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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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...and More 
Features

– -1 speed grade devices are compliant with PCI Local Bus 
Specification, Revision 2.2 for 5.0-V operation

– Built-in Joint Test Action Group (JTAG) boundary-scan test 
(BST) circuitry compliant with IEEE Std. 1149.1-1990, available 
without consuming additional device logic.

– Operate with a 2.5-V internal supply voltage
– In-circuit reconfigurability (ICR) via external configuration 

devices, intelligent controller, or JTAG port
– ClockLockTM and ClockBoostTM options for reduced clock delay, 

clock skew, and clock multiplication
– Built-in, low-skew clock distribution trees
– 100% functional testing of all devices; test vectors or scan chains 

are not required
– Pull-up on I/O pins before and during configuration

■ Flexible interconnect
– FastTrack® Interconnect continuous routing structure for fast, 

predictable interconnect delays
– Dedicated carry chain that implements arithmetic functions such 

as fast adders, counters, and comparators (automatically used by 
software tools and megafunctions)

– Dedicated cascade chain that implements high-speed, 
high-fan-in logic functions (automatically used by software tools 
and megafunctions)

– Tri-state emulation that implements internal tri-state buses
– Up to six global clock signals and four global clear signals

■ Powerful I/O pins
– Individual tri-state output enable control for each pin
– Open-drain option on each I/O pin
– Programmable output slew-rate control to reduce switching 

noise
– Clamp to VCCIO user-selectable on a pin-by-pin basis
– Supports hot-socketing
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Embedded Array Block

The EAB is a flexible block of RAM, with registers on the input and output 
ports, that is used to implement common gate array megafunctions. 
Because it is large and flexible, the EAB is suitable for functions such as 
multipliers, vector scalars, and error correction circuits. These functions 
can be combined in applications such as digital filters and 
microcontrollers. 

Logic functions are implemented by programming the EAB with a read-
only pattern during configuration, thereby creating a large LUT. With 
LUTs, combinatorial functions are implemented by looking up the results 
rather than by computing them. This implementation of combinatorial 
functions can be faster than using algorithms implemented in general 
logic, a performance advantage that is further enhanced by the fast access 
times of EABs. The large capacity of EABs enables designers to implement 
complex functions in a single logic level without the routing delays 
associated with linked LEs or field-programmable gate array (FPGA) 
RAM blocks. For example, a single EAB can implement any function with 
8 inputs and 16 outputs. Parameterized functions, such as LPM functions, 
can take advantage of the EAB automatically.

The ACEX 1K enhanced EAB supports dual-port RAM. The dual-port 
structure is ideal for FIFO buffers with one or two clocks. The ACEX 1K 
EAB can also support up to 16-bit-wide RAM blocks. The ACEX 1K EAB 
can act in dual-port or single-port mode. When in dual-port mode, 
separate clocks may be used for EAB read and write sections, allowing the 
EAB to be written and read at different rates. It also has separate 
synchronous clock enable signals for the EAB read and write sections, 
which allow independent control of these sections.

The EAB can also be used for bidirectional, dual-port memory 
applications where two ports read or write simultaneously. To implement 
this type of dual-port memory, two EABs are used to support two 
simultaneous reads or writes.

Alternatively, one clock and clock enable can be used to control the input 
registers of the EAB, while a different clock and clock enable control the 
output registers (see Figure 2).
Altera Corporation  9
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Figure 2. ACEX 1K Device in Dual-Port RAM Mode Note (1)

Notes:
(1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
(2) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB 

local interconnect channels. 

The EAB can use Altera megafunctions to implement dual-port RAM 
applications where both ports can read or write, as shown in Figure 3. The 
ACEX 1K EAB can also be used in a single-port mode (see Figure 4).
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Figure 8. ACEX 1K Logic Element

The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock, clear, and preset control signals on the flipflop can 
be driven by global signals, general-purpose I/O pins, or any internal 
logic. For combinatorial functions, the flipflop is bypassed and the LUT’s 
output drives the LE’s output. 

