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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs 624

Number of Logic Elements/Cells 4992

Total RAM Bits 49152

Number of I/O 147

Number of Gates 257000

Voltage - Supply 2.375V ~ 2.625V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 70°C (TA)

Package / Case 208-BFQFP

Supplier Device Package 208-PQFP (28x28)
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...and More 
Features

– -1 speed grade devices are compliant with PCI Local Bus 
Specification, Revision 2.2 for 5.0-V operation

– Built-in Joint Test Action Group (JTAG) boundary-scan test 
(BST) circuitry compliant with IEEE Std. 1149.1-1990, available 
without consuming additional device logic.

– Operate with a 2.5-V internal supply voltage
– In-circuit reconfigurability (ICR) via external configuration 

devices, intelligent controller, or JTAG port
– ClockLockTM and ClockBoostTM options for reduced clock delay, 

clock skew, and clock multiplication
– Built-in, low-skew clock distribution trees
– 100% functional testing of all devices; test vectors or scan chains 

are not required
– Pull-up on I/O pins before and during configuration

■ Flexible interconnect
– FastTrack® Interconnect continuous routing structure for fast, 

predictable interconnect delays
– Dedicated carry chain that implements arithmetic functions such 

as fast adders, counters, and comparators (automatically used by 
software tools and megafunctions)

– Dedicated cascade chain that implements high-speed, 
high-fan-in logic functions (automatically used by software tools 
and megafunctions)

– Tri-state emulation that implements internal tri-state buses
– Up to six global clock signals and four global clear signals

■ Powerful I/O pins
– Individual tri-state output enable control for each pin
– Open-drain option on each I/O pin
– Programmable output slew-rate control to reduce switching 

noise
– Clamp to VCCIO user-selectable on a pin-by-pin basis
– Supports hot-socketing
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Table 5 shows ACEX 1K device performance for more complex designs. 
These designs are available as Altera MegaCoreTM functions.

Each ACEX 1K device contains an embedded array and a logic array. The 
embedded array is used to implement a variety of memory functions or 
complex logic functions, such as digital signal processing (DSP), wide 
data-path manipulation, microcontroller applications, and data-
transformation functions. The logic array performs the same function as 
the sea-of-gates in the gate array and is used to implement general logic 
such as counters, adders, state machines, and multiplexers. The 
combination of embedded and logic arrays provides the high 
performance and high density of embedded gate arrays, enabling 
designers to implement an entire system on a single device.

ACEX 1K devices are configured at system power-up with data stored in 
an Altera serial configuration device or provided by a system controller. 
Altera offers EPC16, EPC2, EPC1, and EPC1441 configuration devices, 
which configure ACEX 1K devices via a serial data stream. Configuration 
data can also be downloaded from system RAM or via the Altera 
MasterBlasterTM, ByteBlasterMVTM, or BitBlasterTM download cables. After 
an ACEX 1K device has been configured, it can be reconfigured in-circuit 
by resetting the device and loading new data. Because reconfiguration 
requires less than 40 ms, real-time changes can be made during system 
operation.

ACEX 1K devices contain an interface that permits microprocessors to 
configure ACEX 1K devices serially or in parallel, and synchronously or 
asynchronously. The interface also enables microprocessors to treat an 
ACEX 1K device as memory and configure it by writing to a virtual 
memory location, simplifying device reconfiguration.

Table 5. ACEX 1K Device Performance for Complex Designs

Application LEs 
Used

Performance

Speed Grade Units

-1 -2 -3

16-bit, 8-tap parallel finite impulse response (FIR) 
filter

597 192 156 116 MSPS

8-bit, 512-point Fast Fourier transform (FFT) 
function

1,854 23.4 28.7 38.9 µs

113 92 68 MHz

a16450 universal asynchronous 
receiver/transmitter (UART)

342 36 28 20.5 MHz
Altera Corporation  5
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Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
ACEX 1K architecture to efficiently implement high-speed counters, 
adders, and comparators of arbitrary width. Carry chain logic can be 
created automatically by the compiler during design processing, or 
manually by the designer during design entry. Parameterized functions, 
such as LPM and DesignWare functions, automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EP1K50 device, the carry chain stops at the eighteenth LAB, and a 
new carry chain begins at the nineteenth LAB.

