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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs 624

Number of Logic Elements/Cells 4992

Total RAM Bits 49152

Number of I/O 333

Number of Gates 257000

Voltage - Supply 2.375V ~ 2.625V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 70°C (TA)

Package / Case 484-BBGA

Supplier Device Package 484-FBGA (23x23)

Purchase URL https://www.e-xfl.com/product-detail/intel/ep1k100fc484-1

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/ep1k100fc484-1-4495900
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array


ACEX 1K Programmable Logic Device Family Data Sheet
Figure 2. ACEX 1K Device in Dual-Port RAM Mode Note (1)

Notes:
(1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
(2) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB 

local interconnect channels. 

The EAB can use Altera megafunctions to implement dual-port RAM 
applications where both ports can read or write, as shown in Figure 3. The 
ACEX 1K EAB can also be used in a single-port mode (see Figure 4).
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ACEX 1K Programmable Logic Device Family Data Sheet
EABs can be used to implement synchronous RAM, which is easier to use 
than asynchronous RAM. A circuit using asynchronous RAM must 
generate the RAM write enable signal, while ensuring that its data and 
address signals meet setup and hold time specifications relative to the 
write enable signal. In contrast, the EAB’s synchronous RAM generates its 
own write enable signal and is self-timed with respect to the input or write 
clock. A circuit using the EAB’s self-timed RAM must only meet the setup 
and hold time specifications of the global clock.

When used as RAM, each EAB can be configured in any of the following 
sizes: 256 × 16; 512 × 8; 1,024 × 4; or 2,048 × 2. Figure 5 shows the ACEX 1K 
EAB memory configurations.

Figure 5. ACEX 1K EAB Memory Configurations

Larger blocks of RAM are created by combining multiple EABs. For 
example, two 256 × 16 RAM blocks can be combined to form a 256 × 32 
block, and two 512 × 8 RAM blocks can be combined to form a 
512 × 16 block. Figure 6 shows examples of multiple EAB combination.

Figure 6. Examples of Combining ACEX 1K EABs

256 × 16 512 × 8 1,024 × 4 2,048 × 2

512 × 8

512 × 8

256 × 16

256 × 16

256 × 32
512 × 16
12 Altera Corporation



ACEX 1K Programmable Logic Device Family Data Sheet

D
evelopm

ent

13

Tools
If necessary, all EABs in a device can be cascaded to form a single RAM 
block. EABs can be cascaded to form RAM blocks of up to 2,048 words 
without impacting timing. Altera software automatically combines EABs 
to meet a designer’s RAM specifications.

EABs provide flexible options for driving and controlling clock signals. 
Different clocks and clock enables can be used for reading and writing to 
the EAB. Registers can be independently inserted on the data input, EAB 
output, write address, write enable signals, read address, and read enable 
signals. The global signals and the EAB local interconnect can drive 
write-enable, read-enable, and clock-enable signals. The global signals, 
dedicated clock pins, and EAB local interconnect can drive the EAB clock 
signals. Because the LEs drive the EAB local interconnect, the LEs can 
control write-enable, read-enable, clear, clock, and clock-enable signals. 

An EAB is fed by a row interconnect and can drive out to row and column 
interconnects. Each EAB output can drive up to two row channels and up 
to two column channels; the unused row channel can be driven by other 
LEs. This feature increases the routing resources available for EAB 
outputs (see Figures 2 and 4). The column interconnect, which is adjacent 
to the EAB, has twice as many channels as other columns in the device.

Logic Array Block

An LAB consists of eight LEs, their associated carry and cascade chains, 
LAB control signals, and the LAB local interconnect. The LAB provides 
the coarse-grained structure to the ACEX 1K architecture, facilitating 
efficient routing with optimum device utilization and high performance. 
Figure 7 shows the ACEX 1K LAB.
Altera Corporation  13
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Figure 7. ACEX 1K LAB

Notes:
(1) EP1K10, EP1K30, and EP1K50 devices have 22 inputs to the LAB local interconnect channel from the row; EP1K100 

devices have 26.
(2) EP1K10, EP1K30, and EP1K50 devices have 30 LAB local interconnect channels; EP1K100 devices have 34. 
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Each LAB provides four control signals with programmable inversion 
that can be used in all eight LEs. Two of these signals can be used as clocks, 
the other two can be used for clear/preset control. The LAB clocks can be 
driven by the dedicated clock input pins, global signals, I/O signals, or 
internal signals via the LAB local interconnect. The LAB preset and clear 
control signals can be driven by the global signals, I/O signals, or internal 
signals via the LAB local interconnect. The global control signals are 
typically used for global clock, clear, or preset signals because they 
provide asynchronous control with very low skew across the device. If 
logic is required on a control signal, it can be generated in one or more LEs 
in any LAB and driven into the local interconnect of the target LAB. In 
addition, the global control signals can be generated from LE outputs.

