Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 72 | | Number of Logic Elements/Cells | 576 | | Total RAM Bits | 12288 | | Number of I/O | 66 | | Number of Gates | 56000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 100-TQFP | | Supplier Device Package | 100-TQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1k10tc100-2n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Table 5 shows ACEX 1K device performance for more complex designs. These designs are available as Altera MegaCore $^{\rm TM}$ functions. | Table 5. ACEX 1K Device Performance for Complex Designs | | | | | | | |---|-------|-------------|------|----------|-------|--| | Application | LEs | Performance | | | | | | | Used | Speed Grade | | ! | Units | | | | · | -1 | -2 | -3 | | | | 16-bit, 8-tap parallel finite impulse response (FIR) filter | 597 | 192 | 156 | 116 | MSPS | | | 8-bit, 512-point Fast Fourier transform (FFT) | 1,854 | 23.4 | 28.7 | 38.9 | μs | | | function | | 113 | 92 | 68 | MHz | | | a16450 universal asynchronous receiver/transmitter (UART) | 342 | 36 | 28 | 20.5 | MHz | | Each ACEX 1K device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and data-transformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device. ACEX 1K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers EPC16, EPC2, EPC1, and EPC1441 configuration devices, which configure ACEX 1K devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera MasterBlaster $^{\text{TM}}$, ByteBlasterMV $^{\text{TM}}$, or BitBlaster $^{\text{TM}}$ download cables. After an ACEX 1K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 40 ms, real-time changes can be made during system operation. ACEX 1K devices contain an interface that permits microprocessors to configure ACEX 1K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat an ACEX 1K device as memory and configure it by writing to a virtual memory location, simplifying device reconfiguration. Figure 7. ACEX 1K LAB ### Notes: - (1) EP1K10, EP1K30, and EP1K50 devices have 22 inputs to the LAB local interconnect channel from the row; EP1K100 devices have 26. - (2) EP1K10, EP1K30, and EP1K50 devices have 30 LAB local interconnect channels; EP1K100 devices have 34. ### **Clearable Counter Mode** The clearable counter mode is similar to the up/down counter mode, but it supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Two 3-input LUTs are used; one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is AND ed with a synchronous clear signal. ## Internal Tri-State Emulation Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer. ## Clear & Preset Logic Control Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register. During compilation, the compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset. The clear and preset logic is implemented in one of the following six modes chosen during design entry: - Asynchronous clear - Asynchronous preset - Asynchronous clear and preset - Asynchronous load with clear - Asynchronous load with preset - Asynchronous load without clear or preset ## **Asynchronous Clear** The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this mode, the preset signal is tied to VCC to deactivate it. ## **Asynchronous Preset** An asynchronous preset is implemented as an asynchronous load, or with an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the Altera software can provide preset control by using the clear and inverting the register's input and output. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes. ## **Asynchronous Preset & Clear** When implementing asynchronous clear and preset, LABCTRL1 controls the preset, and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register. ## **Asynchronous Load with Clear** When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits. ## **Asynchronous Load with Preset** When implementing an asynchronous load in conjunction with preset, the Altera software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The Altera software inverts the signal that drives DATA3 to account for the inversion of the register's output. ### Asynchronous Load without Preset or Clear When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. On all ACEX 1K devices, the input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold time or turn it off to minimize setup time. This feature is used to reduce setup time for complex pin-to-register paths (e.g., PCI designs). Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across devices and provides up to 12 peripheral control signals that can be allocated as follows: - Up to eight output enable signals - Up to six clock enable signals - Up to two clock signals - Up to two clear signals If more than six clock-enable or eight output-enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, a LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chipwide reset signal resets all IOE registers, overriding any other control signals. When a dedicated clock pin drives IOE registers, it can be inverted for all IOEs in the device. All IOEs must use the same sense of the clock. For example, if any IOE uses the inverted clock, all IOEs must use the inverted clock, and no IOE can use the non-inverted clock. However, LEs can still use the true or complement of the clock on an LAB-by-LAB basis. The incoming signal may be inverted at the dedicated clock pin and will drive all IOEs. For the true and complement of a clock to be used to drive IOEs, drive it into both global clock pins. One global clock pin will supply the true, and the other will supply the complement. When the true and complement of a dedicated input drives IOE clocks, two signals on the peripheral control bus are consumed, one for each sense of the clock. For more information, search for "SameFrame" in MAX+PLUS II Help. | Table 10. ACEX 1K SameFrame Pin-Out Support | | | | | |---|----------------------------|----------------------------|--|--| | Device | 256-Pin
FineLine
BGA | 484-Pin
FineLine
BGA | | | | EP1K10 | ✓ | (1) | | | | EP1K30 | ✓ | (1) | | | | EP1K50 | ✓ | ✓ | | | | EP1K100 | ✓ | ✓ | | | #### Note: This option is supported with a 256-pin FineLine BGA package and SameFrame migration. ## ClockLock & ClockBoost Features To support high-speed designs, -1 and -2 speed grade ACEX 1K devices offer ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) that is used to increase design speed and reduce resource usage. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost feature allows the designer to distribute a low-speed clock and multiply that clock on-device. Combined, the ClockLock and ClockBoost features provide significant improvements in system performance and bandwidth. The ClockLock and ClockBoost features in ACEX 1K devices are enabled through the Altera software. External devices are not required to use these features. The output of the ClockLock and ClockBoost circuits is not available at any of the device pins. The ClockLock and ClockBoost circuitry lock onto the rising edge of the incoming clock. The circuit output can drive the clock inputs of registers only; the generated clock cannot be gated or inverted. The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and ClockBoost circuitry. When the dedicated clock pin is driving the ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device. ## PCI Pull-Up Clamping Diode Option ACEX 1K devices have a pull-up clamping diode on every I/O, dedicated input, and dedicated clock pin. PCI clamping diodes clamp the signal to the $V_{\rm CCIO}$ value and are required for 3.3-V PCI compliance. Clamping diodes can also be used to limit overshoot in other systems. Clamping diodes are controlled on a pin-by-pin basis. When $V_{\rm CCIO}$ is 3.3 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When $V_{\rm CCIO}$ is 2.5 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can