Figure 9 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for an accumulator function. Another portion of the LUT and the carry 
chain logic generates the carry-out signal, which is routed directly to the 
carry-in signal of the next-higher-order bit. The final carry-out signal is 
routed to an LE, where it can be used as a general-purpose signal. 
Altera Corporation  17
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LE Operating Modes

The ACEX 1K LE can operate in the following four modes:

■ Normal mode
■ Arithmetic mode
■ Up/down counter mode
■ Clearable counter mode

Each of these modes uses LE resources differently. In each mode, seven 
available inputs to the LE—the four data inputs from the LAB local 
interconnect, the feedback from the programmable register, and the 
carry-in and cascade-in from the previous LE—are directed to different 
destinations to implement the desired logic function. Three inputs to the 
LE provide clock, clear, and preset control for the register. The Altera 
software, in conjunction with parameterized functions such as LPM and 
DesignWare functions, automatically chooses the appropriate mode for 
common functions such as counters, adders, and multipliers. If required, 
the designer can also create special-purpose functions that use a specific 
LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all 
four modes. The Altera software can set DATA1 to enable the register 
synchronously, providing easy implementation of fully synchronous 
designs.

Figure 11 shows the ACEX 1K LE operating modes.
20 Altera Corporation
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FastTrack Interconnect Routing Structure

In the ACEX 1K architecture, connections between LEs, EABs, and device 
I/O pins are provided by the FastTrack Interconnect routing structure, 
which is a series of continuous horizontal and vertical routing channels 
that traverse the device. This global routing structure provides 
predictable performance, even in complex designs. In contrast, the 
segmented routing in FPGAs requires switch matrices to connect a 
variable number of routing paths, increasing the delays between logic 
resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column 
interconnect channels that span the entire device. Each row of LABs is 
served by a dedicated row interconnect. The row interconnect can drive 
I/O pins and feed other LABs in the row. The column interconnect routes 
signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row 
signal is buffered at every LAB or EAB to reduce the effect of fan-out on 
delay. A row channel can be driven by an LE or by one of three column 
channels. These four signals feed dual 4-to-1 multiplexers that connect to 
two specific row channels. These multiplexers, which are connected to 
each LE, allow column channels to drive row channels even when all eight 
LEs in a LAB drive the row interconnect. 

Each column of LABs or EABs is served by a dedicated column 
interconnect. The column interconnect that serves the EABs has twice as 
many channels as other column interconnects. The column interconnect 
can then drive I/O pins or another row’s interconnect to route the signals 
to other LABs or EABs in the device. A signal from the column 
interconnect, which can be either the output of a LE or an input from an 
I/O pin, must be routed to the row interconnect before it can enter a LAB 
or EAB. Each row channel that is driven by an IOE or EAB can drive one 
specific column channel.

Access to row and column channels can be switched between LEs in 
adjacent pairs of LABs. For example, a LE in one LAB can drive the row 
and column channels normally driven by a particular LE in the adjacent 
LAB in the same row, and vice versa. This flexibility enables routing 
resources to be used more efficiently. Figure 13 shows the ACEX 1K LAB.
26 Altera Corporation
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For improved routing, the row interconnect consists of a combination of 
full-length and half-length channels. The full-length channels connect to 
all LABs in a row; the half-length channels connect to the LABs in half of 
the row. The EAB can be driven by the half-length channels in the left half 
of the row and by the full-length channels. The EAB drives out to the full-
length channels. In addition to providing a predictable, row-wide 
interconnect, this architecture provides increased routing resources. Two 
neighboring LABs can be connected using a half-row channel, thereby 
saving the other half of the channel for the other half of the row.

Table 6 summarizes the FastTrack Interconnect routing structure 
resources available in each ACEX 1K device.

In addition to general-purpose I/O pins, ACEX 1K devices have six 
dedicated input pins that provide low-skew signal distribution across the 
device. These six inputs can be used for global clock, clear, preset, and 
peripheral output-enable and clock-enable control signals. These signals 
are available as control signals for all LABs and IOEs in the device. The 
dedicated inputs can also be used as general-purpose data inputs because 
they can feed the local interconnect of each LAB in the device. 

Figure 14 shows the interconnection of adjacent LABs and EABs, with 
row, column, and local interconnects, as well as the associated cascade 
and carry chains. Each LAB is labeled according to its location: a letter 
represents the row and a number represents the column. For example, 
LAB B3 is in row B, column 3.

