

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	624
Number of Logic Elements/Cells	4992
Total RAM Bits	49152
Number of I/O	147
Number of Gates	257000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep1k100qc208-3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

...and More Features

- -1 speed grade devices are compliant with *PCI Local Bus Specification, Revision 2.2* for 5.0-V operation
- Built-in Joint Test Action Group (JTAG) boundary-scan test (BST) circuitry compliant with IEEE Std. 1149.1-1990, available without consuming additional device logic.
- Operate with a 2.5-V internal supply voltage
- In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port
- ClockLock™ and ClockBoost™ options for reduced clock delay, clock skew, and clock multiplication
- Built-in, low-skew clock distribution trees
- 100% functional testing of all devices; test vectors or scan chains are not required
- Pull-up on I/O pins before and during configuration

■ Flexible interconnect

- FastTrack® Interconnect continuous routing structure for fast, predictable interconnect delays
- Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
- Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
- Tri-state emulation that implements internal tri-state buses
- Up to six global clock signals and four global clear signals

Powerful I/O pins

- Individual tri-state output enable control for each pin
- Open-drain option on each I/O pin
- Programmable output slew-rate control to reduce switching noise
- Clamp to V_{CCIO} user-selectable on a pin-by-pin basis
- Supports hot-socketing

Table 5 shows ACEX 1K device performance for more complex designs. These designs are available as Altera MegaCore $^{\rm TM}$ functions.

Table 5. ACEX 1K Device Performance for Compl	ex Design	s			
Application	LEs		Perform	ance	
	Used		Speed Grade	!	Units
	·	-1	-2	-3	
16-bit, 8-tap parallel finite impulse response (FIR) filter	597	192	156	116	MSPS
8-bit, 512-point Fast Fourier transform (FFT)	1,854	23.4	28.7	38.9	μs
function		113	92	68	MHz
a16450 universal asynchronous receiver/transmitter (UART)	342	36	28	20.5	MHz

Each ACEX 1K device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and data-transformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device.

ACEX 1K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers EPC16, EPC2, EPC1, and EPC1441 configuration devices, which configure ACEX 1K devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera MasterBlaster $^{\text{TM}}$, ByteBlasterMV $^{\text{TM}}$, or BitBlaster $^{\text{TM}}$ download cables. After an ACEX 1K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 40 ms, real-time changes can be made during system operation.

ACEX 1K devices contain an interface that permits microprocessors to configure ACEX 1K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat an ACEX 1K device as memory and configure it by writing to a virtual memory location, simplifying device reconfiguration.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the ACEX 1K architecture to efficiently implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the compiler during design processing, or manually by the designer during design entry. Parameterized functions, such as LPM and DesignWare functions, automatically take advantage of carry chains.

Carry chains longer than eight LEs are automatically implemented by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the first LE of the third LAB in the row. The carry chain does not cross the EAB at the middle of the row. For instance, in the EP1K50 device, the carry chain stops at the eighteenth LAB, and a new carry chain begins at the nineteenth LAB.

Figure 9 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal.

LE Operating Modes

The ACEX 1K LE can operate in the following four modes:

- Normal mode
- Arithmetic mode
- Up/down counter mode
- Clearable counter mode

Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs.

Figure 11 shows the ACEX 1K LE operating modes.

FastTrack Interconnect Routing Structure

In the ACEX 1K architecture, connections between LEs, EABs, and device I/O pins are provided by the FastTrack Interconnect routing structure, which is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect. The row interconnect can drive I/O pins and feed other LABs in the row. The column interconnect routes signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row signal is buffered at every LAB or EAB to reduce the effect of fan-out on delay. A row channel can be driven by an LE or by one of three column channels. These four signals feed dual 4-to-1 multiplexers that connect to two specific row channels. These multiplexers, which are connected to each LE, allow column channels to drive row channels even when all eight LEs in a LAB drive the row interconnect.

Each column of LABs or EABs is served by a dedicated column interconnect. The column interconnect that serves the EABs has twice as many channels as other column interconnects. The column interconnect can then drive I/O pins or another row's interconnect to route the signals to other LABs or EABs in the device. A signal from the column interconnect, which can be either the output of a LE or an input from an I/O pin, must be routed to the row interconnect before it can enter a LAB or EAB. Each row channel that is driven by an IOE or EAB can drive one specific column channel.

Access to row and column channels can be switched between LEs in adjacent pairs of LABs. For example, a LE in one LAB can drive the row and column channels normally driven by a particular LE in the adjacent LAB in the same row, and vice versa. This flexibility enables routing resources to be used more efficiently. Figure 13 shows the ACEX 1K LAB.

For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row.

Table 6 summarizes the FastTrack Interconnect routing structure resources available in each ACEX 1K device.

Table 6. ACEX 1	Table 6. ACEX 1K FastTrack Interconnect Resources										
Device	Rows	Channels per Row	Columns	Channels per Column							
EP1K10	3	144	24	24							
EP1K30	6	216	36	24							
EP1K50	10	216	36	24							
EP1K100	12	312	52	24							

In addition to general-purpose I/O pins, ACEX 1K devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output-enable and clock-enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device.

Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3.

See Figure 17 for details. I/O Element (IOE) IOF IIOF IOE IOE IOE IOE Row LAB LAB See Figure 16 I AR Interconnect Α1 A2 АЗ for details. Column ►To LAB A5 Interconnect ►To LAB A4 IOE IOE LAB LAB I AR Cascade & B1 R2 В3 Carry Chains To LAB B5 ►To LAB B4 IOE IOE IOE

Figure 14. ACEX 1K Interconnect Resources

I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast setup time or as an output register for data that requires fast clock-to-output performance. In some cases, using an LE register for an input register will result in a faster setup time than using an IOE register. IOEs can be used as input, output, or bidirectional pins. The compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. For bidirectional registered I/O implementation, the output register should be in the IOE and the data input and output enable registers should be LE registers placed adjacent to the bidirectional pin. Figure 15 shows the bidirectional I/O registers.

Tables 11 and 12 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively.

Table 11.	ClockLock & ClockBoost Parameters for -1	Speed-Grade De	vices			
Symbol	Parameter	Condition	Min	Тур	Max	Unit
t_R	Input rise time				5	ns
t_{F}	Input fall time				5	ns
t_{INDUTY}	Input duty cycle		40		60	%
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		180	MHz
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		90	MHz
f _{CLKDEV}	Input deviation from user specification in the Altera software (1)				25,000 <i>(</i> 2 <i>)</i>	PPM
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs
t _{JITTER}	Jitter on ClockLock or ClockBoost-	t _{INCLKSTB} <100			250 (4)	ps
	generated clock (4)	$t_{INCLKSTB} < 50$			200 (4)	ps
t _{OUTDUTY}	Duty cycle for ClockLock or ClockBoost- generated clock		40	50	60	%

Table 12.	ClockLock & ClockBoost Parameters for -2	? Speed-Grade De	vices			
Symbol	Parameter	Condition	Min	Тур	Max	Unit
t_R	Input rise time				5	ns
t_{\digamma}	Input fall time				5	ns
t _{INDUTY}	Input duty cycle		40		60	%
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		80	MHz
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		40	MHz
f _{CLKDEV}	Input deviation from user specification in the software (1)				25,000	PPM
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs
t _{JITTER}	Jitter on ClockLock or ClockBoost-	$t_{INCLKSTB}$ < 100			250 <i>(4)</i>	ps
	generated clock (4)	t _{INCLKSTB} < 50			200 (4)	ps
toutduty	Duty cycle for ClockLock or ClockBoost- generated clock		40	50	60	%

Notes to tables:

- (1) To implement the ClockLock and ClockBoost circuitry with the Altera software, designers must specify the input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration.
- (4) The t_{IITTER} specification is measured under long-term observation. The maximum value for t_{IITTER} is 200 ps if $t_{INCLKSTB}$ is lower than 50 ps.

I/O Configuration

This section discusses the PCI pull-up clamping diode option, slew-rate control, open-drain output option, and MultiVolt I/O interface for ACEX 1K devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via Altera software logic options. The MultiVolt I/O interface is controlled by connecting $V_{\rm CCIO}$ to a different voltage than $V_{\rm CCINT}$. Its effect can be simulated in the Altera software via the **Global Project Device Options** dialog box (Assign menu).

The VCCINT pins must always be connected to a 2.5-V power supply. With a 2.5-V $V_{\rm CCINT}$ level, input voltages are compatible with 2.5-V, 3.3-V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels higher than 3.0 V achieve a faster timing delay of t_{OD2} instead of t_{OD1} .

Table 13 summarizes ACEX 1K MultiVolt I/O support.

Table 13. ACEX 1	K MultiVo	It I/O Supp	oort			
V _{CCIO} (V)	Inp	out Signal	(V)	Out	put Signal	(V)
	2.5	3.3	5.0	2.5	3.3	5.0
2.5	✓	√ (1)	√ (1)	✓		
3.3	✓	✓	√ (1)	√ (2)	✓	✓

Notes:

- (1) The PCI clamping diode must be disabled on an input which is driven with a voltage higher than $V_{\rm CCIO}$.
- (2) When $V_{\rm CCIO}$ = 3.3 V, an ACEX 1K device can drive a 2.5-V device that has 3.3-V tolerant inputs.

Open-drain output pins on ACEX 1K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a higher V_{IH} than LVTTL. When the open-drain pin is active, it will drive low. When the pin is inactive, the resistor will pull up the trace to 5.0 V, thereby meeting the CMOS V_{OH} requirement. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor.

Power Sequencing & Hot-Socketing

Because ACEX 1K devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order.

Signals can be driven into ACEX 1K devices before and during power up without damaging the device. Additionally, ACEX 1K devices do not drive out during power up. Once operating conditions are reached, ACEX 1K devices operate as specified by the user.

Table 2	1. ACEX 1K Device Capacitan	ce Note (14)			
Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial- and extended-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V.
- (7) These values are specified under the ACEX 1K Recommended Operating Conditions shown in Table 19 on page 46.
- (8) The ACEX 1K input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22.
- The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (11) This value is specified for normal device operation. The value may vary during power-up.
- (12) This parameter applies to -1 speed grade commercial temperature devices and -2 speed grade industrial and extended temperature devices.
- (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source.
- (14) Capacitance is sample-tested only.

Figure 22 shows the required relationship between V_{CCIO} and V_{CCINT} to satisfy 3.3-V PCI compliance.

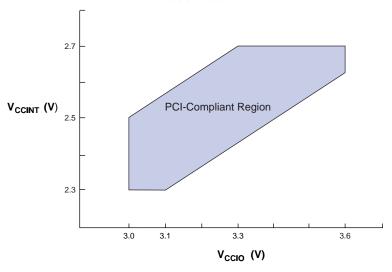


Figure 22. Relationship between V_{CCIO} & V_{CCINT} for 3.3-V PCI Compliance

Figure 23 shows the typical output drive characteristics of ACEX 1K devices with 3.3-V and 2.5-V $V_{\rm CCIO}$. The output driver is compliant to the 3.3-V *PCI Local Bus Specification, Revision 2.2* (when VCCIO pins are connected to 3.3 V). ACEX 1K devices with a -1 speed grade also comply with the drive strength requirements of the *PCI Local Bus Specification, Revision 2.2* (when VCCINT pins are powered with a minimum supply of 2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices can be used in open 5.0-V PCI systems.

Table 25. EAL	B Timing Macroparameters Notes (1), (6)	
Symbol	Parameter	Conditions
t _{EABAA}	EAB address access delay	
t _{EABRCCOMB}	EAB asynchronous read cycle time	
t _{EABRCREG}	EAB synchronous read cycle time	
t _{EABWP}	EAB write pulse width	
t _{EABWCCOMB}	EAB asynchronous write cycle time	
t _{EABWCREG}	EAB synchronous write cycle time	
t_{EABDD}	EAB data-in to data-out valid delay	
t _{EABDATACO}	EAB clock-to-output delay when using output registers	
t _{EABDATASU}	EAB data/address setup time before clock when using input register	
t _{EABDATAH}	EAB data/address hold time after clock when using input register	
t _{EABWESU}	EAB WE setup time before clock when using input register	
t _{EABWEH}	EAB WE hold time after clock when using input register	
t _{EABWDSU}	EAB data setup time before falling edge of write pulse when not using input registers	
t _{EABWDH}	EAB data hold time after falling edge of write pulse when not using input registers	
t _{EABWASU}	EAB address setup time before rising edge of write pulse when not using input registers	
t _{EABWAH}	EAB address hold time after falling edge of write pulse when not using input registers	
t _{EABWO}	EAB write enable to data output valid delay	

Symbol	Speed Grade							
	-1		-2		-3			
	Min	Max	Min	Max	Min	Max		
t _{EABDATA1}		1.7		2.0		2.3	ns	
t _{EABDATA1}		0.6		0.7		0.8	ns	
t _{EABWE1}		1.1		1.3		1.4	ns	
t _{EABWE2}		0.4		0.4		0.5	ns	
t _{EABRE1}		0.8		0.9		1.0	ns	
t _{EABRE2}		0.4		0.4		0.5	ns	
t _{EABCLK}		0.0		0.0		0.0	ns	
t _{EABCO}		0.3		0.3		0.4	ns	
t _{EABBYPASS}		0.5		0.6		0.7	ns	
t _{EABSU}	0.9		1.0		1.2		ns	
t _{EABH}	0.4		0.4		0.5		ns	
t _{EABCLR}	0.3		0.3		0.3		ns	
t_{AA}		3.2		3.8		4.4	ns	
t_{WP}	2.5		2.9		3.3		ns	
t_{RP}	0.9		1.1		1.2		ns	
t _{WDSU}	0.9		1.0		1.1		ns	
t_{WDH}	0.1		0.1		0.1		ns	
t _{WASU}	1.7		2.0		2.3		ns	
t _{WAH}	1.8		2.1		2.4		ns	
t _{RASU}	3.1		3.7		4.2		ns	
t _{RAH}	0.2		0.2		0.2		ns	
t_{WO}		2.5		2.9		3.3	ns	
t_{DD}		2.5		2.9		3.3	ns	
t _{EABOUT}		0.5		0.6		0.7	ns	
t _{EABCH}	1.5		2.0		2.3		ns	
t _{EABCL}	2.5		2.9		3.3		ns	

ACEX 1K Programmable Logic Device Family Data Sheet

Symbol			Speed	l Grade			Unit	
	-1		-2		-3			
	Min	Max	Min	Max	Min	Max		
t _{EABAA}		6.4		7.6		8.8	ns	
t _{EABRCOMB}	6.4		7.6		8.8		ns	
t _{EABRCREG}	4.4		5.1		6.0		ns	
t _{EABWP}	2.5		2.9		3.3		ns	
t _{EABWCOMB}	6.0		7.0		8.0		ns	
t _{EABWCREG}	6.8		7.8		9.0		ns	
t _{EABDD}		5.7		6.7		7.7	ns	
t _{EABDATA} CO		0.8		0.9		1.1	ns	
t _{EABDATASU}	1.5		1.7		2.0		ns	
t _{EABDATAH}	0.0		0.0		0.0		ns	
t _{EABWESU}	1.3		1.4		1.7		ns	
t _{EABWEH}	0.0		0.0		0.0		ns	
t _{EABWDSU}	1.5		1.7		2.0		ns	
t _{EABWDH}	0.0		0.0		0.0		ns	
t _{EABWASU}	3.0		3.6		4.3		ns	
t _{EABWAH}	0.5		0.5		0.4		ns	
t _{EABWO}		5.1		6.0		6.8	ns	

Table 43. EP1K30 External Bidirectional Timing Parameters Notes (1), (2)							
Symbol		Unit					
	_	1	-	2	_	3	
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (3)	2.8		3.9		5.2		ns
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns
t _{INSUBIDIR} (4)	3.8		4.9		-		ns
t _{INHBIDIR} (4)	0.0		0.0		-		ns
toutcobidir (3)	2.0	4.9	2.0	5.9	2.0	7.6	ns
t _{XZBIDIR} (3)		6.1		7.5		9.7	ns
t _{ZXBIDIR} (3)		6.1		7.5		9.7	ns
toutcobidir (4)	0.5	3.9	0.5	4.9	-	-	ns
t _{XZBIDIR} (4)		5.1		6.5		-	ns
t _{ZXBIDIR} (4)		5.1		6.5		_	ns

Notes to tables:

- (1) All timing parameters are described in Tables 22 through 29 in this data sheet.
- (2) These parameters are specified by characterization.
- (3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
- (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 44 through 50 show EP1K50 device external timing parameters.

Symbol			Speed	Grade			Unit	
	_	1	-2		-3			
	Min	Max	Min	Max	Min	Max		
t_{LUT}		0.6		0.8		1.1	ns	
t _{CLUT}		0.5		0.6		0.8	ns	
t _{RLUT}		0.6		0.7		0.9	ns	
t _{PACKED}		0.2		0.3		0.4	ns	
t_{EN}		0.6		0.7		0.9	ns	
t _{CICO}		0.1		0.1		0.1	ns	
t _{CGEN}		0.4		0.5		0.6	ns	
t _{CGENR}		0.1		0.1		0.1	ns	
CASC		0.5		0.8		1.0	ns	
$t_{\rm C}$		0.5		0.6		0.8	ns	

Symbol	Speed Grade							
	-	-1		2	-3			
	Min	Max	Min	Max	Min	Max		
t_{CO}		0.6		0.6		0.7	ns	
t _{COMB}		0.3		0.4		0.5	ns	
t _{SU}	0.5		0.6		0.7		ns	
t_H	0.5		0.6		0.8		ns	
t _{PRE}		0.4		0.5		0.7	ns	
t _{CLR}		0.8		1.0		1.2	ns	
t _{CH}	2.0		2.5		3.0		ns	
t_{CL}	2.0		2.5		3.0		ns	

Symbol	Speed Grade							
	-1		-2		-3			
	Min	Max	Min	Max	Min	Max		
t_{IOD}		1.3		1.3		1.9	ns	
t _{IOC}		0.3		0.4		0.4	ns	
t _{IOCO}		1.7		2.1		2.6	ns	
t _{IOCOMB}		0.5		0.6		0.8	ns	
t _{IOSU}	0.8		1.0		1.3		ns	
t _{IOH}	0.4		0.5		0.6		ns	
t _{IOCLR}		0.2		0.2		0.4	ns	
t _{OD1}		1.2		1.2		1.9	ns	
t _{OD2}		0.7		0.8		1.7	ns	
t _{OD3}		2.7		3.0		4.3	ns	
t_{XZ}		4.7		5.7		7.5	ns	
t_{ZX1}		4.7		5.7		7.5	ns	
t_{ZX2}		4.2		5.3		7.3	ns	
t_{ZX3}		6.2		7.5		9.9	ns	
t _{INREG}		3.5		4.2		5.6	ns	
t _{IOFD}		1.1		1.3		1.8	ns	
t _{INCOMB}		1.1		1.3		1.8	ns	

Symbol	Speed Grade								
	-1		-2		-3				
	Min	Max	Min	Max	Min	Max			
t _{EABDATA1}		1.5		2.0		2.6	ns		
t _{EABDATA1}		0.0		0.0		0.0	ns		
t _{EABWE1}		1.5		2.0		2.6	ns		
t _{EABWE2}		0.3		0.4		0.5	ns		
t _{EABRE1}		0.3		0.4		0.5	ns		
t _{EABRE2}		0.0		0.0		0.0	ns		
t _{EABCLK}		0.0		0.0		0.0	ns		
t _{EABCO}		0.3		0.4		0.5	ns		
t _{EABBYPASS}		0.1		0.1		0.2	ns		
t _{EABSU}	0.8		1.0		1.4		ns		
t _{EABH}	0.1		0.1		0.2		ns		
t _{EABCLR}	0.3		0.4		0.5		ns		
t_{AA}		4.0		5.1		6.6	ns		
t_{WP}	2.7		3.5		4.7		ns		
t _{RP}	1.0		1.3		1.7		ns		
t _{WDSU}	1.0		1.3		1.7		ns		
t_{WDH}	0.2		0.2		0.3		ns		
t _{WASU}	1.6		2.1		2.8		ns		
t _{WAH}	1.6		2.1		2.8		ns		
t _{RASU}	3.0		3.9		5.2		ns		
t _{RAH}	0.1		0.1		0.2		ns		
t_{WO}		1.5		2.0		2.6	ns		
t_{DD}		1.5		2.0		2.6	ns		
t _{EABOUT}		0.2		0.3		0.3	ns		
t _{EABCH}	1.5		2.0		2.5		ns		
t _{EABCL}	2.7		3.5		4.7		ns		

Symbol	Speed Grade								
	-1		-2		-3				
	Min	Max	Min	Max	Min	Max			
t _{DIN2IOE}		3.1		3.6		4.4	ns		
t _{DIN2LE}		0.3		0.4		0.5	ns		
t _{DIN2DATA}		1.6		1.8		2.0	ns		
t _{DCLK2IOE}		0.8		1.1		1.4	ns		
t _{DCLK2LE}		0.3		0.4		0.5	ns		
t _{SAMELAB}		0.1		0.1		0.2	ns		
t _{SAMEROW}		1.5		2.5		3.4	ns		
t _{SAME} COLUMN		0.4		1.0		1.6	ns		
t _{DIFFROW}		1.9		3.5		5.0	ns		
t _{TWOROWS}		3.4		6.0		8.4	ns		
t _{LEPERIPH}		4.3		5.4		6.5	ns		
t _{LABCARRY}		0.5		0.7		0.9	ns		
t _{LABCASC}		0.8		1.0		1.4	ns		

Table 56. EP1K10	0 External T	iming Paran	neters N	otes (1), (2)			
Symbol		Unit					
		-1		2	-3		
	Min	Max	Min	Max	Min	Max	
t _{DRR}		9.0		12.0		16.0	ns
t _{INSU} (3)	2.0		2.5		3.3		ns
t _{INH} (3)	0.0		0.0		0.0		ns
t _{оитсо} (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns
t _{INSU} (4)	2.0		2.2		_		ns
t _{INH} (4)	0.0		0.0		_		ns
t _{OUTCO} (4)	0.5	3.0	0.5	4.6	_	_	ns
t _{PCISU}	3.0		6.2		_		ns
t _{PCIH}	0.0		0.0		_		ns
t _{PCICO}	2.0	6.0	2.0	6.9	_	_	ns

Symbol	Speed Grade							
	-1		-2		-3			
	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR} (3)	1.7		2.5		3.3		ns	
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns	
t _{INSUBIDIR} (4)	2.0		2.8		-		ns	
t _{INHBIDIR} (4)	0.0		0.0		-		ns	
toutcobidir (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns	
t _{XZBIDIR} (3)		5.6		7.5		10.1	ns	
t _{ZXBIDIR} (3)		5.6		7.5		10.1	ns	
toutcobidir (4)	0.5	3.0	0.5	4.6	-	-	ns	
t _{XZBIDIR} (4)		4.6		6.5		-	ns	
t _{ZXBIDIR} (4)		4.6		6.5		_	ns	

Notes to tables:

- (1) All timing parameters are described in Tables 22 through 29 in this data sheet.
- (2) These parameters are specified by characterization.
- (3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
- (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Power Consumption

The supply power (P) for ACEX 1K devices can be calculated with the following equation:

$$P = P_{INT} + P_{IO} = (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO}$$

The $I_{CCACTIVE}$ value depends on the switching frequency and the application logic. This value is calculated based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*.

Compared to the rest of the device, the embedded array consumes a negligible amount of power. Therefore, the embedded array can be ignored when calculating supply current.