be activated for a subset of pins, which allows a device to bridge between a 3.3-V PCI bus and a 5.0-V device. ## Slew-Rate Control The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of 4.3 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate pin-by-pin or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects only the falling edge of the output. ## **Open-Drain Output Option** ACEX 1K devices provide an optional open-drain output (electrically equivalent to open-collector output) for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired- $\[OR]$ plane. ## MultiVolt I/O Interface The ACEX 1K device architecture supports the MultiVolt I/O interface feature, which allows ACEX 1K devices in all packages to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). # IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All ACEX 1K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. ACEX 1K devices can also be configured using the JTAG pins through the ByteBlasterMV or BitBlaster download cable, or via hardware that uses the JamTM Standard Test and Programming Language (STAPL), JEDEC standard JESD-71. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. ACEX 1K devices support the JTAG instructions shown in Table 14. | Table 14. ACEX 1K JTAG Instructions | | | | |-------------------------------------|--|--|--| | JTAG Instruction | Description | | | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation and permits an initial data pattern to be output at the device pins. | | | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | | | BYPASS | Places the 1-bit bypass register between the TDI and TDO pins, allowing the BST data to pass synchronously through a selected device to adjacent devices during normal operation. | | | | USERCODE | Selects the user electronic signature (USERCODE) register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO. | | | | IDCODE | Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO. | | | | ICR Instructions | These instructions are used when configuring an ACEX 1K device via JTAG ports using a MasterBlaster, ByteBlasterMV, or BitBlaster download cable, or a Jam File (.jam) or Jam Byte-Code File (.jbc) via an embedded processor. | | | The instruction register length of ACEX 1K devices is 10 bits. The USERCODE register length in ACEX 1K devices is 32 bits; 7 bits are determined by the user, and 25 bits are pre-determined. Tables 15 and 16 show the boundary-scan register length and device IDCODE information for ACEX 1K devices. | Table 15. ACEX 1K Boundary-Scan Register Length | | | | |---|-----|--|--| | Device Boundary-Scan Register Length | | | | | EP1K10 438 | | | | | EP1K30 690 | | | | | EP1K50 | 798 | | | | EP1K100 1,050 | | | | | Table 16. 32-Bit IDCODE for ACEX 1K Devices Note (1) | | | | | | |--|---------------------|-----------------------|-----------------------------------|---------------|--| | Device | IDCODE (32 Bits) | | | | | | | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer's Identity (11 Bits) | 1 (1 Bit) (2) | | | EP1K10 | 0001 | 0001 0000 0001 0000 | 00001101110 | 1 | | | EP1K30 | 0001 | 0001 0000 0011 0000 | 00001101110 | 1 | | | EP1K50 | 0001 | 0001 0000 0101 0000 | 00001101110 | 1 | | | EP1K100 | 0010 | 0000 0001 0000 0000 | 00001101110 | 1 | | ### Notes to tables: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. ACEX 1K devices include weak pull-up resistors on the JTAG pins. For more information, see the following documents: - Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) - ByteBlasterMV Parallel Port Download Cable Data Sheet - BitBlaster Serial Download Cable Data Sheet - Jam Programming & Test Language Specification Figure 20 shows the timing requirements for the JTAG signals. Figure 20. ACEX 1K JTAG Waveforms Table 17 shows the timing parameters and values for ACEX 1K devices. | Symbol | Parameter | Min | Max | Unit | |-------------------|--|-----|-----|------| | t _{JCP} | TCK clock period | 100 | | ns | | t _{JCH} | TCK clock high time | 50 | | ns | | t _{JCL} | TCK clock low time | 50 | | ns | | t _{JPSU} | JTAG port setup time | 20 | | ns | | t _{JPH} | JTAG port hold time | 45 | | ns | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | t _{JSSU} | Capture register setup time | 20 | | ns | | t _{JSH} | Capture register hold time | 45 | | ns | | t _{JSCO} | Update register clock to output | | 35 | ns | | t _{JSZX} | Update register high impedance to valid output | | 35 | ns | | t _{JSXZ} | Update register valid output to high impedance | | 35 | ns | | Table 21. ACEX 1K Device Capacitance Note (14) | | | | | | | |--|--|-------------------------------------|-----|-----|------|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial- and extended-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V. - (7) These values are specified under the ACEX 1K Recommended Operating Conditions shown in Table 19 on page 46. - (8) The ACEX 1K input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22. - The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current. - (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (11) This value is specified for normal device operation. The value may vary during power-up. - (12) This parameter applies to -1 speed grade commercial temperature devices and -2 speed grade industrial and extended temperature devices. - (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source. - (14) Capacitance is sample-tested only. Figure 22 shows the required relationship between V_{CCIO} and V_{CCINT} to satisfy 3.3-V PCI compliance. Figure 22. Relationship between V_{CCIO} & V_{CCINT} for 3.3-V PCI Compliance Figure 23 shows the typical output drive characteristics of ACEX 1K devices with 3.3-V and 2.5-V $V_{\rm CCIO}$. The output driver is compliant to the 3.3-V *PCI Local Bus Specification, Revision 2.2* (when VCCIO pins are connected to 3.3 V). ACEX 1K devices with a -1 speed grade also comply with the drive strength requirements of the *PCI Local Bus Specification, Revision 2.2* (when VCCINT pins are powered with a minimum supply of 2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices can be used in open 5.0-V PCI systems. Figure 26. ACEX 1K Device IOE Timing Model Figure 27. ACEX 1K Device EAB Timing Model Figure 30. EAB Synchronous Timing Waveforms ## **EAB Synchronous Read** ## EAB Synchronous Write (EAB Output Registers Used) Tables 22 through 26 describe the ACEX 1K device internal timing parameters. | Table 22. LE Timing Microparameters (Part 1 of 2) Note (1) | | | | | |--|---|------------|--|--| | Symbol | Parameter | Conditions | | | | t_{LUT} | LUT delay for data-in | | | | | t _{CLUT} | LUT delay for carry-in | | | | | t _{RLUT} | LUT delay for LE register feedback | | | | | t _{PACKED} | Data-in to packed register delay | | | | | t _{EN} | LE register enable delay | | | | | t _{CICO} | Carry-in to carry-out delay | | | | | t _{CGEN} | Data-in to carry-out delay | | | | | t _{CGENR} | LE register feedback to carry-out delay | | | | Tables 27 through 29 describe the ACEX 1K external timing parameters and their symbols. | Table 27. External Reference Timing Parameters Note (1) | | | | |---|--|------------|--| | Symbol | Parameter | Conditions | | | t _{DRR} | Register-to-register delay via four LEs, three row interconnects, and four local interconnects | (2) | | | Table 28. External Timing Parameters | | | | |--------------------------------------|---|------------|--| | Symbol | Parameter | Conditions | | | t _{INSU} | Setup time with global clock at IOE register | (3) | | | t _{INH} | Hold time with global clock at IOE register | (3) | | | tоитсо | Clock-to-output delay with global clock at IOE register | (3) | | | t _{PCISU} | Setup time with global clock for registers used in PCI designs | (3), (4) | | | t _{PCIH} | Hold time with global