Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 624 | | Number of Logic Elements/Cells | 4992 | | Total RAM Bits | 49152 | | Number of I/O | 186 | | Number of Gates | 257000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 256-BGA | | Supplier Device Package | 256-FBGA (17x17) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1k100fc256-2n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Software design support and automatic place-and-route provided by Altera development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations - Flexible package options are available in 100 to 484 pins, including the innovative FineLine BGATM packages (see Tables 2 and 3) - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), DesignWare components, Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic | Table 2. ACEX | 1K Package Option | ns & I/O Pin Count | Notes (1), (2) | | | |---------------|-------------------|--------------------|----------------|-------------------------|-------------------------| | Device | 100-Pin TQFP | 144-Pin TQFP | 208-Pin PQFP | 256-Pin
FineLine BGA | 484-Pin
FineLine BGA | | EP1K10 | 66 | 92 | 120 | 136 | 136 (3) | | EP1K30 | | 102 | 147 | 171 | 171 (3) | | EP1K50 | | 102 | 147 | 186 | 249 | | EP1K100 | | | 147 | 186 | 333 | #### Notes: - ACEX 1K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), and FineLine BGA packages. - (2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When planning device migration, use the I/O pins that are common to all devices. - (3) This option is supported with a 256-pin FineLine BGA package. By using SameFrameTM pin migration, all FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin and 484-pin FineLine BGA packages. | Table 3. ACEX 1K Package Sizes | | | | | | | |--|--------------|--------------|--------------|-------------------------|-------------------------|--| | Device | 100-Pin TQFP | 144-Pin TQFP | 208-Pin PQFP | 256-Pin
FineLine BGA | 484-Pin
FineLine BGA | | | Pitch (mm) | 0.50 | 0.50 | 0.50 | 1.0 | 1.0 | | | Area (mm²) | 256 | 484 | 936 | 289 | 529 | | | $\begin{array}{c} \text{Length} \times \text{width} \\ \text{(mm} \times \text{mm)} \end{array}$ | 16×16 | 22 × 22 | 30.6 × 30.6 | 17 × 17 | 23 × 23 | | # General Description Altera® ACEX 1K devices provide a die-efficient, low-cost architecture by combining look-up table (LUT) architecture with EABs. LUT-based logic provides optimized performance and efficiency for data-path, register intensive, mathematical, or digital signal processing (DSP) designs, while EABs implement RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. These elements make ACEX 1K suitable for complex logic functions and memory functions such as digital signal processing, wide data-path manipulation, data transformation and microcontrollers, as required in high-performance communications applications. Based on reconfigurable CMOS SRAM elements, the ACEX 1K architecture incorporates all features necessary to implement common gate array megafunctions, along with a high pin count to enable an effective interface with system components. The advanced process and the low voltage requirement of the 2.5-V core allow ACEX 1K devices to meet the requirements of low-cost, high-volume applications ranging from DSL modems to low-cost switches. The ability to reconfigure ACEX 1K devices enables complete testing prior to shipment and allows the designer to focus on simulation and design verification. ACEX 1K device reconfigurability eliminates inventory management for gate array designs and test vector generation for fault coverage. Table 4 shows ACEX 1K device performance for some common designs. All performance results were obtained with Synopsys DesignWare or LPM functions. Special design techniques are not required to implement the applications; the designer simply infers or instantiates a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file. | Application | Reso
Us | urces
