Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 624 | | Number of Logic Elements/Cells | 4992 | | Total RAM Bits | 49152 | | Number of I/O | 147 | | Number of Gates | 257000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 208-BFQFP | | Supplier Device Package | 208-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1k100qc208-1 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Software design support and automatic place-and-route provided by Altera development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations - Flexible package options are available in 100 to 484 pins, including the innovative FineLine BGATM packages (see Tables 2 and 3) - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), DesignWare components, Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic | Table 2. ACEX 1K Package Options & I/O Pin CountNotes (1), (2) | | | | | | |--|----|-----|-----|-----|-------------------------| | Device 100-Pin TQFP 144-Pin TQFP 208-Pin PQFP 256-FineLin | | | | | 484-Pin
FineLine BGA | | EP1K10 | 66 | 92 | 120 | 136 | 136 (3) | | EP1K30 | | 102 | 147 | 171 | 171 (3) | | EP1K50 | | 102 | 147 | 186 | 249 | | EP1K100 | | | 147 | 186 | 333 | #### Notes: - ACEX 1K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), and FineLine BGA packages. - (2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When planning device migration, use the I/O pins that are common to all devices. - (3) This option is supported with a 256-pin FineLine BGA package. By using SameFrameTM pin migration, all FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin and 484-pin FineLine BGA packages. | Table 3. ACEX 1K Package Sizes | | | | | | | | |--|-------|---------|-------------|---------|---------|--|--| | Device 100-Pin TQFP 144-Pin TQFP 208-Pin PQFP 256-Pin 484-Pin FineLine BGA FineLine E | | | | | | | | | Pitch (mm) | 0.50 | 0.50 | 0.50 | 1.0 | 1.0 | | | | Area (mm²) | 256 | 484 | 936 | 289 | 529 | | | | $\begin{array}{c} \text{Length} \times \text{width} \\ \text{(mm} \times \text{mm)} \end{array}$ | 16×16 | 22 × 22 | 30.6 × 30.6 | 17 × 17 | 23 × 23 | | | ### **Embedded Array Block** The EAB is a flexible block of RAM, with registers on the input and output ports, that is used to implement common gate array megafunctions. Because it is large and flexible, the EAB is suitable for functions such as multipliers, vector scalars, and error correction circuits. These functions can be combined in applications such as digital filters and microcontrollers. Logic functions are implemented by programming the EAB with a read-only pattern during configuration, thereby creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of EABs. The large capacity of EABs enables designers to implement complex functions in a single logic level without the routing delays associated with linked LEs or field-programmable gate array (FPGA) RAM blocks. For example, a single EAB can implement any function with 8 inputs and 16 outputs. Parameterized functions, such as LPM functions, can take advantage of the EAB automatically. The ACEX 1K enhanced EAB supports dual-port RAM. The dual-port structure is ideal for FIFO buffers with one or two clocks. The ACEX 1K EAB can also support up to 16-bit-wide RAM blocks. The ACEX 1K EAB can act in dual-port or single-port mode. When in dual-port mode, separate clocks may be used for EAB read and write sections, allowing the EAB to be written and read at different rates. It also has separate synchronous clock enable signals for the EAB read and write sections, which allow independent control of these sections. The EAB can also be used for bidirectional, dual-port memory applications where two ports read or write simultaneously. To implement this type of dual-port memory, two EABs are used to support two simultaneous reads or writes. Alternatively, one clock and clock enable can be used to control the input registers of the EAB, while a different clock and clock enable control the output registers (see Figure 2). Figure 2. ACEX 1K Device in Dual-Port RAM Mode Note (1) #### Notes: - (1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset. - (2) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB local interconnect channels. The EAB can use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3. The ACEX 1K EAB can also be used in a single-port mode (see Figure 4). #### LE Operating Modes The ACEX 1K LE can operate in the following four modes: - Normal mode - Arithmetic mode - Up/down counter mode - Clearable counter mode Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance. The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs. Figure 