

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	624
Number of Logic Elements/Cells	4992
Total RAM Bits	49152
Number of I/O	333
Number of Gates	257000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	484-BBGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep1k100fc484-1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

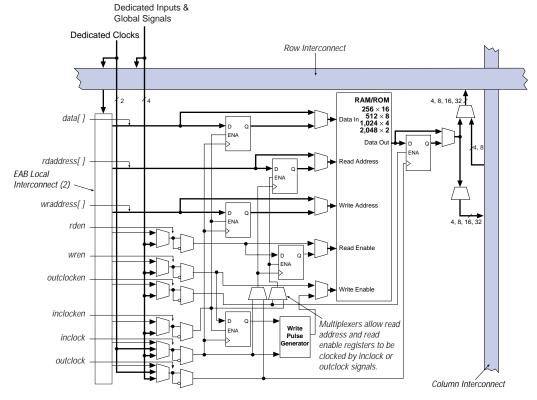
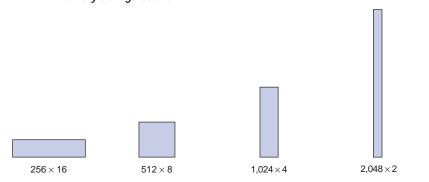


Figure 2. ACEX 1K Device in Dual-Port RAM Mode Note (1)

Notes:


- (1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
- (2) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB local interconnect channels.

The EAB can use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3. The ACEX 1K EAB can also be used in a single-port mode (see Figure 4).

EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the write enable signal. In contrast, the EAB's synchronous RAM generates its own write enable signal and is self-timed with respect to the input or write clock. A circuit using the EAB's self-timed RAM must only meet the setup and hold time specifications of the global clock.

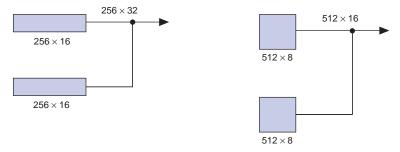
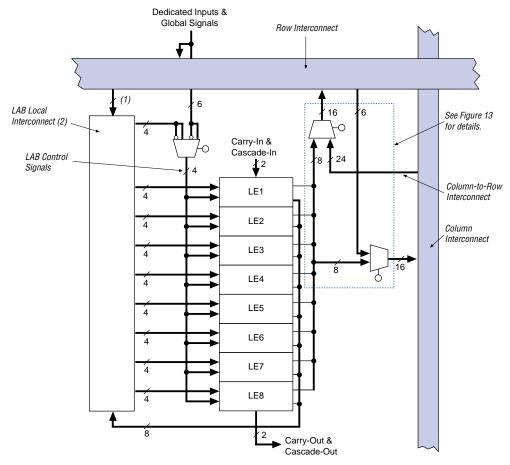

When used as RAM, each EAB can be configured in any of the following sizes: 256×16 ; 512×8 ; $1,024 \times 4$; or $2,048 \times 2$. Figure 5 shows the ACEX 1K EAB memory configurations.

Figure 5. ACEX 1K EAB Memory Configurations

Larger blocks of RAM are created by combining multiple EABs. For example, two 256×16 RAM blocks can be combined to form a 256×32 block, and two 512×8 RAM blocks can be combined to form a 512×16 block. Figure 6 shows examples of multiple EAB combination.

Figure 6. Examples of Combining ACEX 1K EABs

If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. Altera software automatically combines EABs to meet a designer's RAM specifications.


EABs provide flexible options for driving and controlling clock signals. Different clocks and clock enables can be used for reading and writing to the EAB. Registers can be independently inserted on the data input, EAB output, write address, write enable signals, read address, and read enable signals. The global signals and the EAB local interconnect can drive write-enable, read-enable, and clock-enable signals. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control write-enable, read-enable, clear, clock, and clock-enable signals.

An EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs (see Figures 2 and 4). The column interconnect, which is adjacent to the EAB, has twice as many channels as other columns in the device.

Logic Array Block

An LAB consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to the ACEX 1K architecture, facilitating efficient routing with optimum device utilization and high performance. Figure 7 shows the ACEX 1K LAB.

