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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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General 
Description

Altera® ACEX 1K devices provide a die-efficient, low-cost architecture by 
combining look-up table (LUT) architecture with EABs. LUT-based logic 
provides optimized performance and efficiency for data-path, register 
intensive, mathematical, or digital signal processing (DSP) designs, while 
EABs implement RAM, ROM, dual-port RAM, or first-in first-out (FIFO) 
functions. These elements make ACEX 1K suitable for complex logic 
functions and memory functions such as digital signal processing, wide 
data-path manipulation, data transformation and microcontrollers, as 
required in high-performance communications applications. Based on 
reconfigurable CMOS SRAM elements, the ACEX 1K architecture 
incorporates all features necessary to implement common gate array 
megafunctions, along with a high pin count to enable an effective interface 
with system components. The advanced process and the low voltage 
requirement of the 2.5-V core allow ACEX 1K devices to meet the 
requirements of low-cost, high-volume applications ranging from DSL 
modems to low-cost switches.

The ability to reconfigure ACEX 1K devices enables complete testing prior 
to shipment and allows the designer to focus on simulation and design 
verification. ACEX 1K device reconfigurability eliminates inventory 
management for gate array designs and test vector generation for fault 
coverage.

Table 4 shows ACEX 1K device performance for some common designs. 
All performance results were obtained with Synopsys DesignWare or 
LPM functions. Special design techniques are not required to implement 
the applications; the designer simply infers or instantiates a function in a 
Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or 
schematic design file.

Notes:
(1) This application uses combinatorial inputs and outputs.
(2) This application uses registered inputs and outputs.

Table 4. ACEX 1K Device Performance

Application Resources 
Used

Performance

LEs EABs Speed Grade Units

-1 -2 -3

16-bit loadable counter 16 0 285 232 185 MHz

16-bit accumulator 16 0 285 232 185 MHz

16-to-1 multiplexer (1) 10 0 3.5 4.5 6.6 ns

16-bit multiplier with 3-stage pipeline(2) 592 0 156 131 93 MHz

256 × 16 RAM read cycle speed (2) 0 1 278 196 143 MHz

256 × 16 RAM write cycle speed (2) 0 1 185 143 111 MHz
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f For more information on the configuration of ACEX 1K devices, see the 
following documents:

■ Configuration Devices for ACEX, APEX, FLEX, & Mercury Devices Data 
Sheet

■ MasterBlaster Serial/USB Communications Cable Data Sheet
■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ BitBlaster Serial Download Cable Data Sheet

ACEX 1K devices are supported by Altera development systems, which 
are integrated packages that offer schematic, text (including AHDL), and 
waveform design entry, compilation and logic synthesis, full simulation 
and worst-case timing analysis, and device configuration. The software 
provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other 
interfaces for additional design entry and simulation support from other 
industry-standard PC- and UNIX workstation-based EDA tools. 

The Altera software works easily with common gate array EDA tools for 
synthesis and simulation. For example, the Altera software can generate 
Verilog HDL files for simulation with tools such as Cadence Verilog-XL. 
Additionally, the Altera software contains EDA libraries that use device-
specific features such as carry chains, which are used for fast counter and 
arithmetic functions. For instance, the Synopsys Design Compiler library 
supplied with the Altera development system includes DesignWare 
functions that are optimized for the ACEX 1K device architecture. 

The Altera development systems run on Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800 workstations.

f For more information, see the MAX+PLUS II Programmable Logic 
Development System & Software Data Sheet and the Quartus Programmable 
Logic Development System & Software Data Sheet.

Functional 
Description

Each ACEX 1K device contains an enhanced embedded array that 
implements memory and specialized logic functions, and a logic array 
that implements general logic.

