

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFQFN Exposed Pad
Supplier Device Package	44-VQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega32c4-mh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-2. VFBGA Pinout

	1	2	3	4	5	6	7
Α	PA3	AVCC	GND	PR1	PR0	PDI	PE3
В	PA4	PA1	PA0	GND	RESET/PDI_CLK	PE2	VCC
С	PA5	PA2	PA6	PA7	GND	PE1	GND
D	PB1	PB2	PB3	PB0	GND	PD7	PE0
E	GND	GND	PC3	GND	PD4	PD5	PD6
F	VCC	PC0	PC4	PC6	PD0	PD1	PD3
G	PC1	PC2	PC5	PC7	GND	VCC	PD2

3. Overview

The Atmel AVR XMEGA is a family of low power, high performance, and peripheral rich 8/16-bit microcontrollers based on the AVR enhanced RISC architecture. By executing instructions in a single clock cycle, the AVR XMEGA devices achieve CPU throughput approaching one million instructions per second (MIPS) per megahertz, allowing the system designer to optimize power consumption versus processing speed.

The AVR CPU combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly connected to the arithmetic logic unit (ALU), allowing two independent registers to be accessed in a single instruction, executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs many times faster than conventional single-accumulator or CISC based microcontrollers.

The XMEGA C4 devices provide the following features: in-system programmable flash with read-while-write capabilities; internal EEPROM and SRAM; four-channel event system and programmable multilevel interrupt controller, 34 general purpose I/O lines, 16-bit real-time counter (RTC); four, 16-bit timer/counters with compare and PWM channels; three USARTs; two two-wire serial interfaces (TWIs); one full speed USB 2.0 interface; two serial peripheral interfaces (SPIs); one sixteen-channel, 12-bit ADC with programmable gain; two analog comparators (ACs) with window mode; programmable watchdog timer with separate internal oscillator; accurate internal oscillators with PLL and prescaler; and programmable brown-out detection.

The program and debug interface (PDI), a fast, two-pin interface for programming and debugging, is available.

The XMEGA C4 devices have five software selectable power saving modes. The idle mode stops the CPU while allowing the SRAM, event system, interrupt controller, and all peripherals to continue functioning. The power-down mode saves the SRAM and register contents, but stops the oscillators, disabling all other functions until the next TWI, USB resume, or pin-change interrupt, or reset. In power-save mode, the asynchronous real-time counter continues to run, allowing the application to maintain a timer base while the rest of the device is sleeping. In standby mode, the external crystal oscillator keeps running while the rest of the device is sleeping. This allows very fast startup from the external crystal, combined with low power consumption. In extended standby mode, both the main oscillator and the asynchronous timer continue to run. To further reduce power consumption, the peripheral clock to each individual peripheral can optionally be stopped in active mode and idle sleep mode.

Atmel offers a free QTouch library for embedding capacitive touch buttons, sliders and wheels functionality into AVR microcontrollers.

The devices are manufactured using Atmel high-density, nonvolatile memory technology. The program flash memory can be reprogrammed in-system through the PDI. A boot loader running in the device can use any interface to download the application program to the flash memory. The boot loader software in the boot flash section will continue to run while the application flash section is updated, providing true read-while-write operation. By combining an 8/16-bit RISC CPU with in-system, self-programmable flash, the AVR XMEGA is a powerful microcontroller family that provides a highly flexible and cost effective solution for many embedded applications.

All Atmel AVR XMEGA devices are supported with a full suite of program and system development tools, including: C compilers, macro assemblers, program debugger/simulators, programmers, and evaluation kits.

30. Peripheral Module Address Map

The address maps show the base address for each peripheral and module in Atmel AVR XMEGA C4. For complete register description and summary for each peripheral module, refer to the XMEGA C manual.

Base address	Name	Description
0x0000	GPIO	General purpose IO registers
0x0010	VPORT0	Virtual Port 0
0x0014	VPORT1	Virtual Port 1
0x0018	VPORT2	Virtual Port 2
0x001C	VPORT3	Virtual Port 2
0x0030	CPU	CPU
0x0040	CLK	Clock control
0x0048	SLEEP	Sleep controller
0x0050	OSC	Oscillator control
0x0060	DFLLRC32M	DFLL for the 32 MHz internal RC oscillator
0x0068	DFLLRC2M	DFLL for the 2 MHz RC oscillator
0x0070	PR	Power reduction
0x0078	RST	Reset controller
0x0080	WDT	Watch-dog timer
0x0090	MCU	MCU control
0x00A0	PMIC	Programmable multilevel interrupt controller
0x00B0	PORTCFG	Port configuration
0x0180	EVSYS	Event system
0x00D0	CRC	CRC module
0x01C0	NVM	Nonvolatile memory (NVM) controller
0x0200	ADCA	Analog to digital converter on port A
0x0380	ACA	Analog comparator pair on port A
0x0400	RTC	Real time counter
0x0480	TWIC	Two wire interface on port C
0x04C0	USB	Universal serial Bus interface
0x04A0	TWIE	Two wire interface on port E
0x0600	PORTA	Port A
0x0620	PORTB	Port B
0x0640	PORTC	Port C