Figure 7. ACEX 1K LAB

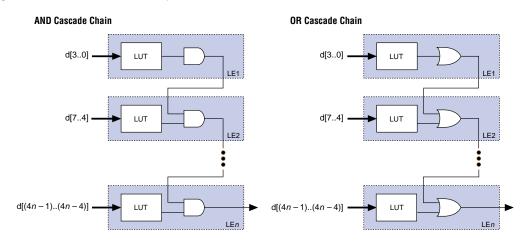
Notes:

- (1) EP1K10, EP1K30, and EP1K50 devices have 22 inputs to the LAB local interconnect channel from the row; EP1K100 devices have 26.
- (2) EP1K10, EP1K30, and EP1K50 devices have 30 LAB local interconnect channels; EP1K100 devices have 34.

Each LAB provides four control signals with programmable inversion that can be used in all eight LEs. Two of these signals can be used as clocks, the other two can be used for clear/preset control. The LAB clocks can be driven by the dedicated clock input pins, global signals, I/O signals, or internal signals via the LAB local interconnect. The LAB preset and clear control signals can be driven by the global signals, I/O signals, or internal signals via the LAB local interconnect. The global control signals are typically used for global clock, clear, or preset signals because they provide asynchronous control with very low skew across the device. If logic is required on a control signal, it can be generated in one or more LEs in any LAB and driven into the local interconnect of the target LAB. In addition, the global control signals can be generated from LE outputs.

Logic Element

The LE, the smallest unit of logic in the ACEX 1K architecture, has a compact size that provides efficient logic utilization. Each LE contains a 4-input LUT, which is a function generator that can quickly compute any function of four variables. In addition, each LE contains a programmable flipflop with a synchronous clock enable, a carry chain, and a cascade chain. Each LE drives both the local and the FastTrack Interconnect routing structure. Figure 8 shows the ACEX 1K LE.


Cascade Chain

With the cascade chain, the ACEX 1K architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. With a delay as low as 0.6 ns per LE, each additional LE provides four more inputs to the effective width of a function. Cascade chain logic can be created automatically by the compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EP1K50 device, the cascade chain stops at the eighteenth LAB, and a new one begins at the nineteenth LAB). This break is due to the EAB's placement in the middle of the row.

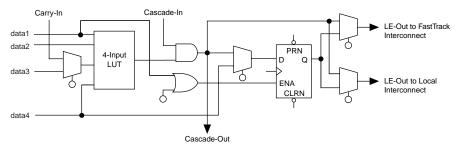
Figure 10 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. The LE delay is 1.3 ns; the cascade chain delay is 0.6 ns. With the cascade chain, decoding a 16-bit address requires 3.1 ns.

Figure 10. ACEX 1K Cascade Chain Operation

LE Operating Modes

The ACEX 1K LE can operate in the following four modes:

- Normal mode
- Arithmetic mode
- Up/down counter mode
- Clearable counter mode


Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs.

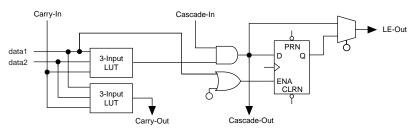
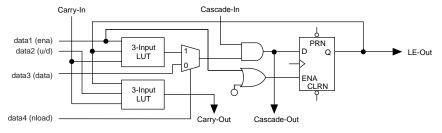
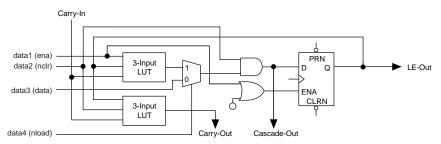

Figure 11 shows the ACEX 1K LE operating modes.

Figure 11. ACEX 1K LE Operating Modes


Normal Mode


Arithmetic Mode

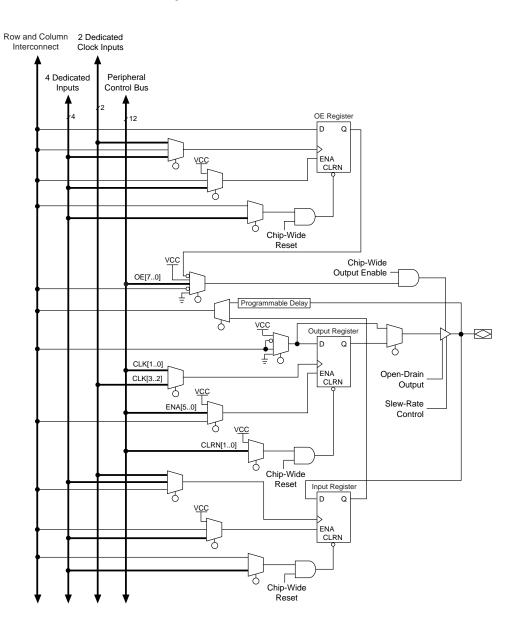
Up/Down Counter Mode

Clearable Counter Mode

Normal Mode

The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a 4-input LUT. The compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time.