The embedded array consists of a series of EABs. When implementing 
memory functions, each EAB provides 4,096 bits, which can be used to 
create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. 
When implementing logic, each EAB can contribute 100 to 600 gates 
towards complex logic functions such as multipliers, microcontrollers, 
state machines, and DSP functions. EABs can be used independently, or 
multiple EABs can be combined to implement larger functions.
6 Altera Corporation
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Figure 1. ACEX 1K Device Block Diagram

ACEX 1K devices provide six dedicated inputs that drive the flipflops’ 
control inputs and ensure the efficient distribution of high-speed, low-
skew (less than 1.0 ns) control signals. These signals use dedicated routing 
channels that provide shorter delays and lower skews than the FastTrack 
Interconnect routing structure. Four of the dedicated inputs drive four 
global signals. These four global signals can also be driven by internal 
logic, providing an ideal solution for a clock divider or an internally 
generated asynchronous clear signal that clears many registers in the 
device. 

I/O Element
(IOE)

Logic Array
Block (LAB)

Row
Interconnect

IOEIOE

IOEIOE

IOE

IOE

IOE

Local Interconnect

IOEIOE

IOEIOE IOEIOE

IOEIOE

IOEIOE

Logic Element (LE)

Column
Interconnect

IOE

EAB

EAB

Logic
Array

IOEIOE

IOEIOE IOEIOE

Embedded Array Block (EAB)

Embedded Array

IOE

IOE

Logic Array

IOE

IOE
8 Altera Corporation



ACEX 1K Programmable Logic Device Family Data Sheet

D
evelopm

ent

13

Tools
Figure 3. ACEX 1K EAB in Dual-Port RAM Mode

Figure 4. ACEX 1K Device in Single-Port RAM Mode 

Note:
(1) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB 

local interconnect channels. 
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If necessary, all EABs in a device can be cascaded to form a single RAM 
block. EABs can be cascaded to form RAM blocks of up to 2,048 words 
without impacting timing. Altera software automatically combines EABs 
to meet a designer’s RAM specifications.

EABs provide flexible options for driving and controlling clock signals. 
Different clocks and clock enables can be used for reading and writing to 
the EAB. Registers can be independently inserted on the data input, EAB 
output, write address, write enable signals, read address, and read enable 
signals. The global signals and the EAB local interconnect can drive 
write-enable, read-enable, and clock-enable signals. The global signals, 
dedicated clock pins, and EAB local interconnect can drive the EAB clock 
signals. Because the LEs drive the EAB local interconnect, the LEs can 
control write-enable, read-enable, clear, clock, and clock-enable signals. 

An EAB is fed by a row interconnect and can drive out to row and column 
interconnects. Each EAB output can drive up to two row channels and up 
to two column channels; the unused row channel can be driven by other 
LEs. This feature increases the routing resources available for EAB 
outputs (see Figures 2 and 4). The column interconnect, which is adjacent 
to the EAB, has twice as many channels as other columns in the device.

Logic Array Block

An LAB consists of eight LEs, their associated carry and cascade chains, 
LAB control signals, and the LAB local interconnect. The LAB provides 
the coarse-grained structure to the ACEX 1K architecture, facilitating 
efficient routing with optimum device utilization and high performance. 
Figure 7 shows the ACEX 1K LAB.
Altera Corporation  13
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Figure 9. ACEX 1K Carry Chain Operation (n-Bit Full Adder)
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Cascade Chain

With the cascade chain, the ACEX 1K architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. With a delay as low as 0.6 ns per LE, each additional LE 
provides four more inputs to the effective width of a function. Cascade 
chain logic can be created automatically by the compiler during design 
processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EP1K50 device, the cascade 
chain stops at the eighteenth LAB, and a new one begins at the nineteenth 
LAB). This break is due to the EAB’s placement in the middle of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to 
form functions with a wide fan-in. These examples show functions of 4n 
variables implemented with n LEs. The LE delay is 1.3 ns; the cascade 
chain delay is 0.6 ns. With the cascade chain, decoding a 16-bit address 
requires 3.1 ns.

Figure 10. ACEX 1K Cascade Chain Operation
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a 4-input LUT. The compiler automatically selects the carry-
in or the DATA3 signal as one of the inputs to the LUT. The LUT output 
can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect routing 
structure at the same time. 