Table 6. ACEX 1K FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per
Column

EP1K10 3 144 24 24

EP1K30 6 216 36 24

EP1K50 10 216 36 24

EP1K100 12 312 52 24
28 Altera Corporation
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Figure 14. ACEX 1K Interconnect Resources

I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used 
either as an input register for external data that requires a fast setup time 
or as an output register for data that requires fast clock-to-output 
performance. In some cases, using an LE register for an input register will 
result in a faster setup time than using an IOE register. IOEs can be used 
as input, output, or bidirectional pins. The compiler uses the 
programmable inversion option to invert signals from the row and 
column interconnect automatically where appropriate. For bidirectional 
registered I/O implementation, the output register should be in the IOE 
and the data input and output enable registers should be LE registers 
placed adjacent to the bidirectional pin. Figure 15 shows the bidirectional 
I/O registers.
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Tables 11 and 12 summarize the ClockLock and ClockBoost parameters 
for -1 and -2 speed-grade devices, respectively.

Table 11. ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices

Symbol Parameter Condition Min Typ Max Unit

tR Input rise time 5 ns

tF Input fall time 5 ns

tINDUTY Input duty cycle 40 60 %

fCLK1 Input clock frequency (ClockBoost clock 
multiplication factor equals 1)

25 180 MHz

fCLK2 Input clock frequency (ClockBoost clock 
multiplication factor equals 2)

16 90 MHz

fCLKDEV Input deviation from user specification in the 
Altera software (1)

25,000 
(2)

PPM

tINCLKSTB Input clock stability (measured between 
adjacent clocks)

100 ps

tLOCK Time required for ClockLock or ClockBoost 
to acquire lock (3)

10 µs

tJITTER Jitter on ClockLock or ClockBoost-
generated clock (4)

tINCLKSTB <100 250 (4) ps

tINCLKSTB < 50 200 (4) ps

tOUTDUTY Duty cycle for ClockLock or ClockBoost-
generated clock

40 50 60 %
38 Altera Corporation
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Notes to tables:
(1) To implement the ClockLock and ClockBoost circuitry with the Altera software, designers must specify the input 

frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The 
fCLKDEV parameter specifies how much the incoming clock can differ from the specified frequency during device 
operation. Simulation does not reflect this parameter.

(2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
(3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If 

the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during 
configuration because the tLOCK value is less than the time required for configuration.

(4) The tJITTER specification is measured under long-term observation. The maximum value for tJITTER is 200 ps if 
tINCLKSTB is lower than 50 ps.

I/O 
Configuration

This section discusses the PCI pull-up clamping diode option, slew-rate 
control, open-drain output option, and MultiVolt I/O interface for 
ACEX 1K devices. The PCI pull-up clamping diode, slew-rate control, and 
open-drain output options are controlled pin-by-pin via Altera software 
logic options. The MultiVolt I/O interface is controlled by connecting 
VCCIO to a different voltage than VCCINT. Its effect can be simulated in the 
Altera software via the Global Project Device Options dialog box (Assign 
menu).

Table 12. ClockLock & ClockBoost Parameters for -2 Speed-Grade Devices

Symbol Parameter Condition Min Typ Max Unit

tR Input rise time 5 ns

tF Input fall time 5 ns

tINDUTY Input duty cycle 40 60 %

fCLK1 Input clock frequency (ClockBoost clock 
multiplication factor equals 1)

25 80 MHz

fCLK2 Input clock frequency (ClockBoost clock 
multiplication factor equals 2)

16 40 MHz

fCLKDEV Input deviation from user specification in 
the software (1)

25,000 PPM

tINCLKSTB Input clock stability (measured between 
adjacent clocks)

100 ps

tLOCK Time required for ClockLock or ClockBoost 
to acquire lock (3)

10 µs

tJITTER Jitter on ClockLock or ClockBoost-
generated clock (4)

tINCLKSTB < 100 250 (4) ps

tINCLKSTB < 50 200 (4) ps

tOUTDUTY Duty cycle for ClockLock or ClockBoost-
generated clock

40 50 60 %
Altera Corporation  39
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The VCCINT pins must always be connected to a 2.5-V power supply. 
With a 2.5-V VCCINT level, input voltages are compatible with 2.5-V, 3.3-
V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 
3.3-V power supply, depending on the output requirements. When the 
VCCIO pins are connected to a 2.5-V power supply, the output levels are 
compatible with 2.5-V systems. When the VCCIO pins are connected to a 
3.3-V power supply, the output high is at 3.3 V and is therefore compatible 
with 3.3-V or 5.0-V systems. Devices operating with VCCIO levels higher 
than 3.0 V achieve a faster timing delay of tOD2 instead of tOD1.