The LE has two outputs that drive the interconnect: one drives the local 
interconnect, and the other drives either the row or column FastTrack 
Interconnect routing structure. The two outputs can be controlled 
independently. For example, the LUT can drive one output while the 
register drives the other output. This feature, called register packing, can 
improve LE utilization because the register and the LUT can be used for 
unrelated functions.

The ACEX 1K architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. The carry chain supports high-
speed counters and adders, and the cascade chain implements wide-input 
functions with minimum delay. Carry and cascade chains connect all LEs 
in a LAB and all LABs in the same row. Intensive use of carry and cascade 
chains can reduce routing flexibility. Therefore, the use of these chains 
should be limited to speed-critical portions of a design.
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Figure 9. ACEX 1K Carry Chain Operation (n-Bit Full Adder)

LUTa1
b1

Carry Chain

s1

LE1

Register

a2
b2

Carry Chain

s2

LE2

Register

Carry Chain

sn

LEn

Registeran
bn

Carry Chain

Carry-Out

LEn + 1

Register

Carry-In

LUT

LUT

LUT
18 Altera Corporation



ACEX 1K Programmable Logic Device Family Data Sheet

D
evelopm

ent

13

Tools
Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but 
it supports a synchronous clear instead of the up/down control. The clear 
function is substituted for the cascade-in signal in the up/down counter 
mode. Two 3-input LUTs are used; one generates the counter data, and the 
other generates the fast carry bit. Synchronous loading is provided by a 
2-to-1 multiplexer. The output of this multiplexer is AND ed with a 
synchronous clear signal. 

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer. 

Clear & Preset Logic Control

Logic for the programmable register’s clear and preset functions is 
controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The 
clear and preset control structure of the LE asynchronously loads signals 
into a register. Either LABCTRL1 or LABCTRL2 can control the 
asynchronous clear. Alternatively, the register can be set up so that 
LABCTRL1 implements an asynchronous load. The data to be loaded is 
driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the 
register.

During compilation, the compiler automatically selects the best control 
signal implementation. Because the clear and preset functions are active-
low, the Compiler automatically assigns a logic high to an unused clear or 
preset. 

The clear and preset logic is implemented in one of the following six 
modes chosen during design entry: 

■ Asynchronous clear
■ Asynchronous preset
■ Asynchronous clear and preset
■ Asynchronous load with clear
■ Asynchronous load with preset
■ Asynchronous load without clear or preset
Altera Corporation  23
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In addition to the six clear and preset modes, ACEX 1K devices provide a 
chip-wide reset pin that can reset all registers in the device. Use of this 
feature is set during design entry. In any of the clear and preset modes, the 
chip-wide reset overrides all other signals. Registers with asynchronous 
presets may be preset when the chip-wide reset is asserted. Inversion can 
be used to implement the asynchronous preset. Figure 12 shows examples 
of how to setup the preset and clear inputs for the desired functionality.

Figure 12. ACEX 1K LE Clear & Preset Modes
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FastTrack Interconnect Routing Structure

In the ACEX 1K architecture, connections between LEs, EABs, and device 
I/O pins are provided by the FastTrack Interconnect routing structure, 
which is a series of continuous horizontal and vertical routing channels 
that traverse the device. This global routing structure provides 
predictable performance, even in complex designs. In contrast, the 
segmented routing in FPGAs requires switch matrices to connect a 
variable number of routing paths, increasing the delays between logic 
resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column 
interconnect channels that span the entire device. Each row of LABs is 
served by a dedicated row interconnect. The row interconnect can drive 
I/O pins and feed other LABs in the row. The column interconnect routes 
signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row 
signal is buffered at every LAB or EAB to reduce the effect of fan-out on 
delay. A row channel can be driven by an LE or by one of three column 
channels. These four signals feed dual 4-to-1 multiplexers that connect to 
two specific row channels. These multiplexers, which are connected to 
each LE, allow column channels to drive row channels even when all eight 
LEs in a LAB drive the row interconnect. 

