

Field	Description
Opcode	0x1
Length	0x4
Reserved0	0x0
N	Number of 16-bit words to read (max of 2048)
Reserved1	0x0
Addr_MSB	MSB of 24-bit source address
Addr_LS	LS 16 bits of 24-bit source address

The READD command instructs the programming executive to read N 16-bit words of memory starting from the 24-bit address specified by Addr_MSB and Addr_LS. This command can only be used to read 16-bit data. It can be used to read data EEPROM, Configuration registers and the device ID.

Expected Response (2+N words):

0x1100

N + 2

Data word 1

...

Data word N

Note:	Readin	g u	nimplemented	memory	will
	cause	the	programming	executive	to
	reset.				

8.5.5 PROGP COMMAND

15	12	11	8	7		0
Opc	ode			L	ength.	
	Rese	rved			Addr_MSB	
Addr_LS						
	D_1					
	D_2					
	D_N					

Field	Description
Opcode	0x5
Length	0x33
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
D_1	16-bit data word 1
D_2	16-bit data word 2
	16-bit data word 3 through 47
D_48	16-bit data word 48

The PROGP command instructs the programming executive to program one row of code memory (32 instruction words) to the specified memory address. Programming begins with the row address specified in the command. The destination address should be a multiple of 0x40.

The data to program to memory, located in command words D_1 through D_48, must be arranged using the packed instruction word format shown in Figure 8-2.

After all data has been programmed to code memory, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words):

0x1500 0x0002

Note: Refer to Table 5-2 for code memory size information.

8.5.6 PROGC COMMAND

15	12	11	8	7		0
Opcode				Lei	ngth	
Reserved					Addr_MSB	
	Addr_LS					
Data						

Field	Description
Opcode	0x6
Length	0x4
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
Data	Data to program

The PROGC command programs data to the specified Configuration register and verifies the programming. Configuration registers are 16 bits wide, and this command allows one Configuration register to be programmed.

Expected Response (2 words):

0x1600 0x0002

Note: This command can only be used for programming Configuration registers.

8.5.9 ERASEP COMMAND

15	12	11	8	7	0	
Opcode				Length		
Num_Rows				Addr_MSB		
Addr_LS						

Field	Description
Opcode	0x9
Length	0x3
Num_Rows	Number of rows to erase
Addr_MSB	MSB of 24-bit base address
Addr_LS	LS 16 bits of 24-bit base address

The ERASEP command erases the specified number of rows of code memory from the specified base address. The specified base address must be a multiple of 0x40.

Once the erase is performed, all targeted words of code memory contain 0xFFFFFF.

Expected Response (2 words):

0x1900 0x0002

Note: The ERASEP command cannot be used to erase the Configuration registers or device ID. Code-protect Configuration registers can only be erased with the ERASEB command, while the device ID is read-only.

8.5.10 OBLANK COMMAND

15 12	11 0
Opcode	Length
	PSize
Reserved	DSize

Field	Description
Opcode	0xA
Length	0x3
PSize	Length of program memory to check (in 24-bit words), max of 49152
Reserved	0x0
DSize	Length of data memory to check (in 16-bit words), max of 2048

The QBLANK command queries the programming executive to determine if the contents of code memory and data EEPROM are blank (contains all '1's). The size of code memory and data EEPROM to check must be specified in the command.

The Blank Check for code memory begins at 0x0 and advances toward larger addresses for the specified number of instruction words. The Blank Check for data EEPROM begins at 0x7FFFFE and advances toward smaller addresses for the specified number of data words.

QBLANK returns a QE_Code of 0xF0 if the specified code memory and data EEPROM are blank. Otherwise, QBLANK returns a QE_Code of 0x0F.

Expected Response (2 words for blank device):

0x1AF0 0x0002

Expected Response (2 words for non-blank device):

0x1A0F 0x0002

Note: The QBLANK command does not check the system Configuration registers. The READD command must be used to determine the state of the Configuration registers.