Table 13 summarizes ACEX 1K MultiVolt I/O support.

Notes:
(1) The PCI clamping diode must be disabled on an input which is driven with a 

voltage higher than VCCIO.
(2) When VCCIO = 3.3 V, an ACEX 1K device can drive a 2.5-V device that has 3.3-V 

tolerant inputs.

Open-drain output pins on ACEX 1K devices (with a pull-up resistor to 
the 5.0-V supply) can drive 5.0-V CMOS input pins that require a higher 
VIH than LVTTL. When the open-drain pin is active, it will drive low. 
When the pin is inactive, the resistor will pull up the trace to 5.0 V, thereby 
meeting the CMOS VOH requirement. The open-drain pin will only drive 
low or tri-state; it will never drive high. The rise time is dependent on the 
value of the pull-up resistor and load impedance. The IOL current 
specification should be considered when selecting a pull-up resistor.

Power 
Sequencing & 
Hot-Socketing

Because ACEX 1K devices can be used in a mixed-voltage environment, 
they have been designed specifically to tolerate any possible power-up 
sequence. The VCCIO and VCCINT power planes can be powered in any 
order.

Signals can be driven into ACEX 1K devices before and during power up 
without damaging the device. Additionally, ACEX 1K devices do not 
drive out during power up. Once operating conditions are reached, 
ACEX 1K devices operate as specified by the user.

Table 13. ACEX 1K MultiVolt I/O Support

VCCIO (V) Input Signal (V) Output Signal (V)

2.5 3.3 5.0 2.5 3.3 5.0

2.5 v v (1) v (1) v

3.3 v v v (1) v (2) v v
Altera Corporation  41
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents 

less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial- and extended-temperature-range devices.
(4) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are 

powered.
(6) Typical values are for TA = 25° C, VCCINT = 2.5 V, and VCCIO = 2.5 V or 3.3 V.
(7) These values are specified under the ACEX 1K Recommended Operating Conditions shown in Table 19 on page 46.
(8) The ACEX 1K input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS 

signals. Additionally, the input buffers are 3.3-V PCI compliant when VCCIO and VCCINT meet the relationship 
shown in Figure 22.

(9) The IOH parameter refers to high-level TTL, PCI, or CMOS output current.
(10) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(11) This value is specified for normal device operation. The value may vary during power-up.
(12) This parameter applies to -1 speed grade commercial temperature devices and -2 speed grade industrial and 

extended temperature devices.
(13) Pin pull-up resistance values will be lower if the pin is driven higher than VCCIO by an external source.
(14) Capacitance is sample-tested only.

Table 21.  ACEX 1K Device Capacitance Note (14)

Symbol Parameter Conditions Min Max Unit

CIN Input capacitance VIN = 0 V, f = 1.0 MHz 10 pF

CINCLK Input capacitance on 
dedicated clock pin

VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 10 pF
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Figure 22 shows the required relationship between VCCIO and VCCINT to 
satisfy 3.3-V PCI compliance.

Figure 22. Relationship between VCCIO & VCCINT for 3.3-V PCI Compliance

Figure 23 shows the typical output drive characteristics of ACEX 1K 
devices with 3.3-V and 2.5-V VCCIO. The output driver is compliant to the 
3.3-V PCI Local Bus Specification, Revision 2.2 (when VCCIO pins are 
connected to 3.3 V). ACEX 1K devices with a -1 speed grade also comply 
with the drive strength requirements of the PCI Local Bus Specification, 
Revision 2.2 (when VCCINT pins are powered with a minimum supply of 
2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices 
can be used in open 5.0-V PCI systems.
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Table 25. EAB Timing Macroparameters Notes (1), (6)