The LUT and the register in the LE can be used independently (register 
packing). To support register packing, the LE has two outputs; one drives 
the local interconnect, and the other drives the FastTrack Interconnect 
routing structure. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a 3-input function can be computed in the LUT, and a 
fourth independent signal can be registered. Alternatively, a 4-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect routing structure while the LUT drives 
the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers two 3-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a 3-input function; the other generates a carry output. As shown 
in Figure 11, the first LUT uses the carry-in signal and two data inputs 
from the LAB local interconnect to generate a combinatorial or registered 
output. For example, in an adder, this output is the sum of three signals: 
a, b, and carry-in. The second LUT uses the same three signals to generate 
a carry-out signal, thereby creating a carry chain. The arithmetic mode 
also supports simultaneous use of the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, 
synchronous up/down control, and data loading options. These control 
signals are generated by the data inputs from the LAB local interconnect, 
the carry-in signal, and output feedback from the programmable register. 
Two 3-input LUTs are used; one generates the counter data, and the other 
generates the fast carry bit. A 2-to-1 multiplexer provides synchronous 
loading. Data can also be loaded asynchronously with the clear and preset 
register control signals without using the LUT resources.
22 Altera Corporation
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For improved routing, the row interconnect consists of a combination of 
full-length and half-length channels. The full-length channels connect to 
all LABs in a row; the half-length channels connect to the LABs in half of 
the row. The EAB can be driven by the half-length channels in the left half 
of the row and by the full-length channels. The EAB drives out to the full-
length channels. In addition to providing a predictable, row-wide 
interconnect, this architecture provides increased routing resources. Two 
neighboring LABs can be connected using a half-row channel, thereby 
saving the other half of the channel for the other half of the row.

Table 6 summarizes the FastTrack Interconnect routing structure 
resources available in each ACEX 1K device.

In addition to general-purpose I/O pins, ACEX 1K devices have six 
dedicated input pins that provide low-skew signal distribution across the 
device. These six inputs can be used for global clock, clear, preset, and 
peripheral output-enable and clock-enable control signals. These signals 
are available as control signals for all LABs and IOEs in the device. The 
dedicated inputs can also be used as general-purpose data inputs because 
they can feed the local interconnect of each LAB in the device. 

Figure 14 shows the interconnection of adjacent LABs and EABs, with 
row, column, and local interconnects, as well as the associated cascade 
and carry chains. Each LAB is labeled according to its location: a letter 
represents the row and a number represents the column. For example, 
LAB B3 is in row B, column 3.

Table 6. ACEX 1K FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per
Column

EP1K10 3 144 24 24

EP1K30 6 216 36 24

EP1K50 10 216 36 24

EP1K100 12 312 52 24
28 Altera Corporation
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For designs that require both a multiplied and non-multiplied clock, the 
clock trace on the board can be connected to the GCLK1 pin. In the Altera 
software, the GCLK1 pin can feed both the ClockLock and ClockBoost 
circuitry in the ACEX 1K device. However, when both circuits are used, 
the other clock pin cannot be used.

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the 
incoming clock must meet certain requirements. If these specifications are 
not met, the circuitry may not lock onto the incoming clock, which 
generates an erroneous clock within the device. The clock generated by 
the ClockLock and ClockBoost circuitry must also meet certain 
specifications. If the incoming clock meets these requirements during 
configuration, the ClockLock and ClockBoost circuitry will lock onto the 
clock during configuration. The circuit will be ready for use immediately 
after configuration. Figure 19 shows the incoming and generated clock 
specifications.

Figure 19. Specifications for the Incoming & Generated Clocks Note (1)

Note:
(1) The tI parameter refers to the nominal input clock period; the tO parameter refers to the nominal output clock 

period.

Input
Clock

ClockLock
Generated
Clock

tCLK1 tINDUTY tI + tCLKDEV
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PCI Pull-Up Clamping Diode Option

ACEX 1K devices have a pull-up clamping diode on every I/O, dedicated 
input, and dedicated clock pin. PCI clamping diodes clamp the signal to 
the VCCIO value and are required for 3.3-V PCI compliance. Clamping 
diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When VCCIO is 
3.3 V, a pin that has the clamping diode option turned on can be driven by 
a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When VCCIO is 2.5 V, a pin 
that has the clamping diode option turned on can be driven by a 2.5-V 
signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can 
be activated for a subset of pins, which allows a device to bridge between 
a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can 
be configured for low-noise or high-speed performance. A slower slew 
rate reduces system noise and adds a maximum delay of 4.3 ns. The fast 
slew rate should be used for speed-critical outputs in systems that are 
adequately protected against noise. Designers can specify the slew rate 
pin-by-pin or assign a default slew rate to all pins on a device-wide basis. 
The slow slew rate setting affects only the falling edge of the output.

