
Altera - EP1K10FC256-2N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

D	eta	ails

Details	
Product Status	Active
Number of LABs/CLBs	72
Number of Logic Elements/Cells	576
Total RAM Bits	-
Number of I/O	136
Number of Gates	-
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-BBGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1k10fc256-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Software design support and automatic place-and-route provided by Altera development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations
- Flexible package options are available in 100 to 484 pins, including the innovative FineLine BGATM packages (see Tables 2 and 3)
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), DesignWare components, Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic

Table 2. ACEX 1K Package Options & I/O Pin Count Notes (1), (2)									
Device	100-Pin TQFP	144-Pin TQFP	208-Pin PQFP	256-Pin FineLine BGA	484-Pin FineLine BGA				
EP1K10	66	92	120	136	136 (3)				
EP1K30		102	147	171	171 (3)				
EP1K50		102	147	186	249				
EP1K100			147	186	333				

Notes:

 ACEX 1K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), and FineLine BGA packages.

(2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When planning device migration, use the I/O pins that are common to all devices.

(3) This option is supported with a 256-pin FineLine BGA package. By using SameFrameTM pin migration, all FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin and 484-pin FineLine BGA packages.

Table 3. ACEX 1K Package Sizes								
Device	100-Pin TQFP	144-Pin TQFP	208-Pin PQFP	256-Pin FineLine BGA	484-Pin FineLine BGA			
Pitch (mm)	0.50	0.50	0.50	1.0	1.0			
Area (mm ²)	256	484	936	289	529			
Length \times width (mm \times mm)	16×16	22 × 22	30.6 × 30.6	17 × 17	23 × 23			

Table 5 shows ACEX 1K device performance for more complex designs. These designs are available as Altera MegaCoreTM functions.

Table 5. ACEX 1K Device Performance for Complex Designs								
Application	LEs	Performance						
	Used		Speed Grade	Units				
		-1	-2	-3				
16-bit, 8-tap parallel finite impulse response (FIR) filter	597	192	156	116	MSPS			
8-bit, 512-point Fast Fourier transform (FFT)	1,854	23.4	28.7	38.9	μs			
function		113	92	68	MHz			
a16450 universal asynchronous receiver/transmitter (UART)	342	36	28	20.5	MHz			

Each ACEX 1K device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and datatransformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device.

ACEX 1K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers EPC16, EPC2, EPC1, and EPC1441 configuration devices, which configure ACEX 1K devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera MasterBlaster[™], ByteBlasterMV[™], or BitBlaster[™] download cables. After an ACEX 1K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 40 ms, real-time changes can be made during system operation.

ACEX 1K devices contain an interface that permits microprocessors to configure ACEX 1K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat an ACEX 1K device as memory and configure it by writing to a virtual memory location, simplifying device reconfiguration.

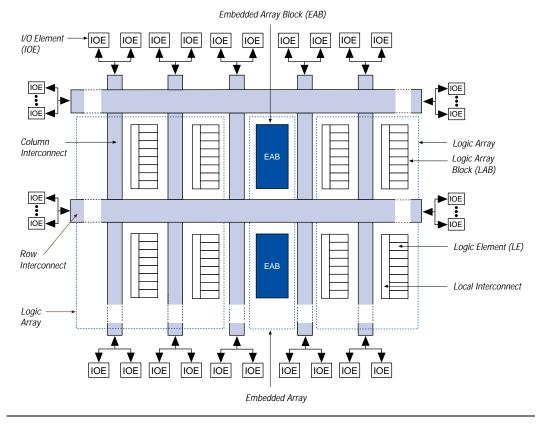
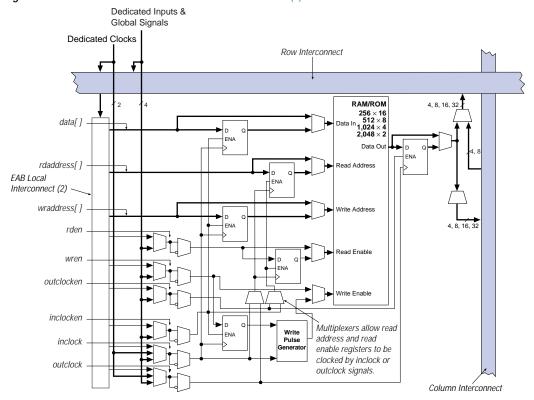
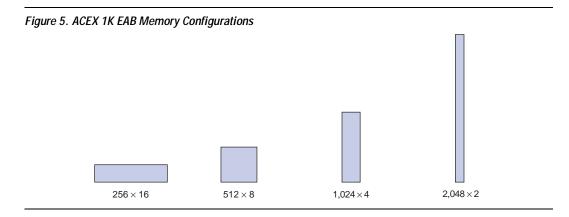



Figure 1. ACEX 1K Device Block Diagram

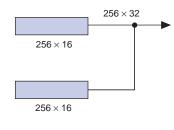
ACEX 1K devices provide six dedicated inputs that drive the flipflops' control inputs and ensure the efficient distribution of high-speed, low-skew (less than 1.0 ns) control signals. These signals use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect routing structure. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device.