10.0 DEVICE ID

The device ID region is 2 x 16 bits and can be read using the READD command. This region of memory is read-only and can also be read when code protection is enabled.

Table 10-1 shows the device ID for each device, Table 10-2 shows the device ID registers and Table 10-3 describes the bit field of each register.

TABLE 10-1: DEVICE IDS

Davida	DEV/ID	Silicon Revision									
Device	DEVID	A0	A1	A2	А3	A4	В0	B1	B2		
dsPIC30F2010	0x0040	0x1000	0x1001	0x1002	0x1003	0x1004	_	_	_		
dsPIC30F2011	0x0240	_	0x1001	_	_	_	_	_	_		
dsPIC30F2012	0x0241	_	0x1001	_	_	_	_	_			
dsPIC30F3010	0x01C0	0x1000	0x1001	0x1002	_	_	_	_	_		
dsPIC30F3011	0x01C1	0x1000	0x1001	0x1002	_	_	_	_			
dsPIC30F3012	0x00C1	_	_	_	_	_	0x1040	0x1041	_		
dsPIC30F3013	0x00C3	_	_	_	_	_	0x1040	0x1041	_		
dsPIC30F3014	0x0160	_	0x1001	0x1002	_	_	_	_	_		
dsPIC30F4011	0x0101	_	0x1001	0x1002	0x1003	0x1003					
dsPIC30F4012	0x0100	_	0x1001	0x1002	0x1003	0x1003	_	_	_		
dsPIC30F4013	0x0141	_	0x1001	0x1002	_	_	_	_			
dsPIC30F5011	0x0080	_	0x1001	0x1002	0x1003	0x1003	_	_	_		
dsPIC30F5013	0x0081	_	0x1001	0x1002	0x1003	0x1003	_	_			
dsPIC30F5015	0x0200	0x1000	_	_	_	_	_	_	_		
dsPIC30F5016	0x0201	0x1000	_	_	_	_	_	_	_		
dsPIC30F6010	0x0188	_	_	_	_	_	_	0x1040	0x1042		
dsPIC30F6010A	0x0281	_	_	0x1002	0x1003	0x1004	_	_	_		
dsPIC30F6011	0x0192	_	_	_	0x1003	_	_	0x1040	0x1042		
dsPIC30F6011A	0x02C0	_	_	0x1002	_	_	0x1040	0x1041	_		
dsPIC30F6012	0x0193	_	_	_	0x1003	_	_	0x1040	0x1042		
dsPIC30F6012A	0x02C2	_	_	0x1002	_	_	0x1040	0x1041	_		
dsPIC30F6013	0x0197	_	_	_	0x1003	_	_	0x1040	0x1042		
dsPIC30F6013A	0x02C1	_	_	0x1002	_	_	0x1040	0x1041	_		
dsPIC30F6014	0x0198	_	_	_	0x1003	_	_	0x1040	0x1042		
dsPIC30F6014A	0x02C3	_	_	0x1002	_	_	0x1040	0x1041	_		
dsPIC30F6015	0x0280	_	_	0x1002	0x1003	0x1004	_	_	_		

TABLE 10-2: dsPIC30F DEVICE ID REGISTERS

Address	Name					Bit											
Address	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0xFF0000	DEVID		DEVID<15:0>														
0xFF0002	DEVREV	PROC<3:0>				REV<5:0>				DOT<5:0>							

TABLE 10-3: DEVICE ID BITS DESCRIPTION

Bit Field	Register	Description
DEVID<15:0>	DEVID	Encodes the device ID.
PROC<3:0>	DEVREV	Encodes the process of the device (always read as 0x001).
REV<5:0>	DEVREV	Encodes the major revision number of the device. 000000 = A 000001 = B 000010 = C
DOT<5:0>	DEVREV	Encodes the minor revision number of the device. 000000 = 0 000001 = 1 000010 = 2 000011 = 3

Examples:

Rev A.1 = 0000 0000 0000 0001

Rev A.2 = 0000 0000 0000 0010

Rev B.0 = 0000 0000 0100 0000

This formula applies to all dsPIC30F devices, with the exception of the following:

- dsPIC30F6010
- dsPIC30F6011
- dsPIC30F6012
- dsPIC30F6013
- dsPIC30F6014

Refer to Table 10-1 for the actual revision IDs.