Each column of LABs or EABs is served by a dedicated column 
interconnect. The column interconnect that serves the EABs has twice as 
many channels as other column interconnects. The column interconnect 
can then drive I/O pins or another row’s interconnect to route the signals 
to other LABs or EABs in the device. A signal from the column 
interconnect, which can be either the output of a LE or an input from an 
I/O pin, must be routed to the row interconnect before it can enter a LAB 
or EAB. Each row channel that is driven by an IOE or EAB can drive one 
specific column channel.

Access to row and column channels can be switched between LEs in 
adjacent pairs of LABs. For example, a LE in one LAB can drive the row 
and column channels normally driven by a particular LE in the adjacent 
LAB in the same row, and vice versa. This flexibility enables routing 
resources to be used more efficiently. Figure 13 shows the ACEX 1K LAB.
26 Altera Corporation
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SameFrame 
Pin-Outs

ACEX 1K devices support the SameFrame pin-out feature for 
FineLine BGA packages. The SameFrame pin-out feature is the 
arrangement of balls on FineLine BGA packages such that the lower-ball-
count packages form a subset of the higher-ball-count packages. 
SameFrame pin-outs provide the flexibility to migrate not only from 
device to device within the same package, but also from one package to 
another. A given printed circuit board (PCB) layout can support multiple 
device density/package combinations. For example, a single board layout 
can support a range of devices from an EP1K10 device in a 256-pin 
FineLine BGA package to an EP1K100 device in a 484-pin FineLine BGA 
package.

The Altera software provides support to design PCBs with SameFrame 
pin-out devices. Devices can be defined for present and future use. The 
Altera software generates pin-outs describing how to lay out a board that 
takes advantage of this migration. Figure 18 shows an example of 
SameFrame pin-out.

Figure 18. SameFrame Pin-Out Example

Table 10 shows the ACEX 1K device/package combinations that support 
SameFrame pin-outs for ACEX 1K devices. All FineLine BGA packages 
support SameFrame pin-outs, providing the flexibility to migrate not only 
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to another. The I/O count will vary from device to device. 
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Notes to tables:
(1) The most significant bit (MSB) is on the left.
(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

ACEX 1K devices include weak pull-up resistors on the JTAG pins.

f For more information, see the following documents:

■ Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in 
Altera Devices) 

■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ BitBlaster Serial Download Cable Data Sheet
■ Jam Programming & Test Language Specification

Figure 20 shows the timing requirements for the JTAG signals.

Table 16.  32-Bit IDCODE for ACEX 1K Devices Note (1)

Device IDCODE (32 Bits)

Version 
(4 Bits)

Part Number (16 Bits) Manufacturer’s
Identity (11 Bits)

1 (1 Bit) (2)

EP1K10 0001 0001 0000 0001 0000 00001101110 1

EP1K30 0001 0001 0000 0011 0000 00001101110 1

EP1K50 0001 0001 0000 0101 0000 00001101110 1

EP1K100 0010 0000 0001 0000 0000 00001101110 1
Altera Corporation  43
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Table 19.  ACEX 1K Device Recommended Operating Conditions

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage for internal logic 
and input buffers

(3), (4) 2.375 
(2.375)

2.625 
(2.625)

V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

Supply voltage for output buffers, 
2.5-V operation

(3), (4) 2.375 
(2.375)

2.625 
(2.625)

V

VI Input voltage (2), (5) –0.5 5.75 V

VO Output voltage 0 VCCIO V

TA Ambient temperature Commercial range 0 70 ° C

Industrial range –40 85 ° C

TJ Junction temperature Commercial range 0 85 ° C

Industrial range –40 100 ° C

Extended range –40 125 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns

Table 20. ACEX 1K Device DC Operating Conditions  (Part 1 of 2) Notes (6), (7)