Open-Drain Output Option

ACEX 1K devices provide an optional open-drain output (electrically 
equivalent to open-collector output) for each I/O pin. This open-drain 
output enables the device to provide system-level control signals (e.g., 
interrupt and write enable signals) that can be asserted by any of several 
devices. It can also provide an additional wired-OR plane. 

MultiVolt I/O Interface 

The ACEX 1K device architecture supports the MultiVolt I/O interface 
feature, which allows ACEX 1K devices in all packages to interface with 
systems of differing supply voltages. These devices have one set of VCC 
pins for internal operation and input buffers (VCCINT), and another set for 
I/O output drivers (VCCIO). 
40 Altera Corporation
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IEEE Std. 
1149.1 (JTAG) 
Boundary-Scan 
Support

All ACEX 1K devices provide JTAG BST circuitry that complies with the 
IEEE Std. 1149.1-1990 specification. ACEX 1K devices can also be 
configured using the JTAG pins through the ByteBlasterMV or BitBlaster 
download cable, or via hardware that uses the JamTM Standard Test and 
Programming Language (STAPL), JEDEC standard JESD-71. JTAG 
boundary-scan testing can be performed before or after configuration, but 
not during configuration. ACEX 1K devices support the JTAG 
instructions shown in Table 14.

The instruction register length of ACEX 1K devices is 10 bits. The 
USERCODE register length in ACEX 1K devices is 32 bits; 7 bits are 
determined by the user, and 25 bits are pre-determined. Tables 15 and 16 
show the boundary-scan register length and device IDCODE information 
for ACEX 1K devices.

Table 14. ACEX 1K JTAG Instructions

JTAG Instruction Description

SAMPLE/PRELOAD Allows a snapshot of signals at the device pins to be captured and examined during 
normal device operation and permits an initial data pattern to be output at the device 
pins.

EXTEST Allows the external circuitry and board-level interconnections to be tested by forcing a 
test pattern at the output pins and capturing test results at the input pins.

BYPASS Places the 1-bit bypass register between the TDI and TDO pins, allowing the BST data 
to pass synchronously through a selected device to adjacent devices during normal 
operation.

USERCODE Selects the user electronic signature (USERCODE) register and places it between the 
TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.

IDCODE Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE 
to be serially shifted out of TDO.

ICR Instructions These instructions are used when configuring an ACEX 1K device via JTAG ports using 
a MasterBlaster, ByteBlasterMV, or BitBlaster download cable, or a Jam File (.jam) or 
Jam Byte-Code File (.jbc) via an embedded processor.

Table 15. ACEX 1K Boundary-Scan Register Length

Device Boundary-Scan Register Length

EP1K10 438

EP1K30 690

EP1K50 798

EP1K100 1,050
42 Altera Corporation
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Notes to tables:
(1) The most significant bit (MSB) is on the left.
(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

ACEX 1K devices include weak pull-up resistors on the JTAG pins.

f For more information, see the following documents:

■ Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in 
Altera Devices) 

■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ BitBlaster Serial Download Cable Data Sheet
■ Jam Programming & Test Language Specification

Figure 20 shows the timing requirements for the JTAG signals.

Table 16.  32-Bit IDCODE for ACEX 1K Devices Note (1)

Device IDCODE (32 Bits)

Version 
(4 Bits)

Part Number (16 Bits) Manufacturer’s
Identity (11 Bits)

1 (1 Bit) (2)

EP1K10 0001 0001 0000 0001 0000 00001101110 1

EP1K30 0001 0001 0000 0011 0000 00001101110 1

EP1K50 0001 0001 0000 0101 0000 00001101110 1

EP1K100 0010 0000 0001 0000 0000 00001101110 1
Altera Corporation  43
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Generic Testing Each ACEX 1K device is functionally tested. Complete testing of each 
configurable static random access memory (SRAM) bit and all logic 
functionality ensures 100% yield. AC test measurements for ACEX 1K 
devices are made under conditions equivalent to those shown in 
Figure 21. Multiple test patterns can be used to configure devices during 
all stages of the production flow.