TABLE 11-5: SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY (EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description
Step 6: Upda	ate the row address s	stored in NVMADRU:NVMADR. When W6 rolls over to 0x0, NVMADRU must be
	emented.	
0000	430307	ADD W6, W7, W6
0000	AF0042	BTSC SR, #C
0000	EC2764	INC NVMADRU
0000	883B16	MOV W6, NVMADR
Step 7: Rese	et device internal PC.	
0000	040100	GOTO 0x100
0000	000000	NOP
		rows of code memory are erased.
Step 9: Initia	lize NVMADR and N	VMADRU to erase executive memory and initialize W7 for row address updates.
0000	EB0300	CLR W6
0000	883B16	MOV W6, NVMADR
0000	200807	MOV #0x80, W7
0000	883B27 200407	MOV W7, NVMADRU MOV #0x40, W7
		1 row of executive memory.
0000	24071A	MOV #0x4071, W10
0000	883B0A	MOV W10, NVMCON
		erase 1 row of executive memory.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 12: Initi	ate the erase cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	_	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and
0000	000000	Timing Requirements") NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
Step 13: Upo	date the row address	stored in NVMADR.
0000	430307	ADD W6, W7, W6
0000	883B16	MOV W6, NVMADR
Step 14: Res	set device internal Po	<u>)</u>
0000	040100	GOTO 0x100
0000	000000	NOP
Step 15: Rep	peat Steps 10-14 unti	il all 24 rows of executive memory are erased.
Step 16: Initi	alize NVMADR and I	NVMADRU to erase data memory and initialize W7 for row address updates.
0000	2XXXX6	MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6</lower>
0000	883B16	MOV W6, NVMADR
0000	2007F6	MOV #0x7F, W6
0000	883B16	MOV W6, NVMADRU
0000 Ctor 47: Cot	200207	MOV #0x20, W7
•		1 row of data memory.
0000	24075A	MOV #0x4075, W10
0000	883B0A	MOV W10, NVMCON

11.8 Writing Code Memory

The procedure for writing code memory is similar to the procedure for clearing the Configuration registers, except that 32 instruction words are programmed at a time. To facilitate this operation, working registers W0:W5 are used as temporary holding registers for the data to be programmed.

Table 11-8 shows the ICSP programming details, including the serial pattern with the ICSP command code, which must be transmitted Least Significant bit first using the PGC and PGD pins (see Figure 11-2). In Step 1, the Reset vector is exited. In Step 2, the NVMCON register is initialized for single-panel programming of code memory. In Step 3, the 24-bit starting destination address for programming is loaded into the TBLPAG register and W7 register. The upper byte of the starting destination address is stored to TBLPAG, while the lower 16 bits of the destination address are stored to W7.

To minimize the programming time, the same packed instruction format that the programming executive uses is utilized (Figure 8-2). In Step 4, four packed instruction words are stored to working registers W0:W5 using the MOV instruction and the read pointer W6 is initialized. The contents of W0:W5 holding the packed instruction word data is shown in Figure 11-4.

In Step 5, eight TBLWT instructions are used to copy the data from W0:W5 to the write latches of code memory. Since code memory is programmed 32 instruction words at a time, Steps 4 and 5 are repeated eight times to load all the write latches (Step 6).

After the write latches are loaded, programming is initiated by writing to the NVMKEY and NVMCON registers in Steps 7 and 8. In Step 9, the internal PC is reset to 0x100. This is a precautionary measure to prevent the PC from incrementing into unimplemented memory when large devices are being programmed. Lastly, in Step 10, Steps 2-9 are repeated until all of code memory is programmed.

