
E·XFI

Altera - EP1K10QC208-2N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	;
---------	---

Details	
Product Status	Obsolete
Number of LABs/CLBs	72
Number of Logic Elements/Cells	576
Total RAM Bits	12288
Number of I/O	120
Number of Gates	56000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1k10qc208-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Software design support and automatic place-and-route provided by Altera development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations
- Flexible package options are available in 100 to 484 pins, including the innovative FineLine BGATM packages (see Tables 2 and 3)
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), DesignWare components, Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic

Table 2. ACEX 1K Package Options & I/O Pin Count Notes (1), (2)									
Device	100-Pin TQFP	144-Pin TQFP	208-Pin PQFP	256-Pin FineLine BGA	484-Pin FineLine BGA				
EP1K10	66	92	120	136	136 (3)				
EP1K30		102	147	171	171 (3)				
EP1K50		102	147	186	249				
EP1K100			147	186	333				

Notes:

 ACEX 1K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), and FineLine BGA packages.

(2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When planning device migration, use the I/O pins that are common to all devices.

(3) This option is supported with a 256-pin FineLine BGA package. By using SameFrameTM pin migration, all FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin and 484-pin FineLine BGA packages.

Table 3. ACEX 1K Package Sizes									
Device	100-Pin TQFP	144-Pin TQFP	208-Pin PQFP	256-Pin FineLine BGA	484-Pin FineLine BGA				
Pitch (mm)	0.50	0.50	0.50	1.0	1.0				
Area (mm ²)	256	484	936	289	529				
Length \times width (mm \times mm)	16×16	22 × 22	30.6 × 30.6	17 × 17	23 × 23				

The logic array consists of logic array blocks (LABs). Each LAB contains eight LEs and a local interconnect. An LE consists of a 4-input LUT, a programmable flipflop, and dedicated signal paths for carry and cascade functions. The eight LEs can be used to create medium-sized blocks of logic—such as 8-bit counters, address decoders, or state machines—or combined across LABs to create larger logic blocks. Each LAB represents about 96 usable logic gates.

Signal interconnections within ACEX 1K devices (as well as to and from device pins) are provided by the FastTrack Interconnect routing structure, which is a series of fast, continuous row and column channels that run the entire length and width of the device.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect routing structure. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an output or input register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. As inputs, they provide setup times as low as 1.1 ns and hold times of 0 ns. As outputs, these registers provide clock-to-output times as low as 2.5 ns. IOEs provide a variety of features, such as JTAG BST support, slew-rate control, tri-state buffers, and open-drain outputs.

Figure 1 shows a block diagram of the ACEX 1K device architecture. Each group of LEs is combined into an LAB; groups of LABs are arranged into rows and columns. Each row also contains a single EAB. The LABs and EABs are interconnected by the FastTrack Interconnect routing structure. IOEs are located at the end of each row and column of the FastTrack Interconnect routing structure.

Figure 3. ACEX 1K EAB in Dual-Port RAM Mode

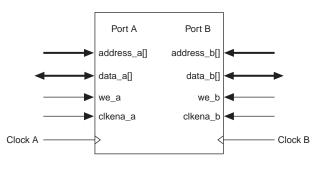
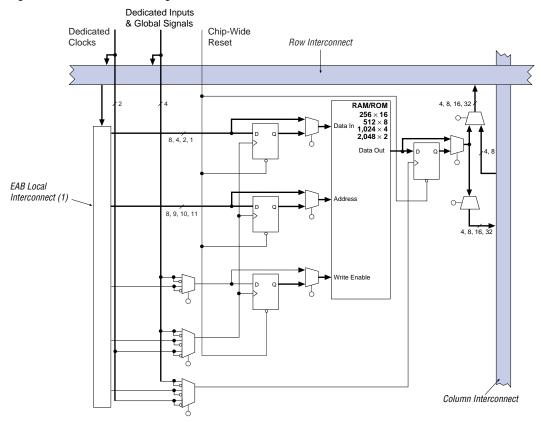



Figure 4. ACEX 1K Device in Single-Port RAM Mode

Note:

(1) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB local interconnect channels.

If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. Altera software automatically combines EABs to meet a designer's RAM specifications.

EABs provide flexible options for driving and controlling clock signals. Different clocks and clock enables can be used for reading and writing to the EAB. Registers can be independently inserted on the data input, EAB output, write address, write enable signals, read address, and read enable signals. The global signals and the EAB local interconnect can drive write-enable, read-enable, and clock-enable signals. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control write-enable, read-enable, clear, clock, and clock-enable signals.

An EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs (see Figures 2 and 4). The column interconnect, which is adjacent to the EAB, has twice as many channels as other columns in the device.

Logic Array Block

An LAB consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to the ACEX 1K architecture, facilitating efficient routing with optimum device utilization and high performance. Figure 7 shows the ACEX 1K LAB.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the ACEX 1K architecture to efficiently implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the compiler during design processing, or manually by the designer during design entry. Parameterized functions, such as LPM and DesignWare functions, automatically take advantage of carry chains.

Carry chains longer than eight LEs are automatically implemented by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from oddnumbered LAB to odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the first LE of the third LAB in the row. The carry chain does not cross the EAB at the middle of the row. For instance, in the EP1K50 device, the carry chain stops at the eighteenth LAB, and a new carry chain begins at the nineteenth LAB.

Figure 9 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal.

Cascade Chain

With the cascade chain, the ACEX 1K architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. With a delay as low as 0.6 ns per LE, each additional LE provides four more inputs to the effective width of a function. Cascade chain logic can be created automatically by the compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EP1K50 device, the cascade chain stops at the eighteenth LAB, and a new one begins at the nineteenth LAB). This break is due to the EAB's placement in the middle of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with *n* LEs. The LE delay is 1.3 ns; the cascade chain delay is 0.6 ns. With the cascade chain, decoding a 16-bit address requires 3.1 ns.

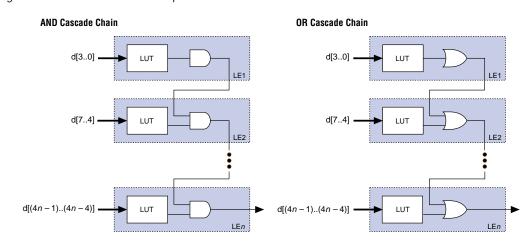


Figure 10. ACEX 1K Cascade Chain Operation

Altera Corporation

Normal Mode

The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a 4-input LUT. The compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time.

The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a 3-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a 4-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers two 3-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a 3-input function; the other generates a carry output. As shown in Figure 11, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Two 3-input LUTs are used; one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources.

For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to the GCLK1 pin. In the Altera software, the GCLK1 pin can feed both the ClockLock and ClockBoost circuitry in the ACEX 1K device. However, when both circuits are used, the other clock pin cannot be used.

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. Figure 19 shows the incoming and generated clock specifications.

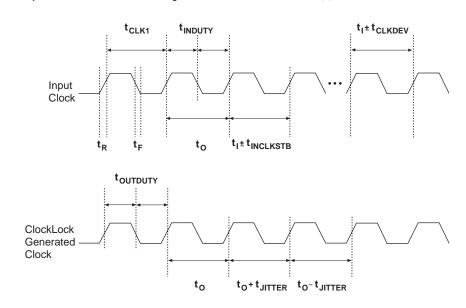


Figure 19. Specifications for the Incoming & Generated Clocks Note (1)

Note:

(1) The t_I parameter refers to the nominal input clock period; the t_O parameter refers to the nominal output clock period.

Tables 11 and 12 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively.

Table 11.	ClockLock & ClockBoost Parameters for -1	Speed-Grade De	vices			
Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _R	Input rise time				5	ns
t _F	Input fall time				5	ns
t _{INDUTY}	Input duty cycle		40		60	%
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		180	MHz
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		90	MHz
f _{CLKDEV}	Input deviation from user specification in the Altera software (1)				25,000 (2)	PPM
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs
t _{JITTER}	Jitter on ClockLock or ClockBoost-	t _{INCLKSTB} <100			250 (4)	ps
	generated clock (4)	$t_{INCLKSTB} < 50$			200 (4)	ps
toutduty	Duty cycle for ClockLock or ClockBoost- generated clock		40	50	60	%

The VCCINT pins must always be connected to a 2.5-V power supply. With a 2.5-V V_{CCINT} level, input voltages are compatible with 2.5-V, 3.3-V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with V_{CCIO} levels higher than 3.0 V achieve a faster timing delay of t_{OD2} instead of t_{OD1} .

Table 13. ACEX 1K MultiVolt I/O Support										
V _{CCI0} (V) Input Signal (V) Output Signal (V)										
	2.5	3.3	5.0	2.5	3.3	5.0				
2.5	\checkmark	🗸 (1)	🗸 (1)	~						
3.3										

Table 13 summarizes ACEX 1K MultiVolt I/O support.

Notes:

 The PCI clamping diode must be disabled on an input which is driven with a voltage higher than V_{CCIO}.

(2) When V_{CCIO} = 3.3 V, an ACEX 1K device can drive a 2.5-V device that has 3.3-V tolerant inputs.

Open-drain output pins on ACEX 1K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a higher V_{IH} than LVTTL. When the open-drain pin is active, it will drive low. When the pin is inactive, the resistor will pull up the trace to 5.0 V, thereby meeting the CMOS V_{OH} requirement. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor.

Power Sequencing & Hot-Socketing

Because ACEX 1K devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order.

Signals can be driven into ACEX 1K devices before and during power up without damaging the device. Additionally, ACEX 1K devices do not drive out during power up. Once operating conditions are reached, ACEX 1K devices operate as specified by the user.

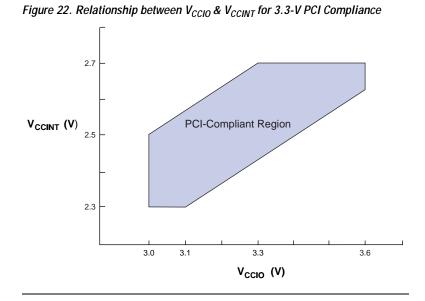
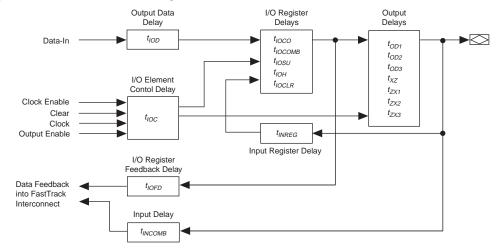
ACEX 1K Programmable Logic Device Family Data Sheet

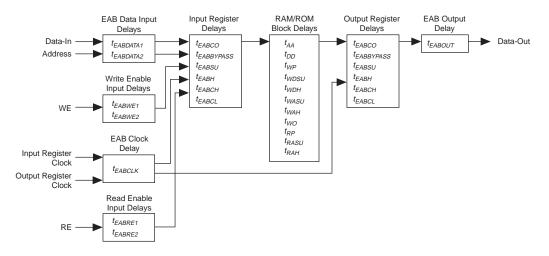
Table 21. ACEX 1K Device Capacitance Note (14)								
Symbol	Parameter	Conditions	Min	Max	Unit			
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF			
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF			
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF			

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial- and extended-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^\circ$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V.
- (7) These values are specified under the ACEX 1K Recommended Operating Conditions shown in Table 19 on page 46.
- (8) The ACEX 1K input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22.
- (9) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (11) This value is specified for normal device operation. The value may vary during power-up.
- (12) This parameter applies to -1 speed grade commercial temperature devices and -2 speed grade industrial and extended temperature devices.
- (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source.
- (14) Capacitance is sample-tested only.

Figure 22 shows the required relationship between V_{CCIO} and V_{CCINT} to satisfy 3.3-V PCI compliance.


Figure 23 shows the typical output drive characteristics of ACEX 1K devices with 3.3-V and 2.5-V V_{CCIO}. The output driver is compliant to the 3.3-V *PCI Local Bus Specification, Revision 2.2* (when VCCIO pins are connected to 3.3 V). ACEX 1K devices with a -1 speed grade also comply with the drive strength requirements of the *PCI Local Bus Specification, Revision 2.2* (when VCCINT pins are powered with a minimum supply of 2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices can be used in open 5.0-V PCI systems.

Altera Corporation

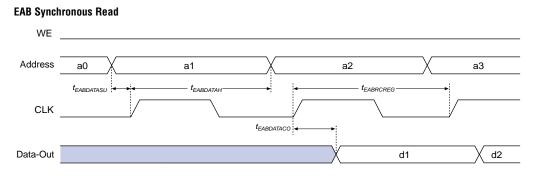


Figure 26. ACEX 1K Device IOE Timing Model

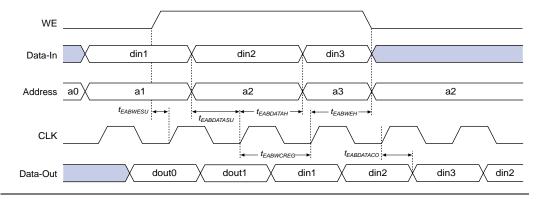


Figure 30. EAB Synchronous Timing Waveforms

EAB Synchronous Write (EAB Output Registers Used)

Tables 22 through 26 describe the ACEX 1K device internal timing parameters.