Symbol Parameter Conditions Min Typ Max Unit

VIH High-level input voltage 1.7,
0.5 × VCCIO (8)

5.75 V

VIL Low-level input voltage –0.5 0.8, 
0.3 × VCCIO (8)

V

VOH 3.3-V high-level TTL output 
voltage

IOH = –8 mA DC, 
VCCIO = 3.00 V (9)

2.4 V

3.3-V high-level CMOS output 
voltage

IOH = –0.1 mA DC, 
VCCIO = 3.00 V (9)

VCCIO – 0.2 V

3.3-V high-level PCI output 
voltage

IOH = –0.5 mA DC, 
VCCIO = 3.00 to 3.60 V 
(9)

0.9 ×†VCCIO V

2.5-V high-level output voltage IOH = –0.1 mA DC, 
VCCIO = 2.375 V (9)

2.1 V

IOH = –1 mA DC, 
VCCIO = 2.375 V (9)

2.0 V

IOH = –2 mA DC, 
VCCIO = 2.375 V (9)

1.7 V
46 Altera Corporation
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VOL 3.3-V low-level TTL output 
voltage

IOL = 12 mA DC, 
VCCIO = 3.00 V (10)

0.45 V

3.3-V low-level CMOS output 
voltage

IOL = 0.1 mA DC, 
VCCIO = 3.00 V (10)

0.2 V

3.3-V low-level PCI output 
voltage

IOL = 1.5 mA DC, 
VCCIO = 3.00 to 3.60 V 
(10)

0.1 × VCCIO V

2.5-V low-level output voltage IOL = 0.1 mA DC, 
VCCIO = 2.375 V (10)

0.2 V

IOL = 1 mA DC, 
VCCIO = 2.375 V (10)

0.4 V

IOL = 2 mA DC, 
VCCIO = 2.375 V (10)

0.7 V

II Input pin leakage current VI = 5.3 to –0.3 V (11) –10 10 µA

IOZ Tri-stated I/O pin leakage 
current

VO = 5.3 to –0.3 V (11) –10 10 µA

ICC0 VCC supply current (standby) VI = ground, no load, 
no toggling inputs

5 mA

VI = ground, no load, 
no toggling inputs (12)

10 mA

RCONF Value of I/O pin pull-up 
resistor before and during 
configuration

VCCIO = 3.0 V (13) 20 50 kΩ
VCCIO = 2.375 V (13) 30 80 kΩ

Table 20. ACEX 1K Device DC Operating Conditions  (Part 2 of 2) Notes (6), (7)

Symbol Parameter Conditions Min Typ Max Unit
Altera Corporation  47
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Table 24. EAB Timing Microparameters Note (1)

Symbol Parameter Conditions

tEABDATA1 Data or address delay to EAB for combinatorial input

tEABDATA2 Data or address delay to EAB for registered input

tEABWE1 Write enable delay to EAB for combinatorial input

tEABWE2 Write enable delay to EAB for registered input

tEABRE1 Read enable delay to EAB for combinatorial input

tEABRE2 Read enable delay to EAB for registered input

tEABCLK EAB register clock delay

tEABCO EAB register clock-to-output delay

tEABBYPASS Bypass register delay

tEABSU EAB register setup time before clock

tEABH EAB register hold time after clock

tEABCLR EAB register asynchronous clear time to output delay

tAA Address access delay (including the read enable to output delay)

tWP Write pulse width

tRP Read pulse width

tWDSU Data setup time before falling edge of write pulse (5)

tWDH Data hold time after falling edge of write pulse (5)

tWASU Address setup time before rising edge of write pulse (5)

tWAH Address hold time after falling edge of write pulse (5)