Symbol Parameter Conditions

tEABAA EAB address access delay

tEABRCCOMB EAB asynchronous read cycle time

tEABRCREG EAB synchronous read cycle time

tEABWP EAB write pulse width

tEABWCCOMB EAB asynchronous write cycle time

tEABWCREG EAB synchronous write cycle time

tEABDD EAB data-in to data-out valid delay

tEABDATACO EAB clock-to-output delay when using output registers

tEABDATASU EAB data/address setup time before clock when using input register

tEABDATAH EAB data/address hold time after clock when using input register

tEABWESU EAB WE setup time before clock when using input register

tEABWEH EAB WE hold time after clock when using input register

tEABWDSU EAB data setup time before falling edge of write pulse when not using input 
registers

tEABWDH EAB data hold time after falling edge of write pulse when not using input 
registers

tEABWASU EAB address setup time before rising edge of write pulse when not using 
input registers

tEABWAH EAB address hold time after falling edge of write pulse when not using input 
registers

tEABWO EAB write enable to data output valid delay
Altera Corporation  57
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Table 39. EP1K30 Device EAB Internal Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABDATA1 1.7 2.0 2.3 ns

tEABDATA1 0.6 0.7 0.8 ns

tEABWE1 1.1 1.3 1.4 ns

tEABWE2 0.4 0.4 0.5 ns

tEABRE1 0.8 0.9 1.0 ns

tEABRE2 0.4 0.4 0.5 ns

tEABCLK 0.0 0.0  0.0 ns

tEABCO 0.3 0.3 0.4 ns

tEABBYPASS 0.5 0.6 0.7 ns

tEABSU 0.9 1.0 1.2 ns

tEABH 0.4 0.4 0.5 ns

tEABCLR 0.3 0.3 0.3 ns

tAA 3.2 3.8 4.4 ns

tWP 2.5 2.9 3.3 ns

tRP 0.9 1.1 1.2 ns

tWDSU 0.9 1.0 1.1 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.7 2.0 2.3 ns

tWAH 1.8 2.1 2.4 ns

tRASU 3.1 3.7 4.2 ns

tRAH 0.2 0.2 0.2 ns

tWO 2.5 2.9 3.3 ns

tDD 2.5 2.9 3.3 ns

tEABOUT 0.5 0.6 0.7 ns

tEABCH 1.5 2.0 2.3 ns

tEABCL 2.5 2.9 3.3 ns
Altera Corporation  67
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Table 40. EP1K30 Device EAB Internal Timing Macroparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABAA 6.4 7.6 8.8 ns

tEABRCOMB 6.4 7.6 8.8 ns

tEABRCREG 4.4 5.1 6.0 ns

tEABWP 2.5 2.9 3.3 ns

tEABWCOMB 6.0 7.0 8.0 ns

tEABWCREG 6.8 7.8 9.0 ns

tEABDD 5.7 6.7 7.7 ns

tEABDATACO 0.8 0.9 1.1 ns

tEABDATASU 1.5 1.7 2.0 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 1.3 1.4 1.7 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.5 1.7 2.0 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.3 ns

tEABWAH 0.5 0.5 0.4 ns

tEABWO 5.1 6.0 6.8 ns
68 Altera Corporation
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Notes to tables:
(1) All timing parameters are described in Tables 22 through 29 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 44 through 50 show EP1K50 device external timing parameters. 
 

Table 43. EP1K30 External Bidirectional Timing Parameters Notes (1), (2)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSUBIDIR (3) 2.8 3.9 5.2 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 3.8 4.9 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 4.9 2.0 5.9 2.0 7.6 ns

tXZBIDIR (3) 6.1 7.5 9.7 ns

tZXBIDIR (3) 6.1 7.5 9.7 ns

tOUTCOBIDIR (4)  0.5 3.9 0.5 4.9 – – ns

tXZBIDIR (4) 5.1  6.5 – ns

tZXBIDIR (4) 5.1  6.5 – ns

Table 44. EP1K50 Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tLUT 0.6 0.8 1.1 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.6 0.7 0.9 ns

tPACKED 0.2 0.3 0.4 ns

tEN 0.6 0.7 0.9 ns

tCICO 0.1 0.1 0.1 ns

tCGEN 0.4 0.5 0.6 ns

tCGENR 0.1 0.1 0.1 ns

tCASC 0.5 0.8 1.0 ns

tC 0.5 0.6 0.8 ns
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tCO 0.6 0.6 0.7 ns

tCOMB 0.3 0.4 0.5 ns

tSU 0.5 0.6 0.7 ns

tH 0.5 0.6 0.8 ns

tPRE 0.4 0.5 0.7 ns

tCLR 0.8 1.0 1.2 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

Table 45. EP1K50 Device IOE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tIOD 1.3 1.3 1.9 ns