The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a 3-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a 4-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa.


Arithmetic Mode

The arithmetic mode offers two 3-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a 3-input function; the other generates a carry output. As shown in Figure 11, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Two 3-input LUTs are used; one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources.

Figure 15. ACEX 1K Bidirectional I/O Registers

PCI Pull-Up Clamping Diode Option

ACEX 1K devices have a pull-up clamping diode on every I/O, dedicated input, and dedicated clock pin. PCI clamping diodes clamp the signal to the $V_{\rm CCIO}$ value and are required for 3.3-V PCI compliance. Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When $V_{\rm CCIO}$ is 3.3 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When $V_{\rm CCIO}$ is 2.5 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can be activated for a subset of pins, which allows a device to bridge between a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of 4.3 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate pin-by-pin or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects only the falling edge of the output.

Open-Drain Output Option

ACEX 1K devices provide an optional open-drain output (electrically equivalent to open-collector output) for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired- $\[OR]$ plane.

MultiVolt I/O Interface

The ACEX 1K device architecture supports the MultiVolt I/O interface feature, which allows ACEX 1K devices in all packages to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

Table 2	Table 21. ACEX 1K Device Capacitance Note (14)							
Symbol	Parameter	Conditions	Min	Max	Unit			
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF			
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF			
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF			

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial- and extended-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V.
- (7) These values are specified under the ACEX 1K Recommended Operating Conditions shown in Table 19 on page 46.
- (8) The ACEX 1K input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22.
- The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (11) This value is specified for normal device operation. The value may vary during power-up.
- (12) This parameter applies to -1 speed grade commercial temperature devices and -2 speed grade industrial and extended temperature devices.
- (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source.
- (14) Capacitance is sample-tested only.

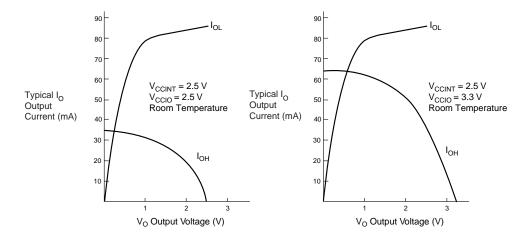
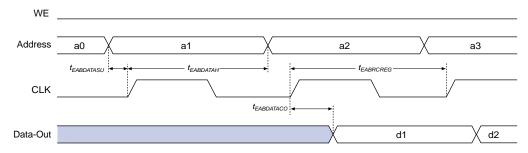


Figure 23. Output Drive Characteristics of ACEX 1K Devices

Timing Model

The continuous, high-performance FastTrack Interconnect routing resources ensure accurate simulation and timing analysis as well as predictable performance. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and, therefore, have an unpredictable performance.

Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:


- LE register clock-to-output delay (t_{CO})
- Interconnect delay ($t_{SAMEROW}$)
- LE look-up table delay (t_{LUT})
- LE register setup time (t_{SI})

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

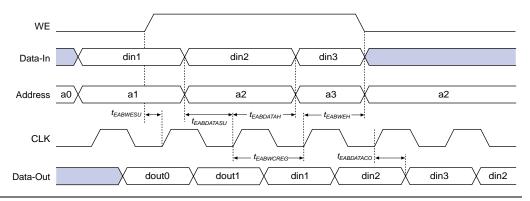

Timing simulation and delay prediction are available with the simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis.

Figure 30. EAB Synchronous Timing Waveforms

EAB Synchronous Read

EAB Synchronous Write (EAB Output Registers Used)

Tables 22 through 26 describe the ACEX 1K device internal timing parameters.

Table 22. LE Timing Microparameters (Part 1 of 2) Note (1)					
Symbol	Parameter Cond				
t_{LUT}	LUT delay for data-in				
t _{CLUT}	LUT delay for carry-in				
t _{RLUT}	LUT delay for LE register feedback				
t _{PACKED}	Data-in to packed register delay				
t _{EN}	LE register enable delay				
t _{CICO}	Carry-in to carry-out delay				
t _{CGEN}	Data-in to carry-out delay				
t _{CGENR}	LE register feedback to carry-out delay				