Table 30-1. Peripheral Module Address Map

Table 33-5. Current Consumption for Modules and Peripherals

Symbol	Parameter	Condition ⁽¹⁾		Min.	Тур.	Max.	Units	
	ULP oscillator				0.8			
	32.768kHz int. oscillator				29			
	2MHz int oscillator				85			
		DFLL enabled with	32.768kHz int. osc. as reference		115			
	32MHz int oscillator				245			
		DFLL enabled with	32.768kHz int. osc. as reference		410			
	PLL	20x multiplication f 32MHz int. osc. DI	20x multiplication factor, 32MHz int. osc. DIV4 as reference		290		μA	
	Watchdog timer				1.0			
	Continuous mode				138			
	600	Sampled mode, inc	cludes ULP oscillator		1.2			
I _{CC}	Internal 1.0V reference				175			
	Temperature sensor				170			
					1.2			
		16ksps	CURRLIMIT = LOW		1.0			
		V _{REF} = Ext ref	CURRLIMIT = MEDIUM		0.9			
	ADC		CURRLIMIT = HIGH		0.8		mA	
		75ksps V _{REF} = Ext ref	CURRLIMIT = LOW		1.7			
	300ksps V _{REF} = Ext ref				3.1			
	USART	Rx and Tx enabled	, 9600 BAUD		11		μA	
	Flash memory and EEPRO	M programming			4		mA	

Note: 1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at V_{CC} = 3.0V, Clk_{SYS} = 1MHz external clock without prescaling, T = 25°C unless other conditions are given.

33.2.3 Current Consumption

Table 33-33.	Current Consum	ption for Active	e Mode and Slee	ep Modes

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
			V _{CC} = 1.8V		40		
		SZNI IZ, EXI. OK	$V_{CC} = 3.0V$		80		
			$V_{\rm CC} = 1.8V$		200		μA
	Active power consumption ⁽¹⁾		$V_{CC} = 3.0V$		410		
			$V_{CC} = 1.8V$		350	600	
			V - 3 0V		0.75	1.4	m۸
		32MHz, Ext. Clk	v _{CC} – 5.0 v		7.5	12	IIIA
		32kHz, Ext. Clk	$V_{CC} = 1.8V$		2.0		
			$V_{CC} = 3.0V$		2.8		
		1MHz Evt Clk	$V_{CC} = 1.8V$		42		ıιΔ
	Idle power consumption ⁽¹⁾		$V_{CC} = 3.0V$		85		μΑ
			$V_{CC} = 1.8V$		85	225	
			$V_{aa} = 3.0V$		170	350	
		32MHz, Ext. Clk	V _{CC} = 5.0V		2.7	5.5	mA
I _{CC}		T = 25°C	V _{CC} = 3.0V		0.1	1.0	
		T = 85°C			2.0	4.5	
		T = 105°C			0.1	7.0	
	Power-down power consumption	WDT and sampled BOD enabled, T = 25°C			1.4	3.0	
		WDT and sampled BOD enabled, $T = 85^{\circ}C$	$V_{CC} = 3.0V$		3.0	6.0	
		WDT and sampled BOD enabled, $T = 105^{\circ}C$			1.4	10	uΔ
		RTC from ULP clock, WDT and	$V_{CC} = 1.8V$		1.5		μΛ
		sampled BOD enabled, $T = 25^{\circ}C$	$V_{CC} = 3.0V$		1.5		
	Power-save power	RTC from 1.024kHz low power	V _{CC} = 1.8V		0.6	2.0	
	consumption ⁽²⁾	32.768kHz TOSC, T = 25°C	$V_{CC} = 3.0V$		0.7	2.0	
		RTC from low power 32.768kHz	$V_{CC} = 1.8V$		0.8	3.0	
		TOSC, T = 25°C	$V_{CC} = 3.0V$		1.0	3.0	
	Reset power consumption	Current through RESET pin substracted	$V_{CC} = 3.0V$		300		

Notes: 1. All Power Reduction Registers set.

2. Maximum limits are based on characterization, and not tested in production.

33.2.5 I/O Pin Characteristics

The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output voltage limits reflect or exceed this specification.