Table 22. LE Timing Microparameters (Part 1 of 2) Note (1)						
Symbol	Parameter	Conditions				
t _{LUT}	LUT delay for data-in					
t _{CLUT}	LUT delay for carry-in					
t _{RLUT}	LUT delay for LE register feedback					
t _{PACKED}	Data-in to packed register delay					
t _{EN}	LE register enable delay					
t _{CICO}	Carry-in to carry-out delay					
t _{CGEN}	Data-in to carry-out delay					
t _{CGENR}	LE register feedback to carry-out delay					

Symbol	Parameter	Conditions
t _{DIN2IOE}	Delay from dedicated input pin to IOE control input	(7)
t _{DIN2LE}	Delay from dedicated input pin to LE or EAB control input	(7)
t _{DIN2DATA}	Delay from dedicated input or clock to LE or EAB data	(7)
t _{DCLK2IOE}	Delay from dedicated clock pin to IOE clock	(7)
t _{DCLK2LE}	Delay from dedicated clock pin to LE or EAB clock	(7)
t _{SAMELAB}	Routing delay for an LE driving another LE in the same LAB	(7)
t _{SAMEROW}	Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the same row	(7)
t _{SAME} COLUMN	Routing delay for an LE driving an IOE in the same column	(7)
t _{DIFFROW}	Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different row	(7)
t _{TWOROWS}	Routing delay for a row IOE or EAB driving an LE or EAB in a different row	(7)
t _{LEPERIPH}	Routing delay for an LE driving a control signal of an IOE via the peripheral control bus	(7)
t _{LABCARRY}	Routing delay for the carry-out signal of an LE driving the carry-in signal of a different LE in a different LAB	
t _{LABCASC}	Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB	

Notes to tables:

- (1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be measured explicitly.
- Operating conditions: $V_{CCIO} = 3.3 V \pm 10\%$ for commercial or industrial and extended use in ACEX 1K devices (2)
- Operating conditions: $V_{CCIO} = 2.5 V \pm 5\%$ for commercial or industrial and extended use in ACEX 1K devices. Operating conditions: $V_{CCIO} = 2.5 V$ or 3.3 V. (3)
- (4)
- Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. (5)
- EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; (6) these parameters are calculated by summing selected microparameters.
- These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing (7) analysis are required to determine actual worst-case performance.

ACEX 1K Programmable Logic Device Family Data Sheet

Symbol			Speed	Grade			Unit
	-	1	-	-2		3	
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		2.3		2.7		3.6	ns
t _{DIN2LE}		0.8		1.1		1.4	ns
t _{DIN2DATA}		1.1		1.4		1.8	ns
t _{DCLK2IOE}		2.3		2.7		3.6	ns
t _{DCLK2LE}		0.8		1.1		1.4	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.8		2.1		2.9	ns
t _{SAME} COLUMN		0.3		0.4		0.7	ns
t _{DIFFROW}		2.1		2.5		3.6	ns
t _{TWOROWS}		3.9		4.6		6.5	ns
t _{LEPERIPH}		3.3		3.7		4.8	ns
t _{LABCARRY}		0.3		0.4		0.5	ns
t _{LABCASC}		0.9		1.0		1.4	ns

Table 35. EP1K10) External Ti	ming Param	eters No	te (1)			
Symbol			Speed	Grade			Unit
	-	-1		-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{DRR}		7.5		9.5		12.5	ns
t _{INSU} (2), (3)	2.4		2.7		3.6		ns
t _{INH} (2), (3)	0.0		0.0		0.0		ns
t_{оитсо (2), (3)}	2.0	6.6	2.0	7.8	2.0	9.6	ns
t _{INSU} (4), (3)	1.4		1.7		-		ns
t _{INH} (4), (3)	0.5	5.1	0.5	6.4	-	-	ns
t_{оитсо} (4), (3)	0.0		0.0		-		ns
t _{PCISU} (3)	3.0		4.2		6.4		ns
t _{PCIH} (3)	0.0		0.0		-		ns
t _{PCICO} (3)	2.0	6.0	2.0	7.5	2.0	10.2	ns

E.