ed | Performance | | | | |--|------------|-------------|-------------|-----|-----|-------| | | LEs | EABs | Speed Grade | | | Units | | | | | -1 | -2 | -3 | | | 16-bit loadable counter | 16 | 0 | 285 | 232 | 185 | MHz | | 16-bit accumulator | 16 | 0 | 285 | 232 | 185 | MHz | | 16-to-1 multiplexer (1) | 10 | 0 | 3.5 | 4.5 | 6.6 | ns | | 16-bit multiplier with 3-stage pipeline(2) | 592 | 0 | 156 | 131 | 93 | MHz | | 256 × 16 RAM read cycle speed (2) | 0 | 1 | 278 | 196 | 143 | MHz | | 256 × 16 RAM write cycle speed (2) | 0 | 1 | 185 | 143 | 111 | MHz | #### Notes: - This application uses combinatorial inputs and outputs. - (2) This application uses registered inputs and outputs. Table 5 shows ACEX 1K device performance for more complex designs. These designs are available as Altera MegaCore $^{\rm TM}$ functions. | Table 5. ACEX 1K Device Performance for Complex Designs | | | | | | |---|-------|-------------|------|------|-------| | Application LEs Performance | | | | | | | | Used | Speed Grade | | | Units | | | · | -1 | -2 | -3 | | | 16-bit, 8-tap parallel finite impulse response (FIR) filter | 597 | 192 | 156 | 116 | MSPS | | 8-bit, 512-point Fast Fourier transform (FFT) | 1,854 | 23.4 | 28.7 | 38.9 | μs | | function | | 113 | 92 | 68 | MHz | | a16450 universal asynchronous receiver/transmitter (UART) | 342 | 36 | 28 | 20.5 | MHz | Each ACEX 1K device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and data-transformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device. ACEX 1K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers EPC16, EPC2, EPC1, and EPC1441 configuration devices, which configure ACEX 1K devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera MasterBlaster $^{\text{TM}}$, ByteBlasterMV $^{\text{TM}}$, or BitBlaster $^{\text{TM}}$ download cables. After an ACEX 1K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 40 ms, real-time changes can be made during system operation. ACEX 1K devices contain an interface that permits microprocessors to configure ACEX 1K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat an ACEX 1K device as memory and configure it by writing to a virtual memory location, simplifying device reconfiguration. For more information on the configuration of ACEX 1K devices, see the following documents: - Configuration Devices for ACEX, APEX, FLEX, & Mercury Devices Data Sheet - MasterBlaster Serial/USB Communications Cable Data Sheet - ByteBlasterMV Parallel Port Download Cable Data Sheet - BitBlaster Serial Download Cable Data Sheet ACEX 1K devices are supported by Altera development systems, which are integrated packages that offer schematic, text (including AHDL), and waveform design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, and device configuration. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX workstation-based EDA tools. The Altera software works easily with common gate array EDA tools for synthesis and simulation. For example, the Altera software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the Altera software contains EDA libraries that use device-specific features such as carry chains, which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the Altera development system includes DesignWare functions that are optimized for the ACEX 1K device architecture. The Altera development systems run on Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations. For more information, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet. # Functional Description Each ACEX 1K device contains an enhanced embedded array that implements memory and specialized logic functions, and a logic array that implements general logic. The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 4,096 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions such as multipliers, microcontrollers, state machines, and DSP functions. EABs can be used independently, or multiple EABs can be combined to implement larger functions. Figure 7. ACEX 1K LAB ### Notes: - (1) EP1K10, EP1K30, and EP1K50 devices have 22 inputs to the LAB local interconnect channel from the row; EP1K100 devices have 26. - (2) EP1K10, EP1K30, and EP1K50 devices have 30 LAB local interconnect channels; EP1K100 devices have 34. ### Carry Chain The carry chain provides a very fast (as low as 0.2 