FIGURE 11-5: PACKED INSTRUCTION WORDS IN W0:W5

	15		8	7		0
W0			lsv	v0		
W1		MSB1			MSB0	
W2			lsv	v1		
W3			lsv	v2		
W4		MSB3			MSB2	
W5	lsw3					
						-

TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit th	ne Reset vector.	
0000 0000 0000	040100 040100 000000	GOTO 0x100 GOTO 0x100 NOP
Step 2: Set th	e NVMCON to progr	am 32 instruction words.
0000	24001A 883B0A	MOV #0x4001, W10 MOV W10, NVMCON
Step 3: Initiali	ze the write pointer (W7) for TBLWT instruction.
0000 0000 0000	200xx0 880190 2xxxx7	MOV # <destinationaddress23:16>, W0 MOV W0, TBLPAG MOV #<destinationaddress15:0>, W7</destinationaddress15:0></destinationaddress23:16>
Step 4: Initiali	ze the read pointer (W6) and load W0:W5 with the next 4 instruction words to program.
0000 0000 0000 0000	2xxxx0 2xxxx1 2xxxx2 2xxxx3	MOV # <lsw0>, W0 MOV #<msb1:msb0>, W1 MOV #<lsw1>, W2 MOV #<lsw2>, W3</lsw2></lsw1></msb1:msb0></lsw0>
0000	2xxxx4 2xxxx5	MOV # <msb3:msb2>, W4 MOV #<lsw3>, W5</lsw3></msb3:msb2>

11.9 Writing Data EEPROM

The procedure for writing data EEPROM is very similar to the procedure for writing code memory, except that fewer words are programmed in each operation. When writing data EEPROM, one row of data EEPROM is programmed at a time. Each row consists of sixteen 16-bit data words. Since fewer words are programmed

during each operation, only working registers W0:W3 are used as temporary holding registers for the data to be programmed.

Table 11-9 shows the ICSP programming details for writing data EEPROM. Note that a different NVMCON value is required to write to data EEPROM, and that the TBLPAG register is hard-coded to 0x7F (the upper byte address of all locations of data EEPROM).

TABLE 11-9: SERIAL INSTRUCTION EXECUTION FOR WRITING DATA EEPROM

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit th	ne Reset vector.	
0000	040100	GOTO 0x100
0000	040100	GOTO 0x100
0000	000000	NOP
Step 2: Set th	e NVMCON to write	16 data words.
0000	24005A	MOV #0x4005, W10
0000	883B0A	MOV W10, NVMCON
Step 3: Initiali	ze the write pointer	(W7) for TBLWT instruction.
0000	2007F0	MOV #0x7F, W0
0000	880190	MOV WO, TBLPAG
0000	2xxxx7	MOV # <destinationaddress15:0>, W7</destinationaddress15:0>
Step 4: Load	W0:W3 with the nex	t 4 data words to program.
0000	2xxxx0	MOV # <wordo>, WO</wordo>
0000	2xxxx1	MOV # <word1>, W1</word1>
0000	2xxxx2	MOV # <word2>, W2</word2>
0000	2xxxx3	MOV # <word3>, W3</word3>
Step 5: Set th	e read pointer (W6)	and load the (next set of) write latches.
0000	EB0300	CLR W6
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
Step 6: Renea	at steps 4-5 four time	es to load the write latches for 16 data words.
-15 P 4 1 1 10P00	zi ciepo i o iodi tiili	to to total the mile laterior for to data from.