tIOC 0.3 0.4 0.4 ns

tIOCO 1.7 2.1 2.6 ns

tIOCOMB 0.5 0.6 0.8 ns

tIOSU 0.8 1.0 1.3 ns

tIOH 0.4 0.5 0.6 ns

tIOCLR 0.2 0.2 0.4 ns

tOD1 1.2 1.2 1.9 ns

tOD2 0.7 0.8 1.7 ns

tOD3 2.7 3.0 4.3 ns

tXZ 4.7 5.7 7.5 ns

tZX1 4.7 5.7 7.5 ns

tZX2 4.2 5.3 7.3 ns

tZX3 6.2 7.5 9.9 ns

tINREG 3.5 4.2 5.6 ns

tIOFD 1.1 1.3 1.8 ns

tINCOMB 1.1 1.3 1.8 ns

Table 44. EP1K50 Device LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max
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Table 53. EP1K100 Device EAB Internal Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABDATA1 1.5 2.0 2.6 ns

tEABDATA1 0.0 0.0 0.0 ns

tEABWE1 1.5 2.0 2.6 ns

tEABWE2 0.3 0.4 0.5 ns

tEABRE1 0.3 0.4 0.5 ns

tEABRE2 0.0 0.0 0.0 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.4 0.5 ns

tEABBYPASS 0.1 0.1 0.2 ns

tEABSU 0.8 1.0 1.4 ns

tEABH 0.1 0.1 0.2 ns

tEABCLR 0.3 0.4 0.5 ns

tAA 4.0 5.1 6.6 ns

tWP 2.7 3.5 4.7 ns

tRP 1.0 1.3 1.7 ns

tWDSU 1.0 1.3 1.7 ns

tWDH 0.2 0.2 0.3 ns

tWASU 1.6 2.1 2.8 ns

tWAH 1.6 2.1 2.8 ns

tRASU 3.0 3.9 5.2 ns

tRAH 0.1 0.1 0.2 ns

tWO 1.5 2.0 2.6 ns

tDD 1.5 2.0 2.6 ns

tEABOUT 0.2 0.3 0.3 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.7 3.5 4.7 ns
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Table 55. EP1K100 Device Interconnect Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDIN2IOE 3.1 3.6 4.4 ns

tDIN2LE 0.3 0.4 0.5 ns

tDIN2DATA 1.6 1.8 2.0 ns

tDCLK2IOE 0.8 1.1 1.4 ns

tDCLK2LE 0.3 0.4 0.5 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.5 2.5 3.4 ns

tSAMECOLUMN 0.4 1.0 1.6 ns

tDIFFROW 1.9 3.5 5.0 ns

tTWOROWS 3.4 6.0 8.4 ns

tLEPERIPH 4.3 5.4 6.5 ns

tLABCARRY 0.5 0.7 0.9 ns

tLABCASC 0.8 1.0 1.4 ns

Table 56. EP1K100 External Timing Parameters Notes (1), (2)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDRR 9.0 12.0 16.0 ns

tINSU (3) 2.0 2.5 3.3 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0 5.2 2.0 6.9 2.0 9.1 ns

tINSU (4) 2.0 2.2 – ns

tINH (4) 0.0 0.0 – ns

tOUTCO (4) 0.5 3.0 0.5 4.6 – – ns

tPCISU 3.0 6.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 6.9 – – ns
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Notes to tables:
(1) All timing parameters are described in Tables 22 through 29 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Power 
Consumption

The supply power (P) for ACEX 1K devices can be calculated with the 
following equation:

P = PINT + PIO = (ICCSTANDBY + ICCACTIVE) × VCC + PIO

The ICCACTIVE value depends on the switching frequency and the 
application logic. This value is calculated based on the amount of current 
that each LE typically consumes. The PIO value, which depends on the 
device output load characteristics and switching frequency, can be 
calculated using the guidelines given in Application Note 74 (Evaluating 
Power for Altera Devices).

1 Compared to the rest of the device, the embedded array 
consumes a negligible amount of power. Therefore, the 
embedded array can be ignored when calculating supply 
current.

Table 57. EP1K100 External Bidirectional Timing Parameters Notes (1), (2)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSUBIDIR (3) 1.7 2.5 3.3 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 2.0 2.8 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 5.2 2.0 6.9 2.0 9.1 ns

tXZBIDIR (3) 5.6 7.5 10.1 ns

tZXBIDIR (3) 5.6 7.5  10.1 ns

tOUTCOBIDIR (4) 0.5 3.0 0.5 4.6 – – ns

tXZBIDIR (4) 4.6 6.5 – ns

tZXBIDIR (4) 4.6  6.5 – ns
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