Table 43. EP1K30	External Bi	directional 1	Timing Para	meters N	otes (1), (2)		
Symbol		Unit					
	-1		-2		-3		
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (3)	2.8		3.9		5.2		ns
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns
t _{INSUBIDIR} (4)	3.8		4.9		-		ns
t _{INHBIDIR} (4)	0.0		0.0		-		ns
t _{OUTCOBIDIR} (3)	2.0	4.9	2.0	5.9	2.0	7.6	ns
t _{XZBIDIR} (3)		6.1		7.5		9.7	ns
t _{ZXBIDIR} (3)		6.1		7.5		9.7	ns
toutcobidir (4)	0.5	3.9	0.5	4.9	-	-	ns
t _{XZBIDIR} (4)		5.1		6.5		-	ns
t _{ZXBIDIR} (4)		5.1		6.5		-	ns

Notes to tables:

(1) All timing parameters are described in Tables 22 through 29 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 44 through 50 show EP1K50 device external timing parameters.

Symbol	Speed Grade						
	-1		-2		-3		
	Min	Max	Min	Мах	Min	Max	
t _{LUT}		0.6		0.8		1.1	ns
t _{CLUT}		0.5		0.6		0.8	ns
t _{RLUT}		0.6		0.7		0.9	ns
t _{PACKED}		0.2		0.3		0.4	ns
t _{EN}		0.6		0.7		0.9	ns
t _{CICO}		0.1		0.1		0.1	ns
t _{CGEN}		0.4		0.5		0.6	ns
t _{CGENR}		0.1		0.1		0.1	ns
tCASC		0.5		0.8		1.0	ns
t _C		0.5		0.6		0.8	ns

Symbol			Speed	Grade			Unit
	-1		-2		-3		
	Min	Max	Min	Max	Min	Max	
t _{IOD}		1.7		2.0		2.6	ns
t _{IOC}		0.0		0.0		0.0	ns
t _{IOCO}		1.4		1.6		2.1	ns
t _{IOCOMB}		0.5		0.7		0.9	ns
t _{IOSU}	0.8		1.0		1.3		ns
t _{IOH}	0.7		0.9		1.2		ns
t _{IOCLR}		0.5		0.7		0.9	ns
t _{OD1}		3.0		4.2		5.6	ns
t _{OD2}		3.0		4.2		5.6	ns
t _{OD3}		4.0		5.5		7.3	ns
t _{XZ}		3.5		4.6		6.1	ns
t _{ZX1}		3.5		4.6		6.1	ns
t _{ZX2}		3.5		4.6		6.1	ns
t _{ZX3}		4.5		5.9		7.8	ns
t _{INREG}		2.0		2.6		3.5	ns
t _{IOFD}		0.5		0.8		1.2	ns
t _{INCOMB}		0.5		0.8		1.2	ns

ACEX 1K Programmable	E Logic Device Family Data Sheet
----------------------	----------------------------------

Table 54. EP1K1			-		s Note (<i>''</i>		
Symbol		Speed Grade						
	-1		-2		-3			
	Min	Max	Min	Max	Min	Max		
t _{EABAA}		5.9		7.6		9.9	ns	
t _{EABRCOMB}	5.9		7.6		9.9		ns	
t _{EABRCREG}	5.1		6.5		8.5		ns	
t _{EABWP}	2.7		3.5		4.7		ns	
t _{EABWCOMB}	5.9		7.7		10.3		ns	
t _{EABWCREG}	5.4		7.0		9.4		ns	
t _{EABDD}		3.4		4.5		5.9	ns	
t _{EABDATACO}		0.5		0.7		0.8	ns	
t _{EABDATASU}	0.8		1.0		1.4		ns	
t _{EABDATAH}	0.1		0.1		0.2		ns	
t _{EABWESU}	1.1		1.4		1.9		ns	
t _{EABWEH}	0.0		0.0		0.0		ns	
t _{EABWDSU}	1.0		1.3		1.7		ns	
t _{EABWDH}	0.2		0.2		0.3		ns	
t _{EABWASU}	4.1		5.2		6.8		ns	
t _{EABWAH}	0.0		0.0		0.0		ns	
t _{EABWO}		3.4		4.5		5.9	ns	