TABLE 11-10: SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description					
Step 4: Outpu	Step 4: Output W0:W5 using the VISI register and REGOUT command.						
0000	883C20	MOV WO, VISI					
0000	000000	NOP					
0001	<visi></visi>	Clock out contents of VISI register					
0000	000000	NOP					
0000	883C21	MOV W1, VISI					
0000	000000	NOP					
0001	<visi></visi>	Clock out contents of VISI register					
0000	000000	NOP					
0000	883C22	MOV W2, VISI					
0000	000000	NOP					
0001	<visi></visi>	Clock out contents of VISI register					
0000	000000	NOP					
0000	883C23	MOV W3, VISI					
0000	000000	NOP					
0001	<visi></visi>	Clock out contents of VISI register					
0000	000000	NOP					
0000	883C24	MOV W4, VISI					
0000	000000	NOP					
0001	<visi></visi>	Clock out contents of VISI register					
0000	000000	NOP					
0000	883C25	MOV W5, VISI					
0000	000000	NOP					
0001	<visi></visi>	Clock out contents of VISI register					
0000	000000	NOP					
Step 5: Reset the device internal PC.							
0000	040100	GOTO 0x100					
0000	000000	NOP					
Step 6: Repea	Step 6: Repeat steps 3-5 until all desired code memory is read.						

12.0 PROGRAMMING THE PROGRAMMING EXECUTIVE TO MEMORY

12.1 Overview

If it is determined that the programming executive does not reside in executive memory (as described in Section 4.0 "Confirming the Contents of Executive Memory"), it must be programmed into executive memory using ICSP and the techniques described in Section 11.0 "ICSP™ Mode".

Storing the programming executive to executive memory is similar to normal programming of code memory. The executive memory must first be erased, and then the programming executive must be programmed 32 words at a time. This control flow is summarized in Table 12-1.

TABLE 12-1: PROGRAMMING THE PROGRAMMING EXECUTIVE

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit th	ne Reset vector and	erase executive memory.
0000	040100	GOTO 0x100
0000	040100	GOTO 0x100
0000	000000	NOP
Step 2: Initiali	ze the NVMCON to	erase executive memory.
0000	24072A	MOV #0x4072, W10
0000	883B0A	MOV W10, NVMCON
Step 3: Unloc	k the NVMCON for	programming.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 4: Initiate	e the erase cycle.	
0000	A8E761	BSET NVMCON, #15
0000	000000	NOP
0000	000000	NOP
_	_	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #15
0000	000000	NOP
0000	000000	NOP
Step 5: Initiali	ze the TBLPAG and	the write pointer (W7).
0000	200800	MOV #0x80, W0
0000	880190	MOV WO, TBLPAG
0000	EB0380	CLR W7
0000	000000	NOP
0000	000000	NOP
Step 6: Initiali	ze the NVMCON to	program 32 instruction words.
0000	24001A	MOV #0x4001, W10
0000	883B0A	MOV W10, NVMCON
		tt 4 words of packed programming executive code and initialize W6 for ing starts from the base of executive memory (0x800000) using W6 as a read
. •	er and W7 as a write	
0000	2 <lsw0>0</lsw0>	MOV # <lswo>, WO</lswo>
0000	2 <msb1:msb0>1</msb1:msb0>	MOV # <msb1:msb0>, W1</msb1:msb0>
0000	2 <lsw1>2</lsw1>	MOV # <lsw1>, W2</lsw1>
0000	2 <lsw2>3</lsw2>	MOV # <lsw2>, W3</lsw2>
0000	2 <msb3:msb2>4</msb3:msb2>	MOV # <msb3:msb2>, W4</msb3:msb2>
0000	2 <lsw3>5</lsw3>	MOV # <lsw3>, W5</lsw3>