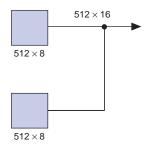
Figure 2. ACEX 1K Device in Dual-Port RAM Mode Note (1)

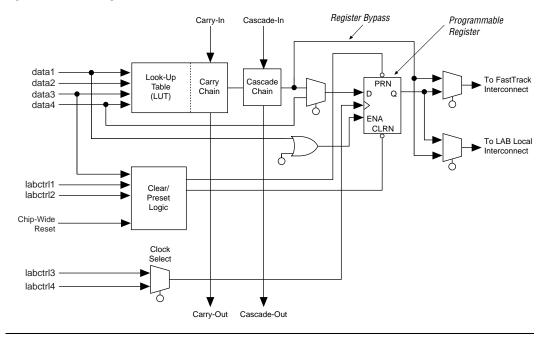

Notes:

- (1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
- (2) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB local interconnect channels.

The EAB can use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3. The ACEX 1K EAB can also be used in a single-port mode (see Figure 4).

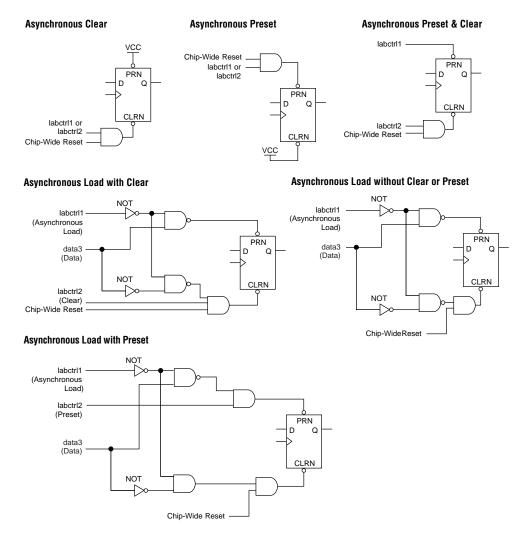

EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the write enable signal. In contrast, the EAB's synchronous RAM generates its own write enable signal and is self-timed with respect to the input or write clock. A circuit using the EAB's self-timed RAM must only meet the setup and hold time specifications of the global clock.


When used as RAM, each EAB can be configured in any of the following sizes: 256×16 ; 512×8 ; $1,024 \times 4$; or $2,048 \times 2$. Figure 5 shows the ACEX 1K EAB memory configurations.

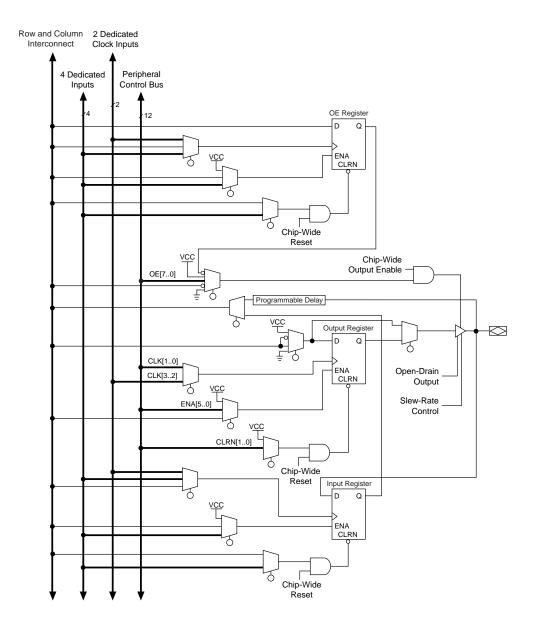


Larger blocks of RAM are created by combining multiple EABs. For example, two 256×16 RAM blocks can be combined to form a 256×32 block, and two 512×8 RAM blocks can be combined to form a 512×16 block. Figure 6 shows examples of multiple EAB combination.

Figure 6. Examples of Combining ACEX 1K EABs


Figure 8. ACEX 1K Logic Element

The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock, clear, and preset control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the LUT's output drives the LE's output.