Figure 21. ACEX 1K AC Test Conditions

Operating 
Conditions

Tables 18 through 21 provide information on absolute maximum ratings, 
recommended operating conditions, DC operating conditions, and 
capacitance for 2.5-V ACEX 1K devices.

To Test
System

C1 (includes
JIG capacitance)

Device input
rise and fall
times < 3 ns

Device
Output

703 Ω

8.06 k Ω
[481    ]Ω

[481    ]Ω
 

VCCIO

Power supply transients can affect AC
measurements. Simultaneous transitions of 
multiple outputs should be avoided for 
accurate measurement. Threshold tests 
must not be performed under AC 
conditions. Large-amplitude, fast-ground-
current transients normally occur as the 
device outputs discharge the load 
capacitances. When these transients flow 
through the parasitic inductance between 
the device ground pin and the test system 
ground, significant reductions in 
observable noise immunity can result. 
Numbers in brackets are for 2.5-V devices 
or outputs. Numbers without brackets are 
for 3.3-V devices or outputs.

Table 18. ACEX 1K Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage With respect to ground (2) –0.5 3.6 V

VCCIO –0.5 4.6 V

VI DC input voltage –2.0 5.75 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, TQFP, and BGA packages, under 
bias

135 ° C
Altera Corporation  45
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Figure 30. EAB Synchronous Timing Waveforms

Tables 22 through 26 describe the ACEX 1K device internal timing 
parameters. 
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Table 22. LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol Parameter Conditions

tLUT LUT delay for data-in

tCLUT LUT delay for carry-in

tRLUT LUT delay for LE register feedback

tPACKED Data-in to packed register delay

tEN LE register enable delay

tCICO Carry-in to carry-out delay

tCGEN Data-in to carry-out delay

tCGENR LE register feedback to carry-out delay
54 Altera Corporation
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tCASC Cascade-in to cascade-out delay

tC LE register control signal delay

tCO LE register clock-to-output delay

tCOMB Combinatorial delay

tSU LE register setup time for data and enable signals before clock; LE register 
recovery time after asynchronous clear, preset, or load

tH LE register hold time for data and enable signals after clock

tPRE LE register preset delay

tCLR LE register clear delay

tCH Minimum clock high time from clock pin

tCL Minimum clock low time from clock pin

Table 23. IOE Timing Microparameters Note (1)

Symbol Parameter Conditions

tIOD IOE data delay

tIOC IOE register control signal delay

tIOCO IOE register clock-to-output delay

tIOCOMB IOE combinatorial delay

tIOSU IOE register setup time for data and enable signals before clock; IOE register 
recovery time after asynchronous clear

tIOH IOE register hold time for data and enable signals after clock

tIOCLR IOE register clear time

tOD1 Output buffer and pad delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tOD2 Output buffer and pad delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tOD3 Output buffer and pad delay, slow slew rate = on C1 = 35 pF (4)

tXZ IOE output buffer disable delay

tZX1 IOE output buffer enable delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tZX2 IOE output buffer enable delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tZX3 IOE output buffer enable delay, slow slew rate = on C1 = 35 pF (4)

tINREG IOE input pad and buffer to IOE register delay

tIOFD IOE register feedback delay

tINCOMB IOE input pad and buffer to FastTrack Interconnect delay

Table 22. LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Parameter Conditions
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Table 40. EP1K30 Device EAB Internal Timing Macroparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABAA 6.4 7.6 8.8 ns

tEABRCOMB 6.4 7.6 8.8 ns

tEABRCREG 4.4 5.1 6.0 ns

tEABWP 2.5 2.9 3.3 ns

tEABWCOMB 6.0 7.0 8.0 ns

tEABWCREG 6.8 7.8 9.0 ns

tEABDD 5.7 6.7 7.7 ns

tEABDATACO 0.8 0.9 1.1 ns

tEABDATASU 1.5 1.7 2.0 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 1.3 1.4 1.7 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.5 1.7 2.0 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.3 ns

tEABWAH 0.5 0.5 0.4 ns

tEABWO 5.1 6.0 6.8 ns
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Notes to tables:
(1) All timing parameters are described in Tables 22 through 29.
(2) This parameter is measured without use of the ClockLock or ClockBoost circuits.
(3) This parameter is measured with use of the ClockLock or ClockBoost circuits