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the ACEX 1K architecture to efficiently implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the compiler during design processing, or manually by the designer during design entry. Parameterized functions, such as LPM and DesignWare functions, automatically take advantage of carry chains. Carry chains longer than eight LEs are automatically implemented by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the first LE of the third LAB in the row. The carry chain does not cross the EAB at the middle of the row. For instance, in the EP1K50 device, the carry chain stops at the eighteenth LAB, and a new carry chain begins at the nineteenth LAB. Figure 9 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal. # LE Operating Modes The ACEX 1K LE can operate in the following four modes: - Normal mode - Arithmetic mode - Up/down counter mode - Clearable counter mode Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance. The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs. Figure 11 shows the ACEX 1K LE operating modes. # FastTrack Interconnect Routing Structure In the ACEX 1K architecture, connections between LEs, EABs, and device I/O pins are provided by the FastTrack Interconnect routing structure, which is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance. The FastTrack Interconnect routing structure consists of row and column interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect. The row interconnect can drive I/O pins and feed other LABs in the row. The column interconnect routes signals between rows and can drive I/O pins. Row channels drive into the LAB or EAB local interconnect. The row signal is buffered at every LAB or EAB to reduce the effect of fan-out on delay. A row channel can be driven by an LE or by one of three column channels. These four signals feed dual 4-to-1 multiplexers that connect to two specific row channels. These multiplexers, which are connected to each LE, allow column channels to drive row channels even when all eight LEs in a LAB drive the row interconnect. Each column of LABs or EABs is served by a dedicated column interconnect. The column interconnect that serves the EABs has twice as many channels as other column interconnects. The column interconnect can then drive I/O pins or another row's interconnect to route the signals to other LABs or EABs in the device. A signal from the column interconnect, which can be either the output of a LE or an input from an I/O pin, must be routed to the row interconnect before it can enter a LAB or EAB. Each row channel that is driven by an IOE or EAB can drive one specific column channel. Access to row and column channels can be switched between LEs in adjacent pairs of LABs. For example, a LE in one LAB can drive the row and column channels normally driven by a particular LE in the adjacent LAB in the same row, and vice versa. This flexibility enables routing resources to be used more efficiently. Figure 13 shows the ACEX 1K LAB. Tables 11 and 12 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively. | Table 11. | ClockLock & ClockBoost Parameters for -1 | Speed-Grade De | vices | | | | |-----------------------|---|----------------------------|-------|-----|-------------------------------|------| | Symbol | Parameter | Condition | Min | Тур | Max | Unit | | t_R | Input rise time | | | | 5 | ns | | t_{F} | Input fall time | | | | 5 | ns | | t_{INDUTY} | Input duty cycle | | 40 | | 60 | % | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | | 25 | | 180 | MHz | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | | 16 | | 90 | MHz | | f _{CLKDEV} | Input deviation from user specification in the Altera software (1) | | | | 25,000
<i>(</i> 2 <i>)</i> | PPM | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | | | 100 | ps | | t _{LOCK} | Time required for ClockLock or ClockBoost to acquire lock (3) | | | | 10 | μs | | t _{JITTER} | Jitter on ClockLock or ClockBoost- | t _{INCLKSTB} <100 | | | 250 (4) | ps | | | generated clock (4) | $t_{INCLKSTB} < 50$ | | | 200 (4) | ps | | t _{OUTDUTY} | Duty cycle for ClockLock or ClockBoost-
generated clock | | 40 | 50 | 60 | % | | Table 12. | ClockLock & ClockBoost Parameters for -2 | ? Speed-Grade De | vices | | | | |-----------------------|---|-----------------------------|-------|-----|----------------|------| | Symbol | Parameter | Condition | Min | Тур | Max | Unit | | t_R | Input rise time | | | | 5 | ns | | t_{\digamma} | Input fall time | | | | 5 | ns | | t _{INDUTY} | Input duty cycle | | 40 | | 60 | % | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | | 25 | | 80 | MHz | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | | 16 | | 40 | MHz | | f _{CLKDEV} | Input deviation from user specification in the software (1) | | | | 25,000 | PPM | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | | | 100 | ps | | t _{LOCK} | Time required for ClockLock or ClockBoost to acquire lock (3) | | | | 10 | μs | | t _{JITTER} | Jitter on ClockLock or ClockBoost- | t _{INCLKSTB} < 100 | | | 250 <i>(4)</i> | ps | | | generated clock (4) | t _{INCLKSTB} < 50 | | | 200 (4) | ps | | toutduty | Duty cycle for ClockLock or ClockBoost-
generated clock | | 40 | 50 | 60 | % | #### Notes to tables: - (1) To implement the ClockLock and ClockBoost circuitry with the Altera software, designers must specify the input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter. - (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period. - (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration. - (4) The t_{IITTER} specification is measured under long-term observation. The maximum value for t_{IITTER} is 200 ps if $t_{INCLKSTB}$ is lower than 50 ps. # I/O Configuration This section discusses the PCI pull-up clamping diode option, slew-rate control, open-drain output option, and MultiVolt I/O interface for ACEX 1K devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via Altera software logic options. The MultiVolt I/O interface is controlled by connecting $V_{\rm CCIO}$ to a different voltage than $V_{\rm CCINT}$. Its effect can be simulated in the Altera software via the **Global Project Device Options** dialog box (Assign menu). | Table 22. LE Timing Microparameters (Part 2 of 2) Note (1) | | | | | |--|--|------------|--|--| | Symbol | Parameter | Conditions | | | | t _{CASC} | Cascade-in to cascade-out delay | | | | | t_{C} | LE register control signal delay | | | | | t_{CO} | LE register clock-to-output delay | | | | | t _{COMB} | Combinatorial delay | | | | | t _{SU} | LE register setup time for data and enable signals before clock; LE register recovery time after asynchronous clear, preset, or load | | | | | t_H | LE register hold time for data and enable signals after clock | | | | | t _{PRE} | LE register preset delay | | | | | t _{CLR} | LE register clear delay | | | | | t _{CH} | Minimum clock high time from clock pin | | | | | t_{CL} | Minimum clock low time from clock pin | | | | | Table 23. 10 | E Timing Microparameters Note (1) | | |---------------------|---|----------------| | Symbol | Parameter | Conditions | | t_{IOD} | IOE data delay | | | t_{IOC} | IOE register control signal delay | | | t _{IOCO} | IOE register clock-to-output delay | | | t _{IOCOMB} | IOE combinatorial delay | | | t _{IOSU} | IOE register setup time for data and enable signals before clock; IOE register recovery time after asynchronous clear | | | t _{IOH} | IOE register hold time for data and enable signals after clock | | | t _{IOCLR} | IOE register clear time | | | t _{OD1} | Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (2) | | t _{OD2} | Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 2.5 V | C1 = 35 pF (3) | | t _{OD3} | Output buffer and pad delay, slow slew rate = on | C1 = 35 pF (4) | | t_{XZ} | IOE output buffer disable delay | | | t_{ZX1} | IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (2) | | t_{ZX2} | IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 2.5 V | C1 = 35 pF (3) | | t _{ZX3} | IOE output buffer enable delay, slow slew rate = on | C1 = 35 pF (4) | | t _{INREG} | IOE input pad and buffer to IOE register delay | | | t _{IOFD} | IOE register feedback delay | | | t _{INCOMB} | IOE input pad and buffer to FastTrack