Logic Element

The LE, the smallest unit of logic in the ACEX 1K architecture, has a 
compact size that provides efficient logic utilization. Each LE contains a 
4-input LUT, which is a function generator that can quickly compute any 
function of four variables. In addition, each LE contains a programmable 
flipflop with a synchronous clock enable, a carry chain, and a cascade 
chain. Each LE drives both the local and the FastTrack Interconnect 
routing structure. Figure 8 shows the ACEX 1K LE.
Altera Corporation  15
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Cascade Chain

With the cascade chain, the ACEX 1K architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. With a delay as low as 0.6 ns per LE, each additional LE 
provides four more inputs to the effective width of a function. Cascade 
chain logic can be created automatically by the compiler during design 
processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EP1K50 device, the cascade 
chain stops at the eighteenth LAB, and a new one begins at the nineteenth 
LAB). This break is due to the EAB’s placement in the middle of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to 
form functions with a wide fan-in. These examples show functions of 4n 
variables implemented with n LEs. The LE delay is 1.3 ns; the cascade 
chain delay is 0.6 ns. With the cascade chain, decoding a 16-bit address 
requires 3.1 ns.

Figure 10. ACEX 1K Cascade Chain Operation
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LE Operating Modes

The ACEX 1K LE can operate in the following four modes:

■ Normal mode
■ Arithmetic mode
■ Up/down counter mode
■ Clearable counter mode

Each of these modes uses LE resources differently. In each mode, seven 
available inputs to the LE—the four data inputs from the LAB local 
interconnect, the feedback from the programmable register, and the 
carry-in and cascade-in from the previous LE—are directed to different 
destinations to implement the desired logic function. Three inputs to the 
LE provide clock, clear, and preset control for the register. The Altera 
software, in conjunction with parameterized functions such as LPM and 
DesignWare functions, automatically chooses the appropriate mode for 
common functions such as counters, adders, and multipliers. If required, 
the designer can also create special-purpose functions that use a specific 
LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all 
four modes. The Altera software can set DATA1 to enable the register 
synchronously, providing easy implementation of fully synchronous 
designs.

Figure 11 shows the ACEX 1K LE operating modes.
20 Altera Corporation
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Figure 11. ACEX 1K LE Operating Modes
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a 4-input LUT. The compiler automatically selects the carry-
in or the DATA3 signal as one of the inputs to the LUT. The LUT output 
can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect routing 
structure at the same time. 

The LUT and the register in the LE can be used independently (register 
packing). To support register packing, the LE has two outputs; one drives 
the local interconnect, and the other drives the FastTrack Interconnect 
routing structure. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a 3-input function can be computed in the LUT, and a 
fourth independent signal can be registered. Alternatively, a 4-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect routing structure while the LUT drives 
the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers two 3-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a 3-input function; the other generates a carry output. As shown 
in Figure 11, the first LUT uses the carry-in signal and two data inputs 
from the LAB local interconnect to generate a combinatorial or registered 
output. For example, in an adder, this output is the sum of three signals: 
a, b, and carry-in. The second LUT uses the same three signals to generate 
a carry-out signal, thereby creating a carry chain. The arithmetic mode 
also supports simultaneous use of the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, 
synchronous up/down control, and data loading options. These control 
signals are generated by the data inputs from the LAB local interconnect, 
the carry-in signal, and output feedback from the programmable register. 
Two 3-input LUTs are used; one generates the counter data, and the other 
generates the fast carry bit. A 2-to-1 multiplexer provides synchronous 
loading. Data can also be loaded asynchronously with the clear and preset 
register control signals without using the LUT resources.
22 Altera Corporation
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Figure 15. ACEX 1K Bidirectional I/O Registers 
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PCI Pull-Up Clamping Diode Option