The LE has two outputs that drive the interconnect: one drives the local interconnect, and the other drives either the row or column FastTrack Interconnect routing structure. The two outputs can be controlled independently. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, can improve LE utilization because the register and the LUT can be used for unrelated functions.

The ACEX 1K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. The carry chain supports highspeed counters and adders, and the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in a LAB and all LABs in the same row. Intensive use of carry and cascade chains can reduce routing flexibility. Therefore, the use of these chains should be limited to speed-critical portions of a design. In addition to the six clear and preset modes, ACEX 1K devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality.

Figure 15. ACEX 1K Bidirectional I/O Registers

For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to the GCLK1 pin. In the Altera software, the GCLK1 pin can feed both the ClockLock and ClockBoost circuitry in the ACEX 1K device. However, when both circuits are used, the other clock pin cannot be used.

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. Figure 19 shows the incoming and generated clock specifications.

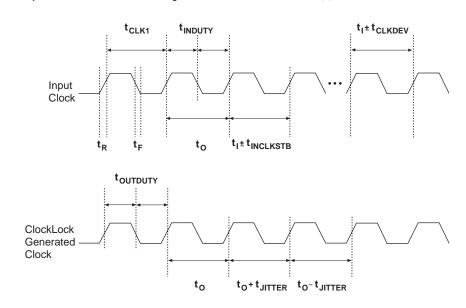


Figure 19. Specifications for the Incoming & Generated Clocks Note (1)

Note:

(1) The t_I parameter refers to the nominal input clock period; the t_O parameter refers to the nominal output clock period.

PCI Pull-Up Clamping Diode Option

ACEX 1K devices have a pull-up clamping diode on every I/O, dedicated input, and dedicated clock pin. PCI clamping diodes clamp the signal to the $V_{\rm CCIO}$ value and are required for 3.3-V PCI compliance. Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When V_{CCIO} is 3.3 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When V_{CCIO} is 2.5 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can be activated for a subset of pins, which allows a device to bridge between a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of 4.3 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate pin-by-pin or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects only the falling edge of the output.

Open-Drain Output Option

ACEX 1K devices provide an optional open-drain output (electrically equivalent to open-collector output) for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

MultiVolt I/O Interface

The ACEX 1K device architecture supports the MultiVolt I/O interface feature, which allows ACEX 1K devices in all packages to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All ACEX 1K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. ACEX 1K devices can also be configured using the JTAG pins through the ByteBlasterMV or BitBlaster download cable, or via hardware that uses the Jam[™] Standard Test and Programming Language (STAPL), JEDEC standard JESD-71. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. ACEX 1K devices support the JTAG instructions shown in Table 14.

Table 14. ACEX 1K JTAG Instructions					
JTAG Instruction	Description				
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation and permits an initial data pattern to be output at the device pins.				
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.				
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, allowing the BST data to pass synchronously through a selected device to adjacent devices during normal operation.				
USERCODE	Selects the user electronic signature (USERCODE) register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.				
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.				
ICR Instructions	These instructions are used when configuring an ACEX 1K device via JTAG ports using a MasterBlaster, ByteBlasterMV, or BitBlaster download cable, or a Jam File (.jam) or Jam Byte-Code File (.jbc) via an embedded processor.				

The instruction register length of ACEX 1K devices is 10 bits. The USERCODE register length in ACEX 1K devices is 32 bits; 7 bits are determined by the user, and 25 bits are pre-determined. Tables 15 and 16 show the boundary-scan register length and device IDCODE information for ACEX 1K devices.

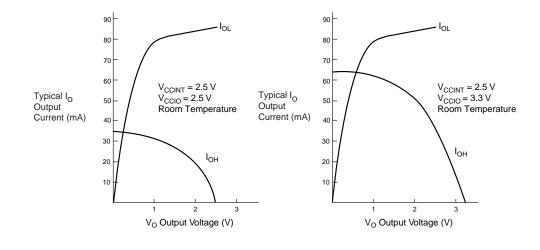
Table 15. ACEX 1K Boundary-Scan Register Length					
Device Boundary-Scan Register Length					
EP1K10	438				
EP1K30	690				
EP1K50	798				
EP1K100	1,050				

Table 16. 32-Bit IDCODE for ACEX 1K Devices Note (1)								
Device		IDCODE (32 Bits)						
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)				
EP1K10	0001	0001 0000 0001 0000	00001101110	1				
EP1K30	0001	0001 0000 0011 0000	00001101110	1				
EP1K50	0001	0001 0000 0101 0000	00001101110	1				
EP1K100	0010	0000 0001 0000 0000	00001101110	1				

Notes to tables:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.


