

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	624
Number of Logic Elements/Cells	4992
Total RAM Bits	49152
Number of I/O	147
Number of Gates	257000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep1k100qi208-2n

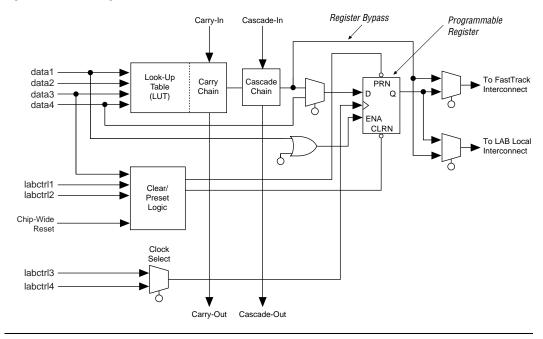
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

Altera® ACEX 1K devices provide a die-efficient, low-cost architecture by combining look-up table (LUT) architecture with EABs. LUT-based logic provides optimized performance and efficiency for data-path, register intensive, mathematical, or digital signal processing (DSP) designs, while EABs implement RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. These elements make ACEX 1K suitable for complex logic functions and memory functions such as digital signal processing, wide data-path manipulation, data transformation and microcontrollers, as required in high-performance communications applications. Based on reconfigurable CMOS SRAM elements, the ACEX 1K architecture incorporates all features necessary to implement common gate array megafunctions, along with a high pin count to enable an effective interface with system components. The advanced process and the low voltage requirement of the 2.5-V core allow ACEX 1K devices to meet the requirements of low-cost, high-volume applications ranging from DSL modems to low-cost switches.

The ability to reconfigure ACEX 1K devices enables complete testing prior to shipment and allows the designer to focus on simulation and design verification. ACEX 1K device reconfigurability eliminates inventory management for gate array designs and test vector generation for fault coverage.

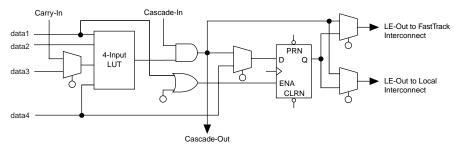

Table 4 shows ACEX 1K device performance for some common designs. All performance results were obtained with Synopsys DesignWare or LPM functions. Special design techniques are not required to implement the applications; the designer simply infers or instantiates a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file.

Application	Resources Used			Performa	Performance	
	LEs	EABs		Speed Grade		Units
			-1	-2	-3	
16-bit loadable counter	16	0	285	232	185	MHz
16-bit accumulator	16	0	285	232	185	MHz
16-to-1 multiplexer (1)	10	0	3.5	4.5	6.6	ns
16-bit multiplier with 3-stage pipeline(2)	592	0	156	131	93	MHz
256 × 16 RAM read cycle speed (2)	0	1	278	196	143	MHz
256 × 16 RAM write cycle speed (2)	0	1	185	143	111	MHz

Notes:

- This application uses combinatorial inputs and outputs.
- (2) This application uses registered inputs and outputs.

Figure 8. ACEX 1K Logic Element


The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock, clear, and preset control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the LUT's output drives the LE's output.

The LE has two outputs that drive the interconnect: one drives the local interconnect, and the other drives either the row or column FastTrack Interconnect routing structure. The two outputs can be controlled independently. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, can improve LE utilization because the register and the LUT can be used for unrelated functions.