11 shows the ACEX 1K LE operating modes. ### FastTrack Interconnect Routing Structure In the ACEX 1K architecture, connections between LEs, EABs, and device I/O pins are provided by the FastTrack Interconnect routing structure, which is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance. The FastTrack Interconnect routing structure consists of row and column interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect. The row interconnect can drive I/O pins and feed other LABs in the row. The column interconnect routes signals between rows and can drive I/O pins. Row channels drive into the LAB or EAB local interconnect. The row signal is buffered at every LAB or EAB to reduce the effect of fan-out on delay. A row channel can be driven by an LE or by one of three column channels. These four signals feed dual 4-to-1 multiplexers that connect to two specific row channels. These multiplexers, which are connected to each LE, allow column channels to drive row channels even when all eight LEs in a LAB drive the row interconnect. Each column of LABs or EABs is served by a dedicated column interconnect. The column interconnect that serves the EABs has twice as many channels as other column interconnects. The column interconnect can then drive I/O pins or another row's interconnect to route the signals to other LABs or EABs in the device. A signal from the column interconnect, which can be either the output of a LE or an input from an I/O pin, must be routed to the row interconnect before it can enter a LAB or EAB. Each row channel that is driven by an IOE or EAB can drive one specific column channel. Access to row and column channels can be switched between LEs in adjacent pairs of LABs. For example, a LE in one LAB can drive the row and column channels normally driven by a particular LE in the adjacent LAB in the same row, and vice versa. This flexibility enables routing resources to be used more efficiently. Figure 13 shows the ACEX 1K LAB. For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row. Table 6 summarizes the FastTrack Interconnect routing structure resources available in each ACEX 1K device. | Table 6. ACEX 1K FastTrack Interconnect Resources | | | | | | | | |---|--|-----|----|----|--|--|--| | Device | Device Rows Channels per Columns Channels per Column | | | | | | | | EP1K10 | 3 | 144 | 24 | 24 | | | | | EP1K30 | 6 | 216 | 36 | 24 | | | | | EP1K50 | 10 | 216 | 36 | 24 | | | | | EP1K100 | 12 | 312 | 52 | 24 | | | | In addition to general-purpose I/O pins, ACEX 1K devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output-enable and clock-enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device. Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3. See Figure 17 for details. I/O Element (IOE) IOF IIOF IOE IOE IOE IOE Row LAB LAB See Figure 16 I AR Interconnect Α1 A2 АЗ for details. Column ►To LAB A5 Interconnect ►To LAB A4 IOE IOE LAB LAB I AR Cascade & B1 R2 В3 Carry Chains To LAB B5 ►To LAB B4 IOE IOE IOE Figure 14. ACEX 1K Interconnect Resources #### I/O Element An IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast setup time or as an output register for data that requires fast clock-to-output performance. In some cases, using an LE register for an input register will result in a faster setup time than using an IOE register. IOEs can be used as input, output, or bidirectional pins. The compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. For bidirectional registered I/O implementation, the output register should be in the IOE and the data input and output enable registers should be LE registers placed adjacent to the bidirectional pin. Figure 15 shows the bidirectional I/O registers. For more information, search for "SameFrame" in MAX+PLUS II Help. | Table 10. ACEX 1K SameFrame Pin-Out Support | | | | | | | |---|----------------------------|----------------------------|--|--|--|--| | Device | 256-Pin
FineLine
BGA | 484-Pin
FineLine
BGA | | | | | | EP1K10 | ✓ | (1) | | | | | | EP1K30 | ✓ | (1) | | | | | | EP1K50 | ✓ | ✓ | | | | | | EP1K100 | ✓ | ✓ | | | | | #### Note: This option is supported with a 256-pin FineLine BGA package and SameFrame migration. ## ClockLock & ClockBoost Features To support high-speed designs, -1 and -2 speed grade ACEX 1K devices offer ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) that is used to increase design speed and reduce resource usage. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost feature allows the designer to distribute a low-speed clock and multiply that clock on-device. Combined, the ClockLock and ClockBoost features provide significant improvements in system performance and bandwidth. The ClockLock and ClockBoost features in ACEX 1K devices are enabled through the Altera software. External devices are not required to use these features. The output of the ClockLock and ClockBoost circuits is not available at any of the device pins. The ClockLock and ClockBoost circuitry lock onto the rising edge of the incoming clock. The circuit output can drive the clock inputs of registers only; the generated clock cannot be gated or inverted. The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and ClockBoost circuitry. When the dedicated clock pin is driving the ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device. For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to the GCLK1 pin. In the Altera software, the GCLK1 pin can feed both the ClockLock and ClockBoost circuitry in the ACEX 1K device. However, when both circuits are used, the other clock pin cannot be used. ### ClockLock & ClockBoost Timing Parameters For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. Figure 19 shows the incoming and generated clock specifications. Figure 19. Specifications for the Incoming & Generated Clocks Note (1) #### Note: (1) The $\mathbf{t_I}$ parameter refers to the nominal input clock period; the $\mathbf{t_O}$ parameter refers to the nominal output clock period. Tables 11 and 12 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively. | Table 11. | Table 11. ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices | | | | | | | |-----------------------|---|----------------------------|-----|-----|-------------------------------|------|--| | Symbol | Parameter | Condition | Min | Тур | Max | Unit | | | t_R | Input rise time | | | | 5 | ns | | | t_{F} | Input fall time | | | | 5 | ns | | | t_{INDUTY} | Input duty cycle | | 40 | | 60 | % | | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | | 25 | | 180 | MHz | | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | | 16 | | 90 | MHz | | | f _{CLKDEV} | Input deviation from user specification in the Altera software (1) | | | | 25,000
<i>(</i> 2 <i>)</i> | PPM | | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | | | 100 | ps | | | t _{LOCK} | Time required for ClockLock or ClockBoost to acquire lock (3) | | | | 10 | μs | | | t _{JITTER} | Jitter on ClockLock or ClockBoost- | t _{INCLKSTB} <100 | | | 250 (4) | ps | | | | generated clock (4) | $t_{INCLKSTB} < 50$ | | | 200 (4) | ps | | | t _{OUTDUTY} | Duty cycle for ClockLock or ClockBoost-
generated clock | | 40 | 50 | 60 | % | | # IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All ACEX 1K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. ACEX 1K devices can also be configured using the JTAG pins through the ByteBlasterMV or BitBlaster download cable, or via hardware that uses the JamTM Standard Test and Programming Language (STAPL), JEDEC standard JESD-71. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. ACEX 1K devices support the JTAG instructions shown in Table 14. | Table 14. ACEX 1K JTAG Instructions | | | | | | |-------------------------------------|--|--|--|--|--| | JTAG Instruction | Description | | | | | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation and permits an initial data pattern to be output at the device pins. | | | | | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | | | | | BYPASS | Places the 1-bit bypass register between the TDI and TDO pins, allowing the BST data to pass synchronously through a selected device to adjacent devices during normal operation. | | | | | | USERCODE | Selects the user electronic signature (USERCODE) register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO. | | | | | | IDCODE | Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO. | | | | | | ICR Instructions | These instructions are used when configuring an ACEX 1K device via JTAG ports using a MasterBlaster, ByteBlasterMV, or BitBlaster download cable, or a Jam File (.jam) or Jam Byte-Code File (.jbc) via an embedded processor. | | | | | The instruction register length of ACEX 1K devices is 10 bits. The USERCODE register length in ACEX 1K devices is 32 bits; 7 bits are determined by the user, and 25 bits are pre-determined. Tables 15 and 16 show the boundary-scan register length and device IDCODE information for ACEX 1K devices. | Table 15. ACEX 1K Boundary-Scan Register Length | | | | | |---|-----|--|--|--| | Device Boundary-Scan Register Length | | | | | | EP1K10 438 | | | | | | EP1K30 | 690 | | | | | EP1K50 798 | | | | | | EP1K100 1,050 | | | | | ## **Generic Testing** Each ACEX 1K device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for ACEX 1K devices are made under conditions equivalent to those shown in Figure 21. Multiple test patterns can be used to configure devices during all stages of the production flow. Figure 21. ACEX 1K AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices or outputs. Numbers without brackets are for 3.3-V devices or outputs. # Operating Conditions Tables 18 through 21 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V ACEX 1K devices. | Table 1 | Table 18. ACEX 1K Device Absolute Maximum Ratings Note (1) | | | | | | | |--------------------|--|--|------|------|------|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | V _{CCINT} | Supply voltage | With respect to ground (2) | -0.5 | 3.6 | V | | | | V_{CCIO} | | | -0.5 | 4.6 | V | | | | V_{I} | DC input voltage | | -2.0 | 5.75 | V | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | | | T_{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | | | TJ | Junction temperature | PQFP, TQFP, and BGA packages, under bias | | 135 | ° C | | | | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-------------------|--|--|-----|-----|-------------------------|------| | V _{OL} | 3.3-V low-level TTL output voltage | I _{OL} = 12 mA DC,
V _{CCIO} = 3.00 V (10) | | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 3.00 V (10) | | | 0.2 | V | | | 3.3-V low-level PCI output voltage | I _{OL} = 1.5 mA DC,
V _{CCIO} = 3.00 to 3.60 V
(10) | | | 0.1 × V _{CCIO} | V | | | 2.5-V low-level output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 2.375 V (10) | | | 0.2 | V | | | | I _{OL} = 1 mA DC,
V _{CCIO} = 2.375 V (10) | | | 0.4 | V | | | | I _{OL} = 2 mA DC,
V _{CCIO} = 2.375 V (10) | | | 0.7 | V | | I _I | Input pin leakage current | $V_1 = 5.3 \text{ to } -0.3 \text{ V } (11)$ | -10 | | 10 | μΑ | | l _{OZ} | Tri-stated I/O pin leakage current | $V_0 = 5.3 \text{ to } -0.3 \text{ V } (11)$ | -10 | | 10 | μΑ | | I _{CC0} | V _{CC} supply current (standby) | V _I = ground, no load,
no toggling inputs | | 5 | | mA | | | | V _I = ground, no load,
no toggling inputs (12) | | 10 | | mA | | R _{CONF} | Value of I/O pin pull-up | V _{CCIO} = 3.0 V (13) | 20 | | 50 | kΩ | | | resistor before and during configuration | V _{CCIO} = 2.375 V (13) | 30 | | 80 | kΩ | Figure 22 shows the required relationship between V_{CCIO} and V_{CCINT} to satisfy 3.3-V PCI compliance. Figure 22. Relationship between V_{CCIO} & V_{CCINT} for 3.3-V PCI Compliance Figure 23 shows the typical output drive characteristics of ACEX 1K devices with 3.3-V and 2.5-V $V_{\rm CCIO}$. The output driver is compliant to the 3.3-V *PCI Local Bus Specification, Revision 2.2* (when VCCIO pins are connected to 3.3 V). ACEX 1K devices with a -1 speed grade also comply with the drive strength requirements of the *PCI Local Bus Specification, Revision 2.2* (when VCCINT pins are powered with a minimum supply of 2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices can be used in open 5.0-V PCI systems. Figure 26. ACEX 1K Device IOE Timing Model Figure 27. ACEX 1K Device EAB Timing Model Tables 27 through 29 describe the ACEX 1K external timing parameters and their symbols. | Table 27. External Reference Timing Parameters Note (1) | | | | | |---|--|------------|--|--| | Symbol | Parameter | Conditions | | | | t _{DRR} | Register-to-register delay via four LEs, three row interconnects, and four local interconnects | (2) | | | | Table 28. External Timing Parameters | | | | | | |--------------------------------------|---|------------|--|--|--| | Symbol | Parameter | Conditions | | | | | t _{INSU} | Setup time with global clock at IOE register | (3) | | | | | t _{INH} | Hold time with global clock at IOE register | (3) | | | | | tоитсо | Clock-to-output delay with global clock at IOE register | (3) | | | | | t _{PCISU} | Setup time with global clock for registers used in PCI designs | (3), (4) | | | | | t _{PCIH} | Hold time with global clock for registers used in PCI designs | (3), (4) | | | | | t _{PCICO} | Clock-to-output delay with global clock for registers used in PCI designs | (3), (4) | | | | | Table 29. External Bidirectional Timing Parameters Note (3) | | | | | | | | |---|--|------------|--|--|--|--|--| | Symbol | Parameter | Conditions | | | | | | | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | | | t _{OUTCOBIDIR} | Clock-to-output delay for bidirectional pins with global clock at IOE register | CI = 35 pF | | | | | | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | CI = 35 pF | | | | | | | t _{ZXBIDIR} | Synchronous IOE output buffer enable delay, slow slew rate = off | CI = 35 pF | | | | | | #### Notes to tables: - (1) External reference timing parameters are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications. - (2) Contact Altera Applications for test circuit specifications and test conditions. - (3) These timing parameters are sample-tested only. - (4) This parameter is measured with the measurement and test conditions, including load, specified in the *PCI Local Bus Specification, Revision 2.2.