ACEX 1K devices include weak pull-up resistors on the JTAG pins.

For more information, see the following documents:

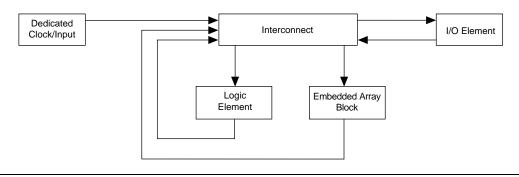
- Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- BitBlaster Serial Download Cable Data Sheet
- Jam Programming & Test Language Specification

Figure 20 shows the timing requirements for the JTAG signals.

Figure 23. Output Drive Characteristics of ACEX 1K Devices

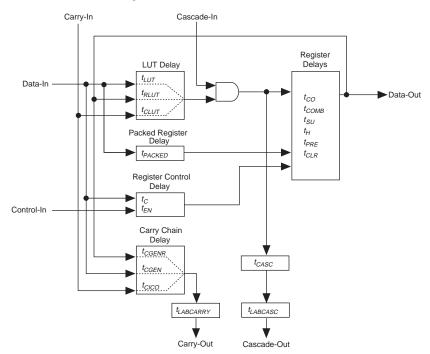
Timing Model

The continuous, high-performance FastTrack Interconnect routing resources ensure accurate simulation and timing analysis as well as predictable performance. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and, therefore, have an unpredictable performance.


Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:

- LE register clock-to-output delay (t_{CO})
- Interconnect delay (t_{SAMEROW})
- LE look-up table delay (t_{LUT})
- **LE** register setup time (t_{SU})

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.


Timing simulation and delay prediction are available with the simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis. Figure 24 shows the overall timing model, which maps the possible paths to and from the various elements of the ACEX 1K device.

Figures 25 through 28 show the delays that correspond to various paths and functions within the LE, IOE, EAB, and bidirectional timing models.

Figure 25. ACEX 1K Device LE Timing Model

ACEX 1K Programmable Logic Device Family Data Sheet

Symbol			Speed	Grade			Unit
	-	1	-	2	-	3	
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		2.3		2.7		3.6	ns
t _{DIN2LE}		0.8		1.1		1.4	ns
t _{DIN2DATA}		1.1		1.4		1.8	ns
t _{DCLK2IOE}		2.3		2.7		3.6	ns
t _{DCLK2LE}		0.8		1.1		1.4	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.8		2.1		2.9	ns
t _{SAME} COLUMN		0.3		0.4		0.7	ns
t _{DIFFROW}		2.1		2.5		3.6	ns
t _{TWOROWS}		3.9		4.6		6.5	ns
t _{LEPERIPH}		3.3		3.7		4.8	ns
t _{LABCARRY}		0.3		0.4		0.5	ns
t _{LABCASC}		0.9		1.0		1.4	ns

Table 35. EP1K10) External Ti	ming Param	eters No	te (1)			
Symbol			Speed	Grade			Unit
	-	·1	-	-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{DRR}		7.5		9.5		12.5	ns
t _{INSU} (2), (3)	2.4		2.7		3.6		ns
t _{INH} (2), (3)	0.0		0.0		0.0		ns
t_{оитсо (2), (3)}	2.0	6.6	2.0	7.8	2.0	9.6	ns
t _{INSU} (4), (3)	1.4		1.7		-		ns
t _{INH} (4), (3)	0.5	5.1	0.5	6.4	-	-	ns
t_{оитсо} (4), (3)	0.0		0.0		-		ns
t _{PCISU} (3)	3.0		4.2		6.4		ns
t _{PCIH} (3)	0.0		0.0		-		ns
t _{PCICO} (3)	2.0	6.0	2.0	7.5	2.0	10.2	ns

E.

ACEX 1K Programmable Logic Device Family Data Sheet

Symbol			Speed	Grade			Unit
	-	1	-	2	-	3	
	Min	Max	Min	Мах	Min	Мах	
t _{EABAA}		6.4		7.6		8.8	ns
t _{EABRCOMB}	6.4		7.6		8.8		ns
t _{EABRCREG}	4.4		5.1		6.0		ns
t _{EABWP}	2.5		2.9		3.3		ns
t _{EABWCOMB}	6.0		7.0		8.0		ns
t _{EABWCREG}	6.8		7.8		9.0		ns
t _{EABDD}		5.7		6.7		7.7	ns
t _{EABDATACO}		0.8		0.9		1.1	ns
t _{EABDATASU}	1.5		1.7		2.0		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	1.3		1.4		1.7		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.5		1.7		2.0		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.0		3.6		4.3		ns
t _{EABWAH}	0.5		0.5		0.4		ns
t _{EABWO}		5.1		6.0		6.8	ns