Interconnect delay | | | Symbol | Parameter | Conditions | |------------------------|--|------------| | t _{EABDATA1} | Data or address delay to EAB for combinatorial input | | | t _{EABDATA2} | Data or address delay to EAB for registered input | | | t _{EABWE1} | Write enable delay to EAB for combinatorial input | | | t _{EABWE2} | Write enable delay to EAB for registered input | | | t _{EABRE1} | Read enable delay to EAB for combinatorial input | | | t _{EABRE2} | Read enable delay to EAB for registered input | | | t _{EABCLK} | EAB register clock delay | | | t _{EABCO} | EAB register clock-to-output delay | | | t _{EABBYPASS} | Bypass register delay | | | t _{EABSU} | EAB register setup time before clock | | | t _{EABH} | EAB register hold time after clock | | | t _{EABCLR} | EAB register asynchronous clear time to output delay | | | t_{AA} | Address access delay (including the read enable to output delay) | | | t_{WP} | Write pulse width | | | t_{RP} | Read pulse width | | | t _{WDSU} | Data setup time before falling edge of write pulse | (5) | | t _{WDH} | Data hold time after falling edge of write pulse | (5) | | t _{WASU} | Address setup time before rising edge of write pulse | (5) | | t _{WAH} | Address hold time after falling edge of write pulse | (5) | | t _{RASU} | Address setup time before rising edge of read pulse | | | t _{RAH} | Address hold time after falling edge of read pulse | | | t_{WO} | Write enable to data output valid delay | | | t_{DD} | Data-in to data-out valid delay | | | t _{EABOUT} | Data-out delay | | | t _{EABCH} | Clock high time | | | t _{EABCL} | Clock low time | | | Table 25. EAL | B Timing Macroparameters Notes (1), (6) | | |------------------------|---|------------| | Symbol | Parameter | Conditions | | t _{EABAA} | EAB address access delay | | | t _{EABRCCOMB} | EAB asynchronous read cycle time | | | t _{EABRCREG} | EAB synchronous read cycle time | | | t _{EABWP} | EAB write pulse width | | | t _{EABWCCOMB} | EAB asynchronous write cycle time | | | t _{EABWCREG} | EAB synchronous write cycle time | | | t_{EABDD} | EAB data-in to data-out valid delay | | | t _{EABDATACO} | EAB clock-to-output delay when using output registers | | | t _{EABDATASU} | EAB data/address setup time before clock when using input register | | | t _{EABDATAH} | EAB data/address hold time after clock when using input register | | | t _{EABWESU} | EAB WE setup time before clock when using input register | | | t _{EABWEH} | EAB WE hold time after clock when using input register | | | t _{EABWDSU} | EAB data setup time before falling edge of write pulse when not using input registers | | | t _{EABWDH} | EAB data hold time after falling edge of write pulse when not using input registers | | | t _{EABWASU} | EAB address setup time before rising edge of write pulse when not using input registers | | | t _{EABWAH} | EAB address hold time after falling edge of write pulse when not using input registers | | | t _{EABWO} | EAB write enable to data output valid delay | | | Table 26. Inte | erconnect Timing Microparameters Note (1) | | |--------------------------|--|------------| | Symbol | Parameter | Conditions | | t _{DIN2IOE} | Delay from dedicated input pin to IOE control input | (7) | | t _{DIN2LE} | Delay from dedicated input pin to LE or EAB control input | (7) | | t _{DIN2DATA} | Delay from dedicated input or clock to LE or EAB data | (7) | | t _{DCLK2IOE} | Delay from dedicated clock pin to IOE clock | (7) | | t _{DCLK2LE} | Delay from dedicated clock pin to LE or EAB clock | (7) | | t _{SAMELAB} | Routing delay for an LE driving another LE in the same LAB | (7) | | t _{SAMEROW} | Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the same row | (7) | | t _{SAME} COLUMN | Routing delay for an LE driving an IOE in the same column | (7) | | t _{DIFFROW} | Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different row | (7) | | t _{TWOROWS} | Routing delay for a row IOE or EAB driving an LE or EAB in a different row | (7) | | t _{LEPERIPH} | Routing delay for an LE driving a control signal of an IOE via the peripheral control bus | (7) | | t _{LABCARRY} | Routing delay for the carry-out signal of an LE driving the carry-in signal of a different LE in a different LAB | | | t _{LABCASC} | Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB | | #### Notes to tables: - Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be measured explicitly. - Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial and extended use in ACEX 1K devices - Operating conditions: $V_{CCIO} = 2.5 \text{ V} \pm 5\%$ for commercial or industrial and extended use in ACEX 1K devices. Operating conditions: $V_{CCIO} = 2.5 \text{ V} \text{ or } 3.3 \text{ V}$. (3) - (4) - Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. - EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; these parameters are calculated by summing selected microparameters. - These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. Tables 27 through 29 describe the ACEX 1K external timing parameters and their symbols. | Table 27. Exte | ernal Reference Timing Parameters Note (1) | | |------------------|--|------------| | Symbol | Parameter | Conditions | | t _{DRR} | Register-to-register delay via four LEs, three row interconnects, and four local interconnects | (2) | | Table 28. Ex | Table 28. External Timing Parameters | | | | | | | |--------------------|---|------------|--|--|--|--|--| | Symbol | Parameter | Conditions | | | | | | | t _{INSU} | Setup time with global clock at IOE register | (3) | | | | | | | t _{INH} | Hold time with global clock at IOE register | (3) | | | | | | | t _{OUTCO} | Clock-to-output delay with global clock at IOE register | (3) | | | | | | | t _{PCISU} | Setup time with global clock for registers used in PCI designs | (3), (4) | | | | | | | t _{PCIH} | Hold time with global clock for registers used in PCI designs | (3), (4) | | | | | | | t _{PCICO} | Clock-to-output delay with global clock for registers used in PCI designs | (3), (4) | | | | | | | Table 29. Ext | ernal Bidirectional Timing Parameters Note (3) | | |-------------------------|--|------------| | Symbol | Parameter | Conditions | | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at same-row or same-column LE register | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at same-row or same-column LE register | | | t _{OUTCOBIDIR} | Clock-to-output delay for bidirectional pins with global clock at IOE register | CI = 35 pF | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | CI = 35 pF | | t _{ZXBIDIR} | Synchronous IOE output buffer enable delay, slow slew rate = off | CI = 35 pF | ### Notes to tables: - (1) External reference timing parameters are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications. - (2) Contact Altera Applications for test circuit specifications and test conditions. - (3) These timing parameters are sample-tested only. - (4) This parameter is measured with the measurement and test conditions, including load, specified in the *PCI Local Bus Specification, Revision 2.2.* | Symbol | Speed Grade | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|------|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t_{IOD} | | 2.6 | | 3.1 | | 4.0 | ns | | | t _{IOC} | | 0.3 | | 0.4 | | 0.5 | ns | | | t _{IOCO} | | 0.9 | | 1.0 | | 1.4 | ns | | | t _{IOCOMB} | | 0.0 | | 0.0 | | 0.0 | ns | | | t _{IOSU} | 1.3 | | 1.5 | | 2.0 | | ns | | | t _{IOH} | 0.9 | | 1.0 | | 1.4 | | ns | | | t _{IOCLR} | | 1.1 | | 1.3 | | 1.7 | ns | | | t _{OD1} | | 3.1 | | 3.7 | | 4.1 | ns | | | t _{OD2} | | 2.6 | | 3.3 | | 3.9 | ns | | | t _{OD3} | | 5.8 | | 6.9 | | 8.3 | ns | | | t_{XZ} | | 3.8 | | 4.5 | | 5.9 | ns | | | t_{ZX1} | | 3.8 | | 4.5 | | 5.9 | ns | | | t_{ZX2} | | 3.3 | | 4.1 | | 5.7 | ns | | | t_{ZX3} | | 6.5 | | 7.7 | | 10.1 | ns | | | t _{INREG} | | 3.7 | | 4.3 | | 5.7 | ns | | | t _{IOFD} | | 0.9 | | 1.0 | | 1.4 | ns | | | t _{INCOMB} | | 1.9 | | 2.3 | | 3.0 | ns | | | Symbol | Speed Grade | | | | | | | | |-------------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{EABAA} | | 6.7 | | 7.3 | | 7.3 | ns | | | t _{EABRCCOMB} | 6.7 | | 7.3 | | 7.3 | | ns | | | t _{EABRCREG} | 4.7 | | 4.9 | | 4.9 | | ns | | | t _{EABWP} | 2.7 | | 2.8 | | 2.8 | | ns | | | t _{EABWCCOMB} | 6.4 | | 6.7 | | 6.7 | | ns | | | t _{EABWCREG} | 7.4 | | 7.6 | | 7.6 | | ns | | | t _{EABDD} | | 6.0 | | 6.5 | | 6.5 | ns | | | t _{EABDATA} CO | | 0.8 | | 0.9 | | 0.9 | ns | | | t _{EABDATASU} | 1.6 | | 1.7 | | 1.7 | | ns | | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWESU} | 1.4 | | 1.4 | | 1.4 | | ns | | | t _{EABWEH} | 0.1 | | 0.0 | | 0.0 | | ns | | | t _{EABWDSU} | 1.6 | | 1.7 | | 1.7 | | ns | | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWASU} | 3.1 | | 3.4 | | 3.4 | | ns | | | t _{EABWAH} | 0.6 | | 0.5 | | 0.5 | | ns | | | t _{EABWO} | | 5.4 | | 5.8 | | 5.8 | ns | | | Symbol | Speed Grade | | | | | | | | |-------------------------|-------------|-----|-----|-----|------|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{EABAA} | | 3.7 | | 5.2 | | 7.0 | ns | | | t _{EABRCCOMB} | 3.7 | | 5.2 | | 7.0 | | ns | | | t _{EABRCREG} | 3.5 | | 4.9 | | 6.6 | | ns | | | t _{EABWP} | 2.0 | | 2.8 | | 3.8 | | ns | | | t _{EABWCCOMB} | 4.5 | | 6.3 | | 8.6 | | ns | | | t _{EABWCREG} | 5.6 | | 7.8 | | 10.6 | | ns | | | t _{EABDD} | | 3.8 | | 5.3 | | 7.2 | ns | | | t _{EABDATA} CO | | 0.8 | | 1.1 | | 1.5 | ns | | | t _{EABDATASU} | 1.1 | | 1.6 | | 2.1 | | ns | | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWESU} | 0.7 | | 1.0 | | 1.3 | | ns | | | t _{EABWEH} | 0.4 | | 0.6 | | 0.8 | | ns | | | t _{EABWDSU} | 1.2 | | 1.7 | | 2.2 | | ns | | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWASU} | 1.6 | | 2.3 | | 3.0 | | ns | | | t _{EABWAH} | 0.9 | | 1.2 | | 1.8 | | ns | | | t _{EABWO} | | 3.1 | | 4.3 | | 5.9 | ns | | | Symbol | Speed Grade | | | | | | | | |-------------------------|-------------|-----|-----|-----|------|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{EABAA} | | 5.9 | | 7.6 | | 9.9 | ns | | | t _{EABRCOMB} | 5.9 | | 7.6 | | 9.9 | | ns | | | t _{EABRCREG} | 5.1 | | 6.5 | | 8.5 | | ns | | | t _{EABWP} | 2.7 | | 3.5 | | 4.7 | | ns | | | t _{EABWCOMB} | 5.9 | | 7.7 | | 10.3 | | ns | | | t _{EABWCREG} | 5.4 | | 7.0 | | 9.4 | | ns | | | t _{EABDD} | | 3.4 | | 4.5 | | 5.9 | ns | | | t _{EABDATA} CO | | 0.5 | | 0.7 | | 0.8 | ns | | | t _{EABDATASU} | 0.8 | | 1.0 | | 1.4 | | ns | | | t _{EABDATAH} | 0.1 | | 0.1 | | 0.2 | | ns | | | t _{EABWESU} | 1.1 | | 1.4 | | 1.9 | | ns | | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWDSU} | 1.0 | | 1.3 | | 1.7 | | ns | | | t _{EABWDH} | 0.2 | | 0.2 | | 0.3 | | ns | | | t _{EABWASU} | 4.1 | | 5.2 | | 6.8 | | ns | | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWO} | | 3.4 | | 4.5 | | 5.9 | ns | | | Symbol | Speed Grade | | | | | | | | |----------------------------|-------------|-----|-----|-----|-----|------|----|--| | | -1 | | -2 | | -3 | | 1 | | | | Min | Max | Min | Max | Min | Max | | | | t _{INSUBIDIR} (3) | 1.7 | | 2.5 | | 3.3 | | ns | | | t _{INHBIDIR} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{INSUBIDIR} (4) | 2.0 | | 2.8 | | - | | ns | | | t _{INHBIDIR} (4) | 0.0 | | 0.0 | | - | | ns | | | toutcobidir (3) | 2.0 | 5.2 | 2.0 | 6.9 | 2.0 | 9.1 | ns | | | t _{XZBIDIR} (3) | | 5.6 | | 7.5 | | 10.1 | ns | | | t _{ZXBIDIR} (3) | | 5.6 | | 7.5 | | 10.1 | ns | | | toutcobidir (4) | 0.5 | 3.0 | 0.5 | 4.6 | - | - | ns | | | t _{XZBIDIR} (4) | | 4.6 | | 6.5 | | - | ns | | | t _{ZXBIDIR} (4) | | 4.6 | | 6.5 | | _ | ns | | ### Notes to tables: - (1) All timing parameters are described in Tables 22 through 29 in this data sheet. - (2) These parameters are specified by characterization. - (3) This parameter is measured without the use of the ClockLock or ClockBoost circuits. - (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits. # Power Consumption The supply power (P) for ACEX 1K devices can be calculated with the following equation: $$P = P_{INT} + P_{IO} = (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO}$$ The $I_{CCACTIVE}$ value depends on the switching frequency and the application logic. This value is calculated based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*. Compared to the rest of the device, the embedded array consumes a negligible amount of power. Therefore, the embedded array can be ignored when calculating supply current.