* | Symbol | Speed Grade | | | | | | | |------------------------|-------------|-----|-----|-----|-----|-----|----| | | -1 | | -2 | | -3 | | | | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.5 | | 2.0 | | 2.6 | ns | | t _{EABDATA1} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABWE1} | | 1.5 | | 2.0 | | 2.6 | ns | | t _{EABWE2} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{EABRE1} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{EABRE2} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCO} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{EABBYPASS} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{EABSU} | 0.8 | | 1.0 | | 1.4 | | ns | | t _{EABH} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{EABCLR} | 0.3 | | 0.4 | | 0.5 | | ns | | t_{AA} | | 4.0 | | 5.1 | | 6.6 | ns | | t_{WP} | 2.7 | | 3.5 | | 4.7 | | ns | | t _{RP} | 1.0 | | 1.3 | | 1.7 | | ns | | t _{WDSU} | 1.0 | | 1.3 | | 1.7 | | ns | | t_{WDH} | 0.2 | | 0.2 | | 0.3 | | ns | | t _{WASU} | 1.6 | | 2.1 | | 2.8 | | ns | | t _{WAH} | 1.6 | | 2.1 | | 2.8 | | ns | | t _{RASU} | 3.0 | | 3.9 | | 5.2 | | ns | | t _{RAH} | 0.1 | | 0.1 | | 0.2 | | ns | | t_{WO} | | 1.5 | | 2.0 | | 2.6 | ns | | t_{DD} | | 1.5 | | 2.0 | | 2.6 | ns | | t _{EABOUT} | | 0.2 | | 0.3 | | 0.3 | ns | | t _{EABCH} | 1.5 | | 2.0 | | 2.5 | | ns | | t _{EABCL} | 2.7 | | 3.5 | | 4.7 | | ns | | Symbol | Speed Grade | | | | | | | |--------------------------|-------------|-----|-----|-----|-----|-----|----| | | -1 | | -2 | | -3 | | | | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 3.1 | | 3.6 | | 4.4 | ns | | t _{DIN2LE} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{DIN2DATA} | | 1.6 | | 1.8 | | 2.0 | ns | | t _{DCLK2IOE} | | 0.8 | | 1.1 | | 1.4 | ns | | t _{DCLK2LE} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{SAMEROW} | | 1.5 | | 2.5 | | 3.4 | ns | | t _{SAME} COLUMN | | 0.4 | | 1.0 | | 1.6 | ns | | t _{DIFFROW} | | 1.9 | | 3.5 | | 5.0 | ns | | t _{TWOROWS} | | 3.4 | | 6.0 | | 8.4 | ns | | t _{LEPERIPH} | | 4.3 | | 5.4 | | 6.5 | ns | | t _{LABCARRY} | | 0.5 | | 0.7 | | 0.9 | ns | | t _{LABCASC} | | 0.8 | | 1.0 | | 1.4 | ns | | Table 56. EP1K100 External Timing Parameters Notes (1), (2) | | | | | | | | | | |---|-----|------|-----|------|-----|------|----|--|--| | Symbol | | Unit | | | | | | | | | | -1 | | -2 | | -3 | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{DRR} | | 9.0 | | 12.0 | | 16.0 | ns | | | | t _{INSU} (3) | 2.0 | | 2.5 | | 3.3 | | ns | | | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{оитсо} (3) | 2.0 | 5.2 | 2.0 | 6.9 | 2.0 | 9.1 | ns | | | | t _{INSU} (4) | 2.0 | | 2.2 | | _ | | ns | | | | t _{INH} (4) | 0.0 | | 0.0 | | - | | ns | | | | t _{OUTCO} (4) | 0.5 | 3.0 | 0.5 | 4.6 | _ | _ | ns | | | | t _{PCISU} | 3.0 | | 6.2 | | _ | | ns | | | | t _{PCIH} | 0.0 | | 0.0 | | _ | | ns | | | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 6.9 | _ | _ | ns | | | Figure 31. ACEX 1K I_{CCACTIVE} vs. Operating Frequency # Configuration & Operation The ACEX 1K architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes. ## **Operating Modes** The ACEX 1K architecture uses SRAM configuration elements that require configuration data to be loaded every time the circuit powers up. The process of physically loading the SRAM data into the device is called *configuration*. Before configuration, as $V_{\rm CC}$ rises, the device initiates a Power-On Reset (POR). This POR event clears the device and prepares it for configuration. The ACEX 1K POR time does not exceed 50 μ s. When configuring with a configuration device, refer to the relevant configuration device data sheet for POR timing information. ## Revision History The information contained in the *ACEX 1K Programmable Logic Device Family Data Sheet* version 3.4 supersedes information published in previous versions. The following changes were made to the *ACEX 1K Programmable Logic Device Family Data Sheet* version 3.4: added extended temperature support.