ACEX 1K devices have a pull-up clamping diode on every I/O, dedicated 
input, and dedicated clock pin. PCI clamping diodes clamp the signal to 
the VCCIO value and are required for 3.3-V PCI compliance. Clamping 
diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When VCCIO is 
3.3 V, a pin that has the clamping diode option turned on can be driven by 
a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When VCCIO is 2.5 V, a pin 
that has the clamping diode option turned on can be driven by a 2.5-V 
signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can 
be activated for a subset of pins, which allows a device to bridge between 
a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can 
be configured for low-noise or high-speed performance. A slower slew 
rate reduces system noise and adds a maximum delay of 4.3 ns. The fast 
slew rate should be used for speed-critical outputs in systems that are 
adequately protected against noise. Designers can specify the slew rate 
pin-by-pin or assign a default slew rate to all pins on a device-wide basis. 
The slow slew rate setting affects only the falling edge of the output.

Open-Drain Output Option

ACEX 1K devices provide an optional open-drain output (electrically 
equivalent to open-collector output) for each I/O pin. This open-drain 
output enables the device to provide system-level control signals (e.g., 
interrupt and write enable signals) that can be asserted by any of several 
devices. It can also provide an additional wired-OR plane. 

MultiVolt I/O Interface 

The ACEX 1K device architecture supports the MultiVolt I/O interface 
feature, which allows ACEX 1K devices in all packages to interface with 
systems of differing supply voltages. These devices have one set of VCC 
pins for internal operation and input buffers (VCCINT), and another set for 
I/O output drivers (VCCIO). 
40 Altera Corporation
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents 

less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial- and extended-temperature-range devices.
(4) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are 

powered.
(6) Typical values are for TA = 25° C, VCCINT = 2.5 V, and VCCIO = 2.5 V or 3.3 V.
(7) These values are specified under the ACEX 1K Recommended Operating Conditions shown in Table 19 on page 46.
(8) The ACEX 1K input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS 

signals. Additionally, the input buffers are 3.3-V PCI compliant when VCCIO and VCCINT meet the relationship 
shown in Figure 22.

(9) The IOH parameter refers to high-level TTL, PCI, or CMOS output current.
(10) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(11) This value is specified for normal device operation. The value may vary during power-up.
(12) This parameter applies to -1 speed grade commercial temperature devices and -2 speed grade industrial and 

extended temperature devices.
(13) Pin pull-up resistance values will be lower if the pin is driven higher than VCCIO by an external source.
(14) Capacitance is sample-tested only.

Table 21.  ACEX 1K Device Capacitance Note (14)

Symbol Parameter Conditions Min Max Unit

CIN Input capacitance VIN = 0 V, f = 1.0 MHz 10 pF

CINCLK Input capacitance on 
dedicated clock pin

VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 10 pF
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Figure 23. Output Drive Characteristics of ACEX 1K Devices

Timing Model The continuous, high-performance FastTrack Interconnect routing 
resources ensure accurate simulation and timing analysis as well as 
predictable performance. This predictable performance contrasts with 
that of FPGAs, which use a segmented connection scheme and, therefore, 
have an unpredictable performance. 

Device performance can be estimated by following the signal path from a 
source, through the interconnect, to the destination. For example, the 
registered performance between two LEs on the same row can be 
calculated by adding the following parameters: 

■ LE register clock-to-output delay (tCO)
■ Interconnect delay (tSAMEROW)
■ LE look-up table delay (tLUT)
■ LE register setup time (tSU)

The routing delay depends on the placement of the source and destination 
LEs. A more complex registered path may involve multiple combinatorial 
LEs between the source and destination LEs. 

Timing simulation and delay prediction are available with the simulator 
and Timing Analyzer, or with industry-standard EDA tools. The 
Simulator offers both pre-synthesis functional simulation to evaluate logic 
design accuracy and post-synthesis timing simulation with 0.1-ns 
resolution. The Timing Analyzer provides point-to-point timing delay 
information, setup and hold time analysis, and device-wide performance 
analysis.
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Figure 30. EAB Synchronous Timing Waveforms

Tables 22 through 26 describe the ACEX 1K device internal timing 
parameters. 
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Table 22. LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol Parameter Conditions

tLUT LUT delay for data-in

tCLUT LUT delay for carry-in

tRLUT LUT delay for LE register feedback

tPACKED Data-in to packed register delay

tEN LE register enable delay

tCICO Carry-in to carry-out delay

tCGEN Data-in to carry-out delay

tCGENR LE register feedback to carry-out delay
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Notes to tables:
(1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be 

measured explicitly.
(2) Operating conditions: VCCIO = 3.3 V ± 10% for commercial or industrial and extended use in ACEX 1K devices
(3) Operating conditions: VCCIO = 2.5 V ± 5% for commercial or industrial and extended use in ACEX 1K devices.
(4) Operating conditions: VCCIO = 2.5 V or 3.3 V.
(5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. 
(6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; 

these parameters are calculated by summing selected microparameters. 
(7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing 

analysis are required to determine actual worst-case performance.

Table 26. Interconnect Timing Microparameters Note (1)

Symbol Parameter Conditions

tDIN2IOE Delay from dedicated input pin to IOE control input (7)

tDIN2LE Delay from dedicated input pin to LE or EAB control input (7)

tDIN2DATA Delay from dedicated input or clock to LE or EAB data (7)

tDCLK2IOE Delay from dedicated clock pin to IOE clock (7)

tDCLK2LE Delay from dedicated clock pin to LE or EAB clock (7)

tSAMELAB Routing delay for an LE driving another LE in the same LAB (7)

tSAMEROW Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the 
same row

(7)

tSAMECOLUMN Routing delay for an LE driving an IOE in the same column (7)

tDIFFROW Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different 
row

(7)

tTWOROWS Routing delay for a row IOE or EAB driving an LE or EAB in a different row (7)

tLEPERIPH Routing delay for an LE driving a control signal of an IOE via the peripheral 
control bus

(7)

tLABCARRY Routing delay for the carry-out signal of an LE driving the carry-in signal of a 
different LE in a different LAB

tLABCASC Routing delay for the cascade-out signal of an LE driving the cascade-in 
signal of a different LE in a different LAB
58 Altera Corporation
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Table 34. EP1K10 Device Interconnect Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDIN2IOE 2.3 2.7 3.6 ns

tDIN2LE 0.8 1.1 1.4 ns

tDIN2DATA 1.1 1.4 1.8 ns

tDCLK2IOE 2.3 2.7 3.6 ns

tDCLK2LE 0.8 1.1 1.4 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.8 2.1 2.9 ns

tSAMECOLUMN 0.3 0.4 0.7 ns

tDIFFROW 2.1 2.5 3.6 ns

tTWOROWS 3.9 4.6 6.5 ns

tLEPERIPH 3.3 3.7 4.8 ns

tLABCARRY 0.3 0.4 0.5 ns

tLABCASC 0.9 1.0 1.4 ns

Table 35. EP1K10 External Timing Parameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDRR 7.5 9.5 12.5 ns

tINSU (2), (3) 2.4 2.7 3.6 ns

tINH (2), (3) 0.0 0.0 0.0 ns

tOUTCO (2), (3) 2.0 6.6 2.0 7.8 2.0 9.6 ns

tINSU (4), (3) 1.4 1.7 – ns

tINH (4), (3) 0.5 5.1 0.5 6.4 – – ns

tOUTCO (4), (3) 0.0 0.0 – ns

tPCISU (3) 3.0 4.2 6.4 ns

tPCIH (3) 0.0 0.0 – ns

tPCICO (3) 2.0 6.0 2.0 7.5 2.0 10.2 ns
64 Altera Corporation
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Notes to tables:
(1) All timing parameters are described in Tables 22 through 29 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 44 through 50 show EP1K50 device external timing parameters. 
 

Table 43. EP1K30 External Bidirectional Timing Parameters Notes (1), (2)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSUBIDIR (3) 2.8 3.9 5.2 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 3.8 4.9 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 4.9 2.0 5.9 2.0 7.6 ns

tXZBIDIR (3) 6.1 7.5 9.7 ns

tZXBIDIR (3) 6.1 7.5 9.7 ns

tOUTCOBIDIR (4)  0.5 3.9 0.5 4.9 – – ns

tXZBIDIR (4) 5.1  6.5 – ns

tZXBIDIR (4) 5.1  6.5 – ns

Table 44. EP1K50 Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tLUT 0.6 0.8 1.1 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.6 0.7 0.9 ns

tPACKED 0.2 0.3 0.4 ns

tEN 0.6 0.7 0.9 ns

tCICO 0.1 0.1 0.1 ns

tCGEN 0.4 0.5 0.6 ns

tCGENR 0.1 0.1 0.1 ns

tCASC 0.5 0.8 1.0 ns

tC 0.5 0.6 0.8 ns
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Table 48. EP1K50 Device Interconnect Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDIN2IOE 3.1 3.7 4.6 ns