Symbol	Parameter	Conditions			
t _{DIN2IOE}	Delay from dedicated input pin to IOE control input				
t _{DIN2LE}	Delay from dedicated input pin to LE or EAB control input	(7)			
t _{DIN2DATA}	Delay from dedicated input or clock to LE or EAB data	(7)			
t _{DCLK2IOE}	Delay from dedicated clock pin to IOE clock	(7)			
t _{DCLK2LE}	Delay from dedicated clock pin to LE or EAB clock	(7)			
t _{SAMELAB}	Routing delay for an LE driving another LE in the same LAB	(7)			
t _{SAMEROW}	Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the same row	(7)			
t _{SAME} COLUMN	Routing delay for an LE driving an IOE in the same column	(7)			
^t DIFFROW	Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different row	(7)			
t _{TWOROWS}	Routing delay for a row IOE or EAB driving an LE or EAB in a different row	(7)			
t _{LEPERIPH}	Routing delay for an LE driving a control signal of an IOE via the peripheral control bus	(7)			
t _{LABCARRY}	Routing delay for the carry-out signal of an LE driving the carry-in signal of a different LE in a different LAB				
t _{LABCASC}	Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB				

Notes to tables:

- Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be measured explicitly.
- Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial and extended use in ACEX 1K devices
- Operating conditions: $V_{CCIO} = 2.5 \text{ V} \pm 5\%$ for commercial or industrial and extended use in ACEX 1K devices. Operating conditions: $V_{CCIO} = 2.5 \text{ V} \text{ or } 3.3 \text{ V}$. (3)
- (4)
- Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered.
- EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; these parameters are calculated by summing selected microparameters.
- These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance.

Symbol			Speed	Grade			Unit
	_	1	-2		-	3	
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		2.3		2.7		3.6	ns
t _{DIN2LE}		0.8		1.1		1.4	ns
t _{DIN2DATA}		1.1		1.4		1.8	ns
t _{DCLK2IOE}		2.3		2.7		3.6	ns
t _{DCLK2LE}		0.8		1.1		1.4	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.8		2.1		2.9	ns
t _{SAME} COLUMN		0.3		0.4		0.7	ns
t _{DIFFROW}		2.1		2.5		3.6	ns
t _{TWOROWS}		3.9		4.6		6.5	ns
t _{LEPERIPH}		3.3		3.7		4.8	ns
t _{LABCARRY}		0.3		0.4		0.5	ns
t _{LABCASC}		0.9		1.0		1.4	ns

Table 35. EP1K10 External Timing Parameters Note (1)							
Symbol		Speed Grade					Unit
	-1		-2		-3		
	Min	Max	Min	Max	Min	Max	
t _{DRR}		7.5		9.5		12.5	ns
t _{INSU} (2), (3)	2.4		2.7		3.6		ns
t _{INH} (2), (3)	0.0		0.0		0.0		ns
t _{оитсо} (2), (3)	2.0	6.6	2.0	7.8	2.0	9.6	ns
t _{INSU} (4), (3)	1.4		1.7		_		ns
t _{INH} (4), (3)	0.5	5.1	0.5	6.4	-	-	ns
t _{оитсо} (4), (3)	0.0		0.0		_		ns
t _{PCISU} (3)	3.0		4.2		6.4		ns
t _{PCIH} (3)	0.0		0.0		_		ns
t _{PCICO} (3)	2.0	6.0	2.0	7.5	2.0	10.2	ns

Table 43. EP1K30 External Bidirectional Timing Parameters Notes (1), (2)							
Symbol		Speed Grade					
	-1		-2		-3		
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (3)	2.8		3.9		5.2		ns
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns
t _{INSUBIDIR} (4)	3.8		4.9		ı		ns
t _{INHBIDIR} (4)	0.0		0.0		-		ns
t _{OUTCOBIDIR} (3)	2.0	4.9	2.0	5.9	2.0	7.6	ns
t _{XZBIDIR} (3)		6.1		7.5		9.7	ns
t _{ZXBIDIR} (3)		6.1		7.5		9.7	ns
toutcobidir (4)	0.5	3.9	0.5	4.9	-	-	ns
t _{XZBIDIR} (4)		5.1		6.5		-	ns
t _{ZXBIDIR} (4)	_	5.1	_	6.5		_	ns

Notes to tables:

- (1) All timing parameters are described in Tables 22 through 29 in this data sheet.
- (2) These parameters are specified by characterization.
- (3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
- (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 44 through 50 show EP1K50 device external timing parameters.

Symbol			Speed	Grade			Unit
	_	1	-2		-3		
	Min	Max	Min	Max	Min	Max	
t_{LUT}		0.6		0.8		1.1	ns
t _{CLUT}		0.5		0.6		0.8	ns
t_{RLUT}		0.6		0.7		0.9	ns
t _{PACKED}		0.2		0.3		0.4	ns
t_{EN}		0.6		0.7		0.9	ns
t _{CICO}		0.1		0.1		0.1	ns
t _{CGEN}		0.4		0.5		0.6	ns
t _{CGENR}		0.1		0.1		0.1	ns
t _{CASC}		0.5		0.8		1.0	ns
t_C		0.5		0.6		0.8	ns

Symbol			Speed	Grade			Unit
	_	1	-2		-3		
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		3.1		3.7		4.6	ns
t _{DIN2LE}		1.7		2.1		2.7	ns
t _{DIN2DATA}		2.7		3.1		5.1	ns
t _{DCLK2IOE}		1.6		1.9		2.6	ns
t _{DCLK2LE}		1.7		2.1		2.7	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.5		1.7		2.4	ns
t _{SAME} COLUMN		1.0		1.3		2.1	ns
t _{DIFFROW}		2.5		3.0		4.5	ns
t _{TWOROWS}		4.0		4.7		6.9	ns
t _{LEPERIPH}		2.6		2.9		3.4	ns
t _{LABCARRY}		0.1		0.2		0.2	ns
t _{LABCASC}		0.8		1.0		1.3	ns

Table 49. EP1K50 External Timing Parameters Note (1)							
Symbol	Speed Grade						Unit
	-1		-2		-3		
	Min	Max	Min	Max	Min	Max	
t _{DRR}		8.0		9.5		12.5	ns
t _{INSU} (2)	2.4		2.9		3.9		ns
t _{INH} (2)	0.0		0.0		0.0		ns
t _{оитсо} (2)	2.0	4.3	2.0	5.2	2.0	7.3	ns
t _{INSU} (3)	2.4		2.9		-		ns
t _{INH} (3)	0.0		0.0		-		ns
t _{оитсо} (3)	0.5	3.3	0.5	4.1	-	-	ns
t _{PCISU}	2.4		2.9		-		ns
t _{PCIH}	0.0		0.0		-		ns
t _{PCICO}	2.0	6.0	2.0	7.7	-	-	ns

The I_{CCACTIVE} value can be calculated with the following equation:

$$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} (\mu A)$$

Where:

f_{MAX} = Maximum operating frequency in MHz N = Total number of LEs used in the device

tog_{LC} = Average percent of LEs toggling at each clock

(typically 12.5%)

K = Constant

Table 58 provides the constant (K) values for ACEX 1K devices.

Table 58. ACEX 1K Constant Values					
Device	K Value				
EP1K10	4.5				
EP1K30	4.5				
EP1K50	4.5				
EP1K100	4.5				

This supply power calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant K in the power calculation equations) for continuous interconnect ACEX 1K devices assumes that LEs drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all LEs drive only one short interconnect segment. This assumption may lead to inaccurate results when compared to measured power consumption for actual designs in segmented FPGAs.

Figure 31 shows the relationship between the current and operating frequency of ACEX 1K devices. For information on other ACEX 1K devices, contact Altera Applications at (800) 800-EPLD.

During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. Before and during configuration, all I/O pins (except dedicated inputs, clock, or configuration pins) are pulled high by a weak pull-up resistor. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

SRAM configuration elements allow ACEX 1K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, re-initializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 40 ms and can be used to reconfigure an entire system dynamically. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for an ACEX 1K device can be loaded with one of five configuration schemes (see Table 59), chosen on the basis of the target application. An EPC16, EPC2, EPC1, or EPC1441 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of a ACEX 1K device, allowing automatic configuration on system power-up.

Multiple ACEX 1K devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Additional APEX 20K, APEX 20KE, FLEX 10K, FLEX 10KA, FLEX 10KE, ACEX 1K, and FLEX 6000 devices can be configured in the same serial chain.

Table 59. Data Sources for ACEX 1K Configuration				
Configuration Scheme	Data Source			
Configuration device	EPC16, EPC2, EPC1, or EPC1441 configuration device			
Passive serial (PS)	BitBlaster or ByteBlasterMV download cables, or serial data source			
Passive parallel asynchronous (PPA)	Parallel data source			
Passive parallel synchronous (PPS)	Parallel data source			
JTAG	BitBlaster or ByteBlasterMV download cables, or microprocessor with a Jam STAPL File or JBC File			

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Documentation Library* for pin-out information.