Table 33-36. I/O Pin Characteristics

Symbol	Parameter	Con	dition	Min.	Тур.	Max.	Units
I _{OH} ⁽¹⁾ / I _{OL} ⁽²⁾	I/O pin source/sink current			-20		20	mA
V	High level input voltage	V _{CC} = 2.4 - 3.6V		0.7*Vcc		V _{CC} +0.5	
VIH		V _{CC} = 1.6 - 2.4V		0.8*V _{CC}		V _{CC} +0.5	
V	l ow level input voltage	V _{CC} = 2.4- 3.6V		-0.5		0.3*V _{CC}	
۷IL		V _{CC} = 1.6 - 2.4V		-0.5		0.2*V _{CC}	
	High level output voltage	$V_{CC} = 3.3V$	I _{OH} = -4mA	2.6	2.9		V
V _{OH}		$V_{CC} = 3.0V$	I _{OH} = -3mA	2.1	2.7		v
		$V_{CC} = 1.8V$	I _{OH} = -1mA	1.4	1.6		
		$V_{CC} = 3.3V$	I _{OL} = 8mA		0.4	0.76	
V _{OL}	Low level output voltage	$V_{CC} = 3.0V$	I _{OL} = 5mA		0.3	0.64	
		V _{CC} = 1.8V	I _{OL} = 3mA		0.2	0.46	
I _{IN}	Input leakage current I/O pin	T = 25°C			<0.01	1	μA
R _P	Pull/buss keeper resistor				25		kΩ

Notes:

1. The sum of all I_{OH} for PORTA and PORTB must not exceed 100mA. The sum of all I_{OH} for PORTC, PORTD, and PORTE must for each port not exceed 200mA. The sum of all I_{OH} for pins PF[0-5] on PORTF must not exceed 200mA. The sum of all I_{OL} for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.

The sum of all I_{OL} for PORTA and PORTB must not exceed 100mA. The sum of all I_{OL} for PORTC, PORTD, and PORTE must for each port not exceed 200mA. The sum of all I_{OL} for pins PF[0-5] on PORTF must not exceed 200mA. The sum of all I_{OL} for pins PF[0-7] on PORTF, PORTR, and PDI must not exceed 100mA. 2.

Table 33-40. Gain Stage Characteristics

R _{in}	Input resistance	Switched in normal mode		4.0		kΩ
C _{sample}	Input capacitance	Switched in normal mode		4.4		pF
	Signal range	Gain stage output	0		AV _{CC} - 0.6	V
	Propagation delay	ADC conversion rate	1/2	1	3	Clk _{ADC} cycles
	Clock rate	Same as ADC	100		1800	kHz
		0.5x gain, normal mode		-1		
		1x gain, normal mode		-1		0/
	Gain Endi	8x gain, normal mode		-1		/0
		64x gain, normal mode		10		
		0.5x gain, normal mode		10		
Offset Error, input referred	Offset Error,	1x gain, normal mode		5		m\/
	input referred	8x gain, normal mode		-20		111V
		64x gain, normal mode		-150		

33.2.7 Analog Comparator Characteristics

Table 33-41. Analog Comparator Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{off}	Input offset voltage	V _{CC} =1.6V - 3.6V		<±10		mV
l _{lk}	Input leakage current	V _{CC} =1.6V - 3.6V		<1		nA
	Input voltage range		-0.1		AV _{CC}	V
	AC startup time			100		μs
V _{hys1}	Hysteresis, none	V _{CC} =1.6V - 3.6V		0		
V _{hys2}	Hysteresis, small	V _{CC} =1.6V - 3.6V		11		mV
V _{hys3}	Hysteresis, large	V _{CC} =1.6V - 3.6V		26		
+	Propagation dolay	V _{CC} = 3.0V, T= 85°C		16	90	20
τ _{delay}	FTOPAgalion delay	V _{CC} =1.6V - 3.6V		16		115
	64-level voltage scaler	Integral non-linearity (INL)		0.3	0.5	lsb

33.2.13.5 Internal Phase Locked Loop (PLL) Characteristics

Table 33-52. Internal PLL Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
f _{IN}	Input frequency	Output frequency must be within \mathbf{f}_{OUT}	0.4		64	
	Output froquency ⁽¹⁾	V _{CC} = 1.6 - 1.8V	20		48	MHz
OUT	Output frequency.	V _{CC} = 2.7 - 3.6V	20		128	-
	Start-up time			25		
	Re-lock time			25		μδ

Note: 1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.

33.2.13.6 External Clock Characteristics

Table 33-53. External Clock used as System Clock without Prescaling

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
1 /+	Clock frequency ⁽¹⁾	V _{CC} = 1.6 - 1.8V	0		12	MH-
1/1CK		V _{CC} = 2.7 - 3.6V	0		32	
+	Clock paried	V _{CC} = 1.6 - 1.8V	83.3			
чСК	Clock period	V _{CC} = 2.7 - 3.6V	31.5			
+	Clask high time	V _{CC} = 1.6 - 1.8V	30.0			
ЧСН		V _{CC} = 2.7 - 3.6V	12.5			
+	Clock low time	V _{CC} = 1.6 - 1.8V	30.0			nc
^L CL	Clock low time	V _{CC} = 2.7 - 3.6V	12.5			115
+	Pico timo (for maximum fraguanov)	V _{CC} = 1.6 - 1.8V			10	
^L CR		V _{CC} = 2.7 - 3.6V			3	
+	Fall time (for maximum frequency)	V _{CC} = 1.6 - 1.8V			10	
^L CF		V _{CC} = 2.7 - 3.6V			3	
Δt_{CK}	Change in period from one clock cycle to the next				10	%

Note: 1. The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters with supply voltage conditions.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
C _{XTAL1}	Parasitic capacitance XTAL1 pin			5.9		
C _{XTAL2}	Parasitic capacitance XTAL2 pin			8.3		pF
C _{LOAD}	Parasitic capacitance load			3.5		

33.2.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics

Table 33-56. External 32.768kHz Crystal Oscillator and TOSC Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ESR/R1	Recommended crystal equivalent series resistance (ESR)	Crystal load capacitance 6.5pF			60	kΩ
		Crystal load capacitance 9.0pF			35	
		Crystal load capacitance 12pF			28	
C _{TOSC1}	Parasitic capacitance TOSC1 pin			3.5		nE
C _{TOSC2}	Parasitic capacitance TOSC2 pin			3.5		рі
	Recommended safety factor	capacitance load matched to crystal specification	3			

Note: 1. See Figure 33-11 for definition.

Figure 33-11.TOSC Input Capacitance

The parasitic capacitance between the TOSC pins is $C_{L1} + C_{L2}$ in series as seen from the crystal when oscillating without external capacitors.

33.2.14 SPI Characteristics

Figure 34-17.Power-down Mode Supply Current vs. Temperature Watchdog and sampled BOD enabled and running from internal ULP oscillator

34.1.1.4 Power-save Mode Supply Current

tin de maintenne en de come e		
	····•	

Figure 34-42. Gain Error vs. V_{REF} T = 25 °C, V_{CC} = 3.6V, ADC sample rate = 300ksps

Figure 34-67. 32.768kHz Internal Oscillator Frequency vs. Calibration Value $V_{cc} = 3.0V, T = 25^{\circ}C$

34.1.9.3 2MHz Internal Oscillator

Figure 34-68. 2MHz Internal Oscillator Frequency vs. Temperature DFLL disabled

34.1.11 PDI Characteristics

 $V_{CC}[V]$

Figure 34-90. Idle Mode Supply Current vs. V_{CC} $f_{SYS} = 1MHz \ external \ clock$

Figure 34-91. Idle Mode Supply Current vs. V_{CC} $f_{SYS} = 2MHz$ internal oscillator

Figure 34-96. Power-down Mode Supply Current vs. Temperature Watchdog and sampled BOD enabled and running from internal ULP oscillator

34.2.1.4 Power-save Mode Supply Current

Figure 34-134. BOD Thresholds vs. Temperature BOD level = 1.6V

36. Datasheet Revision History

Note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

36.1 84931 - 12/2014

1.	Some minor corrections according to the template.
2.	Trademark corrections.
3.	Several cross-references have been corrected.

36.2 8493H - 07/2014

1.	Updated the "Ordering Information" on page 2. Added ordering codes for ATxmega16C4/32C4 @ 105°C.
2.	Updated Table 33-4 on page 67 and Table 33-33 on page 86. Added I_{CC} Power-down power consumption for T=105°C for all functions disabled and for WDT and sampled BOD enabled
3.	Updated Table 33-17 on page 75 and Table 33-46 on page 94. Updated all tables to include values for T=85°C and T=105°C. Removed T=55°C
4.	Changed V_{CC} to AV_{CC} in Section 26. "ADC – 12-bit Analog to Digital Converter" on page 46 and in Section 27.1 "Features" on page 48.
5.	Updated the typical characteristics of "Atmel ATxmega16C4" and "Atmel ATxmega32C4" with characterizations @105°C
6.	Changed V_{CC} to AV_{CC} in Section 26. "ADC – 12-bit Analog to Digital Converter" on page 46 and Section 27. "AC – Analog Comparator" on page 48.
7.	Changed values for TCCO in Table 29-3 on page 53.

36.3 8493G - 01/2014

1. Updated the typical characteristics with characterization at 105°C.

36.4 8493F - 10/2013

1.	Updated pin locations of TOSC1 and TOSC2 in Port E - Alternate functions in Table 29-5 on page 54.
2.	Updated pin locations of XTAL1, XTAL2, TOSC1, and TOSC2 in Port R - Alternate functions in Table 29-6 on page 54.

36.5 8493E - 10/2013

1.	Updated Port C - Alternate functions in Table 29-3 on page 53.
----	--