tDIN2LE 1.7 2.1 2.7 ns

tDIN2DATA 2.7 3.1 5.1 ns

tDCLK2IOE 1.6 1.9 2.6 ns

tDCLK2LE 1.7 2.1 2.7 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.5 1.7 2.4 ns

tSAMECOLUMN 1.0 1.3 2.1 ns

tDIFFROW 2.5 3.0 4.5 ns

tTWOROWS 4.0 4.7 6.9 ns

tLEPERIPH 2.6 2.9 3.4 ns

tLABCARRY 0.1 0.2 0.2 ns

tLABCASC 0.8 1.0 1.3 ns

Table 49. EP1K50 External Timing Parameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDRR 8.0 9.5 12.5 ns

tINSU (2) 2.4 2.9 3.9 ns

tINH (2) 0.0 0.0 0.0 ns

tOUTCO (2) 2.0 4.3 2.0  5.2 2.0 7.3 ns

tINSU (3) 2.4 2.9 – ns

tINH (3) 0.0 0.0 – ns

tOUTCO (3) 0.5 3.3 0.5 4.1 – – ns

tPCISU  2.4 2.9 – ns

tPCIH  0.0  0.0 – ns

tPCICO  2.0  6.0  2.0 7.7 – – ns
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The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K × fMAX × N × togLC (µA)

Where:

fMAX = Maximum operating frequency in MHz
N = Total number of LEs used in the device 
togLC = Average percent of LEs toggling at each clock 

(typically 12.5%)
K = Constant

Table 58 provides the constant (K) values for ACEX 1K devices.

This supply power calculation provides an ICC estimate based on typical 
conditions with no output load. The actual ICC should be verified during 
operation because this measurement is sensitive to the actual pattern in 
the device and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant K in 
the power calculation equations) for continuous interconnect ACEX 1K 
devices assumes that LEs drive FastTrack Interconnect channels. In 
contrast, the power model of segmented FPGAs assumes that all LEs drive 
only one short interconnect segment. This assumption may lead to 
inaccurate results when compared to measured power consumption for 
actual designs in segmented FPGAs.

Figure 31 shows the relationship between the current and operating 
frequency of ACEX 1K devices. For information on other ACEX 1K 
devices, contact Altera Applications at (800) 800-EPLD.

Table 58.  ACEX 1K Constant Values

Device K Value

EP1K10 4.5

EP1K30 4.5

EP1K50 4.5

EP1K100 4.5
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During initialization, which occurs immediately after configuration, the 
device resets registers, enables I/O pins, and begins to operate as a logic 
device. Before and during configuration, all I/O pins (except dedicated 
inputs, clock, or configuration pins) are pulled high by a weak pull-up 
resistor. Together, the configuration and initialization processes are called 
command mode; normal device operation is called user mode.

SRAM configuration elements allow ACEX 1K devices to be reconfigured 
in-circuit by loading new configuration data into the device. Real-time 
reconfiguration is performed by forcing the device into command mode 
with a device pin, loading different configuration data, re-initializing the 
device, and resuming user-mode operation. The entire reconfiguration 
process requires less than 40 ms and can be used to reconfigure an entire 
system dynamically. In-field upgrades can be performed by distributing 
new configuration files.

Configuration Schemes

The configuration data for an ACEX 1K device can be loaded with one of 
five configuration schemes (see Table 59), chosen on the basis of the target 
application. An EPC16, EPC2, EPC1, or EPC1441 configuration device, 
intelligent controller, or the JTAG port can be used to control the 
configuration of a ACEX 1K device, allowing automatic configuration on 
system power-up.

Multiple ACEX 1K devices can be configured in any of the five 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device. Additional 
APEX 20K, APEX 20KE, FLEX 10K, FLEX 10KA, FLEX 10KE, ACEX 1K, 
and FLEX 6000 devices can be configured in the same serial chain.

Device Pin-
Outs

See the Altera web site (http://www.altera.com) or the Altera Documen-
tation Library for pin-out information.

Table 59. Data Sources for ACEX 1K Configuration

Configuration Scheme Data Source

Configuration device EPC16, EPC2, EPC1, or EPC1441 configuration device

Passive serial (PS) BitBlaster or ByteBlasterMV download cables, or serial data 
source

Passive parallel asynchronous (PPA) Parallel data source

Passive parallel synchronous (PPS) Parallel data source

JTAG BitBlaster or ByteBlasterMV download cables, or 
microprocessor with a Jam STAPL File or JBC File
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