tRASU Address setup time before rising edge of read pulse

tRAH Address hold time after falling edge of read pulse

tWO Write enable to data output valid delay

tDD Data-in to data-out valid delay

tEABOUT Data-out delay

tEABCH Clock high time

tEABCL Clock low time
56 Altera Corporation
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Table 34. EP1K10 Device Interconnect Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDIN2IOE 2.3 2.7 3.6 ns

tDIN2LE 0.8 1.1 1.4 ns

tDIN2DATA 1.1 1.4 1.8 ns

tDCLK2IOE 2.3 2.7 3.6 ns

tDCLK2LE 0.8 1.1 1.4 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.8 2.1 2.9 ns

tSAMECOLUMN 0.3 0.4 0.7 ns

tDIFFROW 2.1 2.5 3.6 ns

tTWOROWS 3.9 4.6 6.5 ns

tLEPERIPH 3.3 3.7 4.8 ns

tLABCARRY 0.3 0.4 0.5 ns

tLABCASC 0.9 1.0 1.4 ns

Table 35. EP1K10 External Timing Parameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDRR 7.5 9.5 12.5 ns

tINSU (2), (3) 2.4 2.7 3.6 ns

tINH (2), (3) 0.0 0.0 0.0 ns

tOUTCO (2), (3) 2.0 6.6 2.0 7.8 2.0 9.6 ns

tINSU (4), (3) 1.4 1.7 – ns

tINH (4), (3) 0.5 5.1 0.5 6.4 – – ns

tOUTCO (4), (3) 0.0 0.0 – ns

tPCISU (3) 3.0 4.2 6.4 ns

tPCIH (3) 0.0 0.0 – ns

tPCICO (3) 2.0 6.0 2.0 7.5 2.0 10.2 ns
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Table 40. EP1K30 Device EAB Internal Timing Macroparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABAA 6.4 7.6 8.8 ns

tEABRCOMB 6.4 7.6 8.8 ns

tEABRCREG 4.4 5.1 6.0 ns

tEABWP 2.5 2.9 3.3 ns

tEABWCOMB 6.0 7.0 8.0 ns

tEABWCREG 6.8 7.8 9.0 ns

tEABDD 5.7 6.7 7.7 ns

tEABDATACO 0.8 0.9 1.1 ns

tEABDATASU 1.5 1.7 2.0 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 1.3 1.4 1.7 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.5 1.7 2.0 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.3 ns

tEABWAH 0.5 0.5 0.4 ns

tEABWO 5.1 6.0 6.8 ns
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tCO 0.6 0.6 0.7 ns

tCOMB 0.3 0.4 0.5 ns

tSU 0.5 0.6 0.7 ns

tH 0.5 0.6 0.8 ns

tPRE 0.4 0.5 0.7 ns

tCLR 0.8 1.0 1.2 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

Table 45. EP1K50 Device IOE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tIOD 1.3 1.3 1.9 ns

tIOC 0.3 0.4 0.4 ns

tIOCO 1.7 2.1 2.6 ns

tIOCOMB 0.5 0.6 0.8 ns

tIOSU 0.8 1.0 1.3 ns

tIOH 0.4 0.5 0.6 ns

tIOCLR 0.2 0.2 0.4 ns

tOD1 1.2 1.2 1.9 ns

tOD2 0.7 0.8 1.7 ns

tOD3 2.7 3.0 4.3 ns

tXZ 4.7 5.7 7.5 ns

tZX1 4.7 5.7 7.5 ns

tZX2 4.2 5.3 7.3 ns

tZX3 6.2 7.5 9.9 ns

tINREG 3.5 4.2 5.6 ns

tIOFD 1.1 1.3 1.8 ns

tINCOMB 1.1 1.3 1.8 ns

Table 44. EP1K50 Device LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max
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Table 47. EP1K50 Device EAB Internal Timing Macroparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABAA 3.7 5.2 7.0 ns