TABLE 12-1: PROGRAMMING THE PROGRAMMING EXECUTIVE (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description			
Step 8: Set the read pointer (W6) and load the (next four write) latches.					
0000	EB0300	CLR W6			
0000	000000	NOP			
0000	BB0BB6	TBLWTL [W6++], [W7]			
0000	000000	NOP			
0000	000000	NOP			
0000	BBDBB6	TBLWTH.B [W6++], [W7++]			
0000	000000	NOP			
0000	000000	NOP			
0000	BBEBB6	TBLWTH.B [W6++], [++W7]			
0000	000000	NOP			
0000	000000	NOP			
0000	BB1BB6	TBLWTL [W6++], [W7++]			
0000	000000	NOP			
0000	000000	NOP			
0000	BB0BB6	TBLWTL [W6++], [W7]			
0000	000000	NOP			
0000	000000 BBDBB6	NOP			
0000	000000	TBLWTH.B [W6++], [W7++]			
0000	000000	NOP NOP			
0000	BBEBB6	TBLWTH.B [W6++], [++W7]			
0000	000000	NOP			
0000	000000	NOP			
0000	BB1BB6	TBLWTL [W6++], [W7++]			
0000	000000	NOP			
0000	000000	NOP			
		mes to load the write latches for the 32 instructions.			
	ck the NVMCON fo				
0000	200558	MOV #0x55, W8			
0000	883B38	MOV W8, NVMKEY			
0000	200AA9	MOV #0xAA, W9			
0000	883B39	MOV W9, NVMKEY			
Step 11: Initia	te the programming	g cycle.			
0000	A8E761	BSET NVMCON, #15			
0000	000000	NOP			
0000	000000	NOP			
_	_	Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and			
		Timing Requirements")			
0000	000000	NOP			
0000	000000	NOP			
0000	A9E761	BCLR NVMCON, #15			
0000	000000	NOP			
0000	000000	NOP			
Step 12: Res	et the device interna	PC.			
0000	040100	GOTO 0x100			
0000	000000	NOP			
		all 23 rows of executive memory are programmed.			

12.2 Programming Verification

After the programming executive has been programmed to executive memory using ICSP, it must be verified. Verification is performed by reading out the contents of executive memory and comparing it with the image of the programming executive stored in the programmer.

Reading the contents of executive memory can be performed using the same technique described in Section 11.10 "Reading Code Memory". A procedure for reading executive memory is shown in Table 12-2. Note that in Step 2, the TBLPAG register is set to 0x80 such that executive memory may be read.

TABLE 12-2: READING EXECUTIVE MEMORY

Command (Binary)	Data (Hexadecimal)		Description
Step 1: Exit th	ne Reset vector.		
0000	040100	GOTO 0x100	
0000	040100	GOTO 0x100	
0000	000000	NOP	
Step 2: Initiali	ze TBLPAG and t	he read point	ter (W6) for TBLRD instruction.
0000	200800	MOV	#0x80, W0
0000	880190	MOV	WO, TBLPAG
0000	EB0300	CLR	W6
Step 3: Initiali	ze the write point	er (W7), and	store the next four locations of executive memory to W0:W5.
0000	EB0380	CLR	W7
0000	000000	NOP	
0000	BA1B96	TBLRDL	[W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBB6	TBLRDH.B	[W6++], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBD6	TBLRDH.B	[++W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BA1BB6	TBLRDL	[W6++], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BA1B96	TBLRDL	[W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBB6	TBLRDH.B	[W6++], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBD6	TBLRDH.B	[++W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BA1BB6	TBLRDL	[W6++], [W7]
0000	000000	NOP	
0000	000000	NOP	

TABLE 13-1: AC/DC CHARACTERISTICS (CONTINUED)

AC/DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated) Operating Temperature: 25° C is recommended			
Param. No.	Sym	Characteristic	Min	Max	Units	Conditions	
P9b	TDLY5	Delay between PGD ↓by programming executive to PGD released by programming executive	15	_	μs	_	
P10	TDLY6	Delay between PGD released by programming executive to first PGC ↑ of response	5	_	μs	_	
P11	TDLY7	Delay between clocking out response words	10	_	μs	_	
P12a	TPROG	Row Programming cycle time	1	4	ms	ICSP mode	
P12b	TPROG	Row Programming cycle time	0.8	2.6	ms	Enhanced ICSP mode	
P13a	TERA	Bulk/Row Erase cycle time	1	4	ms	ICSP mode	
P13b	TERA	Bulk/Row Erase cycle time	0.8	2.6	ms	Enhanced ICSP mode	

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, Keeloq, Keeloq logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-636-4

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca. IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario, Canada

Canaua Talana

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511

Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588

Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200

Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040

Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830

Fax: 886-7-330-9305

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4450-2828

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **UK - Wokingham**

Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/04/10