Table 50. EP1K50 External Bidirectional Timing Parameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSUBIDIR (2) 2.7 3.2 4.3 ns

tINHBIDIR (2) 0.0 0.0 0.0 ns

tINSUBIDIR (3) 3.7 4.2 – ns

tINHBIDIR (3) 0.0 0.0 – ns

tOUTCOBIDIR (2) 2.0 4.5 2.0 5.2 2.0 7.3 ns

tXZBIDIR (2) 6.8 7.8 10.1 ns

tZXBIDIR (2) 6.8 7.8 10.1 ns

tOUTCOBIDIR (3) 0.5 3.5 0.5 4.2 – –

tXZBIDIR (3) 6.8 8.4 – ns

tZXBIDIR (3) 6.8 8.4 – ns
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Table 52. EP1K100 Device IOE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tIOD 1.7 2.0 2.6 ns

tIOC 0.0 0.0 0.0 ns

tIOCO 1.4 1.6 2.1 ns

tIOCOMB 0.5 0.7 0.9 ns

tIOSU 0.8 1.0 1.3 ns

tIOH 0.7 0.9 1.2 ns

tIOCLR 0.5 0.7 0.9 ns

tOD1 3.0 4.2 5.6 ns

tOD2 3.0 4.2 5.6 ns

tOD3 4.0 5.5 7.3 ns

tXZ 3.5 4.6 6.1 ns

tZX1 3.5 4.6 6.1 ns

tZX2 3.5 4.6 6.1 ns

tZX3 4.5 5.9 7.8 ns

tINREG 2.0 2.6 3.5 ns

tIOFD 0.5 0.8 1.2 ns

tINCOMB 0.5 0.8 1.2 ns
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During initialization, which occurs immediately after configuration, the 
device resets registers, enables I/O pins, and begins to operate as a logic 
device. Before and during configuration, all I/O pins (except dedicated 
inputs, clock, or configuration pins) are pulled high by a weak pull-up 
resistor. Together, the configuration and initialization processes are called 
command mode; normal device operation is called user mode.

SRAM configuration elements allow ACEX 1K devices to be reconfigured 
in-circuit by loading new configuration data into the device. Real-time 
reconfiguration is performed by forcing the device into command mode 
with a device pin, loading different configuration data, re-initializing the 
device, and resuming user-mode operation. The entire reconfiguration 
process requires less than 40 ms and can be used to reconfigure an entire 
system dynamically. In-field upgrades can be performed by distributing 
new configuration files.

Configuration Schemes

The configuration data for an ACEX 1K device can be loaded with one of 
five configuration schemes (see Table 59), chosen on the basis of the target 
application. An EPC16, EPC2, EPC1, or EPC1441 configuration device, 
intelligent controller, or the JTAG port can be used to control the 
configuration of a ACEX 1K device, allowing automatic configuration on 
system power-up.

Multiple ACEX 1K devices can be configured in any of the five 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device. Additional 
APEX 20K, APEX 20KE, FLEX 10K, FLEX 10KA, FLEX 10KE, ACEX 1K, 
and FLEX 6000 devices can be configured in the same serial chain.

Device Pin-
Outs

See the Altera web site (http://www.altera.com) or the Altera Documen-
tation Library for pin-out information.

Table 59. Data Sources for ACEX 1K Configuration

Configuration Scheme Data Source

Configuration device EPC16, EPC2, EPC1, or EPC1441 configuration device

Passive serial (PS) BitBlaster or ByteBlasterMV download cables, or serial data 
source

Passive parallel asynchronous (PPA) Parallel data source

Passive parallel synchronous (PPS) Parallel data source

JTAG BitBlaster or ByteBlasterMV download cables, or 
microprocessor with a Jam STAPL File or JBC File
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