tEABRCCOMB 3.7 5.2 7.0 ns

tEABRCREG 3.5 4.9 6.6 ns

tEABWP 2.0 2.8 3.8 ns

tEABWCCOMB 4.5 6.3 8.6 ns

tEABWCREG 5.6 7.8 10.6 ns

tEABDD 3.8 5.3 7.2 ns

tEABDATACO 0.8 1.1 1.5 ns

tEABDATASU 1.1 1.6 2.1 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 0.7 1.0 1.3 ns

tEABWEH 0.4 0.6 0.8 ns

tEABWDSU 1.2 1.7 2.2 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 1.6 2.3 3.0 ns

tEABWAH 0.9 1.2 1.8 ns

tEABWO 3.1 4.3 5.9 ns
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Tables 51 through 57 show EP1K100 device internal and external timing 
parameters.  

Table 51. EP1K100 Device LE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tLUT 0.7 1.0 1.5 ns

tCLUT 0.5 0.7 0.9 ns

tRLUT 0.6 0.8 1.1 ns

tPACKED 0.3 0.4 0.5 ns

tEN 0.2 0.3 0.3 ns

tCICO 0.1 0.1 0.2 ns

tCGEN 0.4 0.5 0.7 ns

tCGENR 0.1 0.1 0.2 ns

tCASC 0.6 0.9 1.2 ns

tC 0.8 1.0 1.4 ns

tCO 0.6 0.8 1.1 ns

tCOMB 0.4 0.5 0.7 ns

tSU 0.4 0.6 0.7 ns

tH 0.5 0.7 0.9 ns

tPRE 0.8 1.0 1.4 ns

tCLR 0.8 1.0 1.4 ns

tCH 1.5 2.0 2.5 ns

tCL 1.5 2.0 2.5 ns
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Table 54. EP1K100 Device EAB Internal Timing Macroparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABAA 5.9 7.6 9.9 ns

tEABRCOMB 5.9 7.6 9.9 ns

tEABRCREG 5.1 6.5 8.5 ns

tEABWP 2.7 3.5 4.7 ns

tEABWCOMB 5.9 7.7 10.3 ns

tEABWCREG 5.4 7.0 9.4 ns

tEABDD 3.4 4.5 5.9 ns

tEABDATACO 0.5 0.7 0.8 ns

tEABDATASU 0.8 1.0 1.4 ns

tEABDATAH 0.1 0.1 0.2 ns

tEABWESU 1.1 1.4 1.9 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.0 1.3 1.7 ns

tEABWDH 0.2 0.2 0.3 ns

tEABWASU 4.1 5.2 6.8 ns

tEABWAH 0.0 0.0 0.0 ns

tEABWO 3.4 4.5 5.9 ns
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Notes to tables:
(1) All timing parameters are described in Tables 22 through 29 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Power 
Consumption

The supply power (P) for ACEX 1K devices can be calculated with the 
following equation:

P = PINT + PIO = (ICCSTANDBY + ICCACTIVE) × VCC + PIO

The ICCACTIVE value depends on the switching frequency and the 
application logic. This value is calculated based on the amount of current 
that each LE typically consumes. The PIO value, which depends on the 
device output load characteristics and switching frequency, can be 
calculated using the guidelines given in Application Note 74 (Evaluating 
Power for Altera Devices).

1 Compared to the rest of the device, the embedded array 
consumes a negligible amount of power. Therefore, the 
embedded array can be ignored when calculating supply 
current.

Table 57. EP1K100 External Bidirectional Timing Parameters Notes (1), (2)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSUBIDIR (3) 1.7 2.5 3.3 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 2.0 2.8 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 5.2 2.0 6.9 2.0 9.1 ns

tXZBIDIR (3) 5.6 7.5 10.1 ns

tZXBIDIR (3) 5.6 7.5  10.1 ns

tOUTCOBIDIR (4) 0.5 3.0 0.5 4.6 – – ns

tXZBIDIR (4) 4.6 6.5 – ns

tZXBIDIR (4) 4.6  6.5 – ns
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