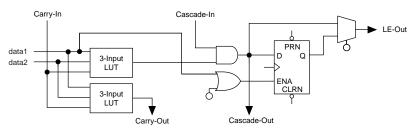
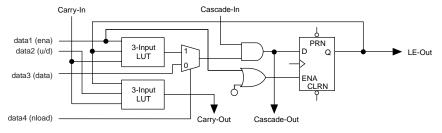
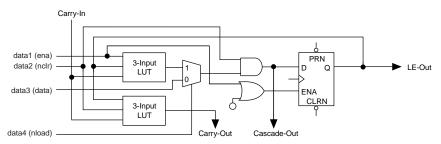
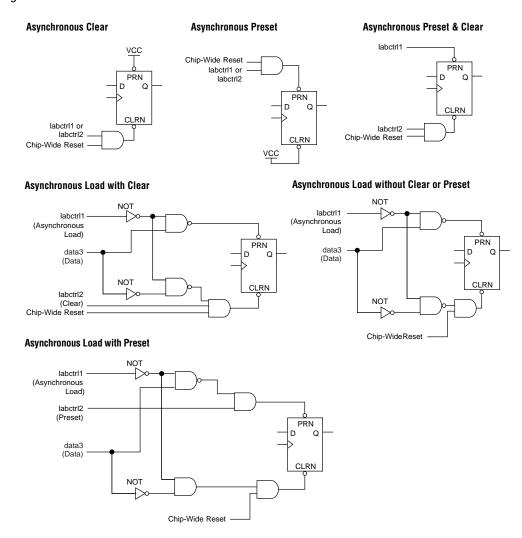

The ACEX 1K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. The carry chain supports high-speed counters and adders, and the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in a LAB and all LABs in the same row. Intensive use of carry and cascade chains can reduce routing flexibility. Therefore, the use of these chains should be limited to speed-critical portions of a design.

Figure 11. ACEX 1K LE Operating Modes


Normal Mode


Arithmetic Mode

Up/Down Counter Mode



Clearable Counter Mode

In addition to the six clear and preset modes, ACEX 1K devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality.

Figure 12. ACEX 1K LE Clear & Preset Modes

FastTrack Interconnect Routing Structure

In the ACEX 1K architecture, connections between LEs, EABs, and device I/O pins are provided by the FastTrack Interconnect routing structure, which is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect. The row interconnect can drive I/O pins and feed other LABs in the row. The column interconnect routes signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row signal is buffered at every LAB or EAB to reduce the effect of fan-out on delay. A row channel can be driven by an LE or by one of three column channels. These four signals feed dual 4-to-1 multiplexers that connect to two specific row channels. These multiplexers, which are connected to each LE, allow column channels to drive row channels even when all eight LEs in a LAB drive the row interconnect.

Each column of LABs or EABs is served by a dedicated column interconnect. The column interconnect that serves the EABs has twice as many channels as other column interconnects. The column interconnect can then drive I/O pins or another row's interconnect to route the signals to other LABs or EABs in the device. A signal from the column interconnect, which can be either the output of a LE or an input from an I/O pin, must be routed to the row interconnect before it can enter a LAB or EAB. Each row channel that is driven by an IOE or EAB can drive one specific column channel.

Access to row and column channels can be switched between LEs in adjacent pairs of LABs. For example, a LE in one LAB can drive the row and column channels normally driven by a particular LE in the adjacent LAB in the same row, and vice versa. This flexibility enables routing resources to be used more efficiently. Figure 13 shows the ACEX 1K LAB.