Table 43. EP1K30 External Bidirectional Timing Parameters Notes (1), (2)								
Symbol			Speed	Grade			Unit	
	-	1	-	2	-	3		
	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR} (3)	2.8		3.9		5.2		ns	
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns	
t _{INSUBIDIR} (4)	3.8		4.9		-		ns	
t _{INHBIDIR} (4)	0.0		0.0		-		ns	
t _{OUTCOBIDIR} (3)	2.0	4.9	2.0	5.9	2.0	7.6	ns	
t _{XZBIDIR} (3)		6.1		7.5		9.7	ns	
t _{ZXBIDIR} (3)		6.1		7.5		9.7	ns	
toutcobidir (4)	0.5	3.9	0.5	4.9	-	-	ns	
t _{XZBIDIR} (4)		5.1		6.5		-	ns	
t _{ZXBIDIR} (4)		5.1		6.5		-	ns	

Notes to tables:

(1) All timing parameters are described in Tables 22 through 29 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 44 through 50 show EP1K50 device external timing parameters.

Symbol	Speed Grade						Unit
	-1		-2		-3		
	Min	Max	Min	Мах	Min	Max	
t _{LUT}		0.6		0.8		1.1	ns
t _{CLUT}		0.5		0.6		0.8	ns
t _{RLUT}		0.6		0.7		0.9	ns
t _{PACKED}		0.2		0.3		0.4	ns
t _{EN}		0.6		0.7		0.9	ns
t _{CICO}		0.1		0.1		0.1	ns
t _{CGEN}		0.4		0.5		0.6	ns
t _{CGENR}		0.1		0.1		0.1	ns
tCASC		0.5		0.8		1.0	ns
t _C		0.5		0.6		0.8	ns

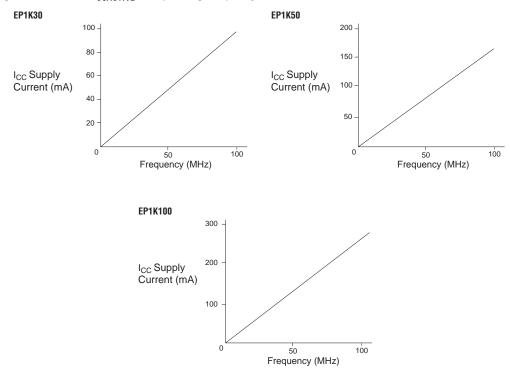


Figure 31. ACEX 1K I_{CCACTIVE} vs. Operating Frequency

Configuration & Operation

The ACEX 1K architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The ACEX 1K architecture uses SRAM configuration elements that require configuration data to be loaded every time the circuit powers up. The process of physically loading the SRAM data into the device is called *configuration*. Before configuration, as V_{CC} rises, the device initiates a Power-On Reset (POR). This POR event clears the device and prepares it for configuration. The ACEX 1K POR time does not exceed 50 µs.

When configuring with a configuration device, refer to the relevant configuration device data sheet for POR timing information.

During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. Before and during configuration, all I/O pins (except dedicated inputs, clock, or configuration pins) are pulled high by a weak pull-up resistor. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

SRAM configuration elements allow ACEX 1K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, re-initializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 40 ms and can be used to reconfigure an entire system dynamically. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for an ACEX 1K device can be loaded with one of five configuration schemes (see Table 59), chosen on the basis of the target application. An EPC16, EPC2, EPC1, or EPC1441 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of a ACEX 1K device, allowing automatic configuration on system power-up.

Multiple ACEX 1K devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Additional APEX 20K, APEX 20KE, FLEX 10K, FLEX 10KA, FLEX 10KE, ACEX 1K, and FLEX 6000 devices can be configured in the same serial chain.

Table 59. Data Sources for ACEX 1K Configuration					
Configuration Scheme	Data Source				
Configuration device	EPC16, EPC2, EPC1, or EPC1441 configuration device				
Passive serial (PS)	BitBlaster or ByteBlasterMV download cables, or serial data source				
Passive parallel asynchronous (PPA)	Parallel data source				
Passive parallel synchronous (PPS)	Parallel data source				
JTAG	BitBlaster or ByteBlasterMV download cables, or microprocessor with a Jam STAPL File or JBC File				

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Documentation Library* for pin-out information.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit_req@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes es to any products and services at any time without notice. Altera assumes no responsibility or liability

arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation