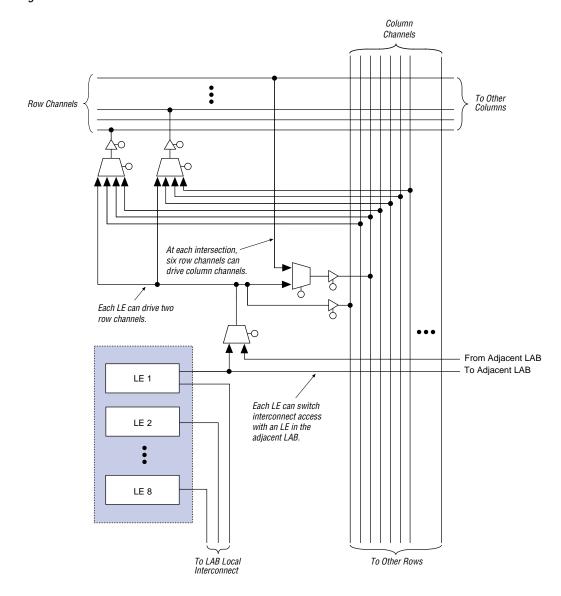


Figure 13. ACEX 1K LAB Connections to Row & Column Interconnect

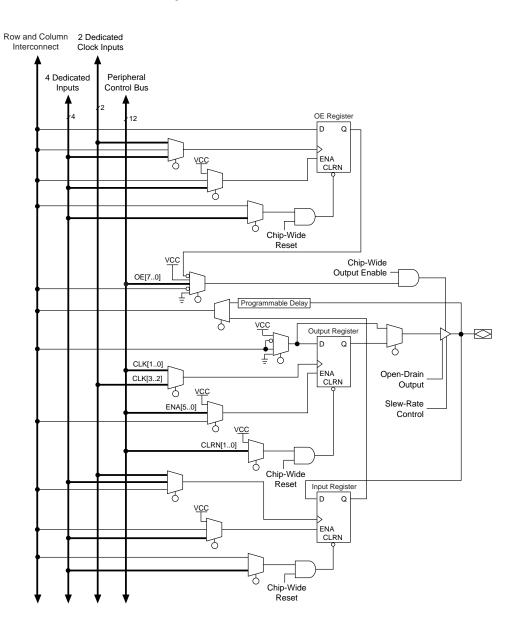

See Figure 17 for details. I/O Element (IOE) IOF IIOF IOE IOE IOE IOE Row LAB LAB See Figure 16 I AR Interconnect Α1 A2 АЗ for details. Column ►To LAB A5 Interconnect ►To LAB A4 IOE IOE LAB LAB I AR Cascade & B1 R2 В3 Carry Chains To LAB B5 ►To LAB B4 IOE IOE IOE

Figure 14. ACEX 1K Interconnect Resources

I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast setup time or as an output register for data that requires fast clock-to-output performance. In some cases, using an LE register for an input register will result in a faster setup time than using an IOE register. IOEs can be used as input, output, or bidirectional pins. The compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. For bidirectional registered I/O implementation, the output register should be in the IOE and the data input and output enable registers should be LE registers placed adjacent to the bidirectional pin. Figure 15 shows the bidirectional I/O registers.

Figure 15. ACEX 1K Bidirectional I/O Registers

Tables 11 and 12 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively.

Table 11.	ClockLock & ClockBoost Parameters for -1	Speed-Grade De	vices			
Symbol	Parameter	Condition	Min	Тур	Max	Unit
t_R	Input rise time				5	ns
t_{F}	Input fall time				5	ns
t_{INDUTY}	Input duty cycle		40		60	%
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		180	MHz
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		90	MHz
f _{CLKDEV}	Input deviation from user specification in the Altera software (1)				25,000 <i>(</i> 2 <i>)</i>	PPM
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs
t _{JITTER}	Jitter on ClockLock or ClockBoost-	t _{INCLKSTB} <100			250 (4)	ps
	generated clock (4)	$t_{INCLKSTB} < 50$			200 (4)	ps
t _{OUTDUTY}	Duty cycle for ClockLock or ClockBoost- generated clock		40	50	60	%

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All ACEX 1K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. ACEX 1K devices can also be configured using the JTAG pins through the ByteBlasterMV or BitBlaster download cable, or via hardware that uses the JamTM Standard Test and Programming Language (STAPL), JEDEC standard JESD-71. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. ACEX 1K devices support the JTAG instructions shown in Table 14.

Table 14. ACEX 1K J	TAG Instructions
JTAG Instruction	Description
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation and permits an initial data pattern to be output at the device pins.
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, allowing the BST data to pass synchronously through a selected device to adjacent devices during normal operation.
USERCODE	Selects the user electronic signature (USERCODE) register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
ICR Instructions	These instructions are used when configuring an ACEX 1K device via JTAG ports using a MasterBlaster, ByteBlasterMV, or BitBlaster download cable, or a Jam File (.jam) or Jam Byte-Code File (.jbc) via an embedded processor.

The instruction register length of ACEX 1K devices is 10 bits. The USERCODE register length in ACEX 1K devices is 32 bits; 7 bits are determined by the user, and 25 bits are pre-determined. Tables 15 and 16 show the boundary-scan register length and device IDCODE information for ACEX 1K devices.

Table 15. ACEX 1K Boundary-Scan Register Length					
Device	Boundary-Scan Register Length				
EP1K10	438				
EP1K30	690				
EP1K50	798				
EP1K100	1,050				

Table 16. 32-Bit I	DCODE for ACE	X 1K Devices Note (1)					
Device	IDCODE (32 Bits)						
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)			
EP1K10	0001	0001 0000 0001 0000	00001101110	1			
EP1K30	0001	0001 0000 0011 0000	00001101110	1			
EP1K50	0001	0001 0000 0101 0000	00001101110	1			
EP1K100	0010	0000 0001 0000 0000	00001101110	1			

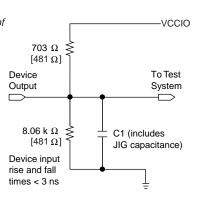
Notes to tables:

- (1) The most significant bit (MSB) is on the left.
- (2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

ACEX 1K devices include weak pull-up resistors on the JTAG pins.

For more information, see the following documents:

- Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- BitBlaster Serial Download Cable Data Sheet
- Jam Programming & Test Language Specification


Figure 20 shows the timing requirements for the JTAG signals.

Generic Testing

Each ACEX 1K device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for ACEX 1K devices are made under conditions equivalent to those shown in Figure 21. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 21. ACEX 1K AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices or outputs. Numbers without brackets are for 3.3-V devices or outputs.

Operating Conditions

Tables 18 through 21 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V ACEX 1K devices.

Table 1	8. ACEX 1K Device Absolute I	Maximum Ratings Note (1)			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	3.6	V
V _{CCIO}			-0.5	4.6	V
V _I	DC input voltage		-2.0	5.75	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	° C
T _{AMB}	Ambient temperature	Under bias	-65	135	° C
TJ	Junction temperature	PQFP, TQFP, and BGA packages, under bias		135	° C

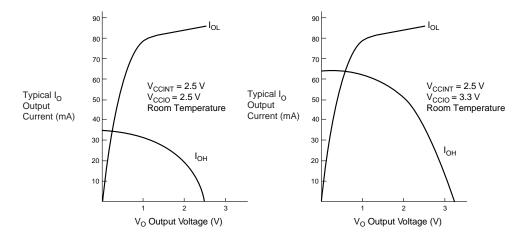


Figure 23. Output Drive Characteristics of ACEX 1K Devices

Timing Model

The continuous, high-performance FastTrack Interconnect routing resources ensure accurate simulation and timing analysis as well as predictable performance. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and, therefore, have an unpredictable performance.

Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:

- LE register clock-to-output delay (t_{CO})
- Interconnect delay (*t_{SAMEROW}*)
- LE look-up table delay (t_{LUT})
- LE register setup time (t_{SI})

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

Timing simulation and delay prediction are available with the simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis.

Table 26. Inte	erconnect Timing Microparameters Note (1)	
Symbol	Parameter	Conditions
t _{DIN2IOE}	Delay from dedicated input pin to IOE control input	(7)
t _{DIN2LE}	Delay from dedicated input pin to LE or EAB control input	(7)
t _{DIN2DATA}	Delay from dedicated input or clock to LE or EAB data	(7)
t _{DCLK2IOE}	Delay from dedicated clock pin to IOE clock	(7)
t _{DCLK2LE}	Delay from dedicated clock pin to LE or EAB clock	(7)
t _{SAMELAB}	Routing delay for an LE driving another LE in the same LAB	(7)
t _{SAMEROW}	Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the same row	(7)
t _{SAME} COLUMN	Routing delay for an LE driving an IOE in the same column	(7)
t _{DIFFROW}	Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different row	(7)
t _{TWOROWS}	Routing delay for a row IOE or EAB driving an LE or EAB in a different row	(7)
t _{LEPERIPH}	Routing delay for an LE driving a control signal of an IOE via the peripheral control bus	(7)
t _{LABCARRY}	Routing delay for the carry-out signal of an LE driving the carry-in signal of a different LE in a different LAB	
t _{LABCASC}	Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB	

Notes to tables:

- Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be measured explicitly.
- Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial and extended use in ACEX 1K devices
- Operating conditions: $V_{CCIO} = 2.5 \text{ V} \pm 5\%$ for commercial or industrial and extended use in ACEX 1K devices. Operating conditions: $V_{CCIO} = 2.5 \text{ V} \text{ or } 3.3 \text{ V}$. (3)
- (4)
- Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered.
- EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; these parameters are calculated by summing selected microparameters.
- These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance.

Symbol			Speed	Grade			Unit
	_	1	-	-2		3	
	Min	Max	Min	Max	Min	Max	
t_{IOD}		2.6		3.1		4.0	ns
t _{IOC}		0.3		0.4		0.5	ns
t _{IOCO}		0.9		1.0		1.4	ns
t _{IOCOMB}		0.0		0.0		0.0	ns
t _{IOSU}	1.3		1.5		2.0		ns
t _{IOH}	0.9		1.0		1.4		ns
t _{IOCLR}		1.1		1.3		1.7	ns
t _{OD1}		3.1		3.7		4.1	ns
t _{OD2}		2.6		3.3		3.9	ns
t _{OD3}		5.8		6.9		8.3	ns
t_{XZ}		3.8		4.5		5.9	ns
t_{ZX1}		3.8		4.5		5.9	ns
t_{ZX2}		3.3		4.1		5.7	ns
t_{ZX3}		6.5		7.7		10.1	ns
t _{INREG}		3.7		4.3		5.7	ns
t _{IOFD}		0.9		1.0		1.4	ns
t _{INCOMB}		1.9		2.3		3.0	ns

Symbol	Speed Grade							
	-	1	-:	-2		3	1	
	Min	Max	Min	Max	Min	Max		
t_{CO}		0.6		0.6		0.7	ns	
t _{COMB}		0.3		0.4		0.5	ns	
t _{SU}	0.5		0.6		0.7		ns	
t_H	0.5		0.6		0.8		ns	
t _{PRE}		0.4		0.5		0.7	ns	
t _{CLR}		0.8		1.0		1.2	ns	
t _{CH}	2.0		2.5		3.0		ns	
t_{CL}	2.0		2.5		3.0		ns	

Symbol		Speed Grade							
	-	1	-2		-3				
	Min	Max	Min	Max	Min	Max			
t_{IOD}		1.3		1.3		1.9	ns		
t _{IOC}		0.3		0.4		0.4	ns		
t _{IOCO}		1.7		2.1		2.6	ns		
t _{IOCOMB}		0.5		0.6		0.8	ns		
t _{IOSU}	0.8		1.0		1.3		ns		
t _{IOH}	0.4		0.5		0.6		ns		
t _{IOCLR}		0.2		0.2		0.4	ns		
t _{OD1}		1.2		1.2		1.9	ns		
t _{OD2}		0.7		0.8		1.7	ns		
t _{OD3}		2.7		3.0		4.3	ns		
t_{XZ}		4.7		5.7		7.5	ns		
t_{ZX1}		4.7		5.7		7.5	ns		
t_{ZX2}		4.2		5.3		7.3	ns		
t_{ZX3}		6.2		7.5		9.9	ns		
t _{INREG}		3.5		4.2		5.6	ns		
t _{IOFD}		1.1		1.3		1.8	ns		
t _{INCOMB}		1.1		1.3		1.8	ns		

Symbol	Speed Grade								
	-1		-2		-3				
	Min	Max	Min	Max	Min	Max			
t _{INSUBIDIR} (2)	2.7		3.2		4.3		ns		
t _{INHBIDIR} (2)	0.0		0.0		0.0		ns		
t _{INSUBIDIR} (3)	3.7		4.2		-		ns		
t _{INHBIDIR} (3)	0.0		0.0		-		ns		
toutcobidir (2)	2.0	4.5	2.0	5.2	2.0	7.3	ns		
t _{XZBIDIR} (2)		6.8		7.8		10.1	ns		
t _{ZXBIDIR} (2)		6.8		7.8		10.1	ns		
toutcobidir (3)	0.5	3.5	0.5	4.2	-	-			
t _{XZBIDIR} (3)		6.8		8.4		-	ns		
t _{ZXBIDIR} (3)		6.8		8.4		_	ns		

Notes to tables:

- All timing parameters are described in Tables 22 through 29. This parameter is measured without use of the ClockLock or ClockBoost circuits. (2)
- This parameter is measured with use of the ClockLock or ClockBoost circuits (3)

Tables 51 through 57 show EP1K100 device internal and external timing parameters.

Symbol	Speed Grade						
	-1		-2		-3		
	Min	Max	Min	Max	Min	Max	
t_{LUT}		0.7		1.0		1.5	ns
t _{CLUT}		0.5		0.7		0.9	ns
t _{RLUT}		0.6		0.8		1.1	ns
t _{PACKED}		0.3		0.4		0.5	ns
t _{EN}		0.2		0.3		0.3	ns
t _{CICO}		0.1		0.1		0.2	ns
t _{CGEN}		0.4		0.5		0.7	ns
t _{CGENR}		0.1		0.1		0.2	ns
t _{CASC}		0.6		0.9		1.2	ns
t_{C}		0.8		1.0		1.4	ns
t _{CO}		0.6		0.8		1.1	ns
t _{COMB}		0.4		0.5		0.7	ns
t _{SU}	0.4		0.6		0.7		ns
t_H	0.5		0.7		0.9		ns
t _{PRE}		0.8		1.0		1.4	ns
t _{CLR}		0.8		1.0		1.4	ns
t _{CH}	1.5		2.0		2.5		ns
t _{CL}	1.5		2.0		2.5		ns

Symbol	Speed Grade						
	-1		-2		-3		
	Min	Max	Min	Max	Min	Max	
t_{IOD}		1.7		2.0		2.6	ns
t _{IOC}		0.0		0.0		0.0	ns
t _{IOCO}		1.4		1.6		2.1	ns
t _{IOCOMB}		0.5		0.7		0.9	ns
t _{IOSU}	0.8		1.0		1.3		ns
t _{IOH}	0.7		0.9		1.2		ns
t _{IOCLR}		0.5		0.7		0.9	ns
t _{OD1}		3.0		4.2		5.6	ns
t _{OD2}		3.0		4.2		5.6	ns
t _{OD3}		4.0		5.5		7.3	ns
t_{XZ}		3.5		4.6		6.1	ns
t_{ZX1}		3.5		4.6		6.1	ns
t_{ZX2}		3.5		4.6		6.1	ns
t_{ZX3}		4.5		5.9		7.8	ns
t _{INREG}		2.0		2.6		3.5	ns
t _{IOFD}		0.5		0.8		1.2	ns
t _{INCOMB}		0.5		0.8		1.2	ns

The I_{CCACTIVE} value can be calculated with the following equation:

$$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} (\mu A)$$

Where:

f_{MAX} = Maximum operating frequency in MHzN = Total number of LEs used in the device

tog_{LC} = Average percent of LEs toggling at each clock

(typically 12.5%)

K = Constant

Table 58 provides the constant (K) values for ACEX 1K devices.

Table 58. ACEX 1K Constant Values						
Device	K Value					
EP1K10	4.5					
EP1K30	4.5					
EP1K50	4.5					
EP1K100	4.5					

This supply power calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant K in the power calculation equations) for continuous interconnect ACEX 1K devices assumes that LEs drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all LEs drive only one short interconnect segment. This assumption may lead to inaccurate results when compared to measured power consumption for actual designs in segmented FPGAs.

Figure 31 shows the relationship between the current and operating frequency of ACEX 1K devices. For information on other ACEX 1K devices, contact Altera Applications at (800) 800-EPLD.