clock for registers used in PCI designs | (3), (4) | | | t _{PCICO} | Clock-to-output delay with global clock for registers used in PCI designs | (3), (4) | | | Table 29. External Bidirectional Timing Parameters Note (3) | | | | | |---|--|------------|--|--| | Symbol | Parameter | Conditions | | | | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at same-row or same-column LE register | | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at same-row or same-column LE register | | | | | toutcobidir | Clock-to-output delay for bidirectional pins with global clock at IOE register | CI = 35 pF | | | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | CI = 35 pF | | | | tzxbidir | Synchronous IOE output buffer enable delay, slow slew rate = off | CI = 35 pF | | | ## Notes to tables: - (1) External reference timing parameters are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications. - (2) Contact Altera Applications for test circuit specifications and test conditions. - (3) These timing parameters are sample-tested only. - (4) This parameter is measured with the measurement and test conditions, including load, specified in the *PCI Local Bus Specification, Revision 2.2.* | Symbol | Speed Grade | | | | | | | | |--------------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{DIN2IOE} | | 2.3 | | 2.7 | | 3.6 | ns | | | t _{DIN2LE} | | 0.8 | | 1.1 | | 1.4 | ns | | | t _{DIN2DATA} | | 1.1 | | 1.4 | | 1.8 | ns | | | t _{DCLK2IOE} | | 2.3 | | 2.7 | | 3.6 | ns | | | t _{DCLK2LE} | | 0.8 | | 1.1 | | 1.4 | ns | | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.2 | ns | | | t _{SAMEROW} | | 1.8 | | 2.1 | | 2.9 | ns | | | t _{SAME} COLUMN | | 0.3 | | 0.4 | | 0.7 | ns | | | t _{DIFFROW} | | 2.1 | | 2.5 | | 3.6 | ns | | | t _{TWOROWS} | | 3.9 | | 4.6 | | 6.5 | ns | | | t _{LEPERIPH} | | 3.3 | | 3.7 | | 4.8 | ns | | | t _{LABCARRY} | | 0.3 | | 0.4 | | 0.5 | ns | | | t _{LABCASC} | | 0.9 | | 1.0 | | 1.4 | ns | | | Table 35. EP1K10 External Timing Parameters Note (1) | | | | | | | | | | |--|-----|------|-----|-----|-----|------|----|--|--| | Symbol | | Unit | | | | | | | | | | -1 | | -2 | | -3 | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{DRR} | | 7.5 | | 9.5 | | 12.5 | ns | | | | t _{INSU} (2), (3) | 2.4 | | 2.7 | | 3.6 | | ns | | | | t _{INH} (2), (3) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{оитсо} (2), (3) | 2.0 | 6.6 | 2.0 | 7.8 | 2.0 | 9.6 | ns | | | | t _{INSU} (4), (3) | 1.4 | | 1.7 | | _ | | ns | | | | t _{INH} (4), (3) | 0.5 | 5.1 | 0.5 | 6.4 | _ | _ | ns | | | | t _{оитсо} (4), (3) | 0.0 | | 0.0 | | _ | | ns | | | | t _{PCISU} (3) | 3.0 | | 4.2 | | 6.4 | | ns | | | | t _{PCIH} (3) | 0.0 | | 0.0 | | - | | ns | | | | t _{PCICO} (3) | 2.0 | 6.0 | 2.0 | 7.5 | 2.0 | 10.2 | ns | | | | Table 37. EP1K3 | 0 Device LE 1 | Timing Micr | oparameters | (Part 2 of . | 2) Note | (1) | | |-------------------|---------------|-------------|-------------|--------------|----------------|-----|----| | Symbol | | Unit | | | | | | | | -1 | | -2 | | -3 | | | | | Min | Max | Min | Max | Min | Max | | | t _{COMB} | | 0.4 | | 0.4 | | 0.6 | ns | | t_{SU} | 0.4 | | 0.6 | | 0.6 | | ns | | t _H | 0.7 | | 1.0 | | 1.3 | | ns | | t _{PRE} | | 0.8 | | 0.9 | | 1.2 | ns | | t _{CLR} | | 0.8 | | 0.9 | | 1.2 | ns | | t _{CH} | 2.0 | | 2.5 | | 2.5 | | ns | | t_{CL} | 2.0 | | 2.5 | | 2.5 | | ns | | Symbol | Speed Grade | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{IOD} | | 2.4 | | 2.8 | | 3.8 | ns | | | t _{ioc} | | 0.3 | | 0.4 | | 0.5 | ns | | | t _{IOCO} | | 1.0 | | 1.1 | | 1.6 | ns | | | t _{IOCOMB} | | 0.0 | | 0.0 | | 0.0 | ns | | | t _{iosu} | 1.2 | | 1.4 | | 1.9 | | ns | | | t _{IOH} | 0.3 | | 0.4 | | 0.5 | | ns | | | t _{IOCLR} | | 1.0 | | 1.1 | | 1.6 | ns | | | t _{OD1} | | 1.9 | | 2.3 | | 3.0 | ns | | | t _{OD2} | | 1.4 | | 1.8 | | 2.5 | ns | | | t _{OD3} | | 4.4 | | 5.2 | | 7.0 | ns | | | t_{XZ} | | 2.7 | | 3.1 | • | 4.3 | ns | | | t _{ZX1} | | 2.7 | | 3.1 | • | 4.3 | ns | | | t_{ZX2} | | 2.2 | | 2.6 | | 3.8 | ns | | | tzx3 | | 5.2 | | 6.0 | • | 8.3 | ns | | | [†] INREG | | 3.4 | | 4.1 | • | 5.5 | ns | | | IOFD | | 0.8 | | 1.3 | | 2.4 | ns | | | t _{INCOMB} | | 0.8 | | 1.3 | | 2.4 | ns | | | Symbol | Speed Grade | | | | | | | | |----------------------------|-------------|-----|-----|-----|-----|------|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{INSUBIDIR} (2) | 2.7 | | 3.2 | | 4.3 | | ns | | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{INSUBIDIR} (3) | 3.7 | | 4.2 | | - | | ns | | | t _{INHBIDIR} (3) | 0.0 | | 0.0 | | - | | ns | | | toutcobidir (2) | 2.0 | 4.5 | 2.0 | 5.2 | 2.0 | 7.3 | ns | | | t _{XZBIDIR} (2) | | 6.8 | | 7.8 | | 10.1 | ns | | | t _{ZXBIDIR} (2) | | 6.8 | | 7.8 | | 10.1 | ns | | | toutcobidir (3) | 0.5 | 3.5 | 0.5 | 4.2 | - | - | | | | t _{XZBIDIR} (3) | | 6.8 | | 8.4 | | - | ns | | | t _{ZXBIDIR} (3) | | 6.8 | | 8.4 | | _ | ns | | ## Notes to tables: - All timing parameters are described in Tables 22 through 29. This parameter is measured without use of the ClockLock or ClockBoost circuits. (2) - This parameter is measured with use of the ClockLock or ClockBoost circuits (3) Tables 51 through 57 show EP1K100 device internal and external timing parameters. | Symbol | Speed Grade | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t_{LUT} | | 0.7 | | 1.0 | | 1.5 | ns | | | t _{CLUT} | | 0.5 | | 0.7 | | 0.9 | ns | | | t _{RLUT} | | 0.6 | | 0.8 | | 1.1 | ns | | | t _{PACKED} | | 0.3 | | 0.4 | | 0.5 | ns | | | t _{EN} | | 0.2 | | 0.3 | | 0.3 | ns | | | t _{CICO} | | 0.1 | | 0.1 | | 0.2 | ns | | | t _{CGEN} | | 0.4 | | 0.5 | | 0.7 | ns | | | t _{CGENR} | | 0.1 | | 0.1 | | 0.2 | ns | | | t _{CASC} | | 0.6 | | 0.9 | | 1.2 | ns | | | t_{C} | | 0.8 | | 1.0 | | 1.4 | ns | | | t _{CO} | | 0.6 | | 0.8 | | 1.1 | ns | | | t _{COMB} | | 0.4 | | 0.5 | | 0.7 | ns | | | t _{SU} | 0.4 | | 0.6 | | 0.7 | | ns | | | t_H | 0.5 | | 0.7 | | 0.9 | | ns | | | t _{PRE} | | 0.8 | | 1.0 | | 1.4 | ns | | | t _{CLR} | | 0.8 | | 1.0 | | 1.4 | ns | | | t _{CH} | 1.5 | | 2.0 | | 2.5 | | ns | | | t _{CL} | 1.5 | | 2.0 | | 2.5 | | ns | | During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. Before and during configuration, all I/O pins (except dedicated inputs, clock, or configuration pins) are pulled high by a weak pull-up resistor. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*. SRAM configuration elements allow ACEX 1K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, re-initializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 40 ms and can be used to reconfigure an entire system dynamically. In-field upgrades can be performed by distributing new configuration files. ## **Configuration Schemes** The configuration data for an ACEX 1K device can be loaded with one of five configuration schemes (see Table 59), chosen on the basis of the target application. An EPC16, EPC2, EPC1, or EPC1441 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of a ACEX 1K device, allowing automatic configuration on system power-up. Multiple ACEX 1K devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Additional APEX 20K, APEX 20KE, FLEX 10K, FLEX 10KA, FLEX 10KE, ACEX 1K, and FLEX 6000 devices can be configured in the same serial chain. | Table 59. Data Sources for ACEX 1K Configuration | | | | | | | |--|--|--|--|--|--|--| | Configuration Scheme | Data Source | | | | | | | Configuration device | EPC16, EPC2, EPC1, or EPC1441 configuration device | | | | | | | Passive serial (PS) | BitBlaster or ByteBlasterMV download cables, or serial data source | | | | | | | Passive parallel asynchronous (PPA) | Parallel data source | | | | | | | Passive parallel synchronous (PPS) | Parallel data source | | | | | | | JTAG | BitBlaster or ByteBlasterMV download cables, or microprocessor with a Jam STAPL File or JBC File | | | | | | ## Device Pin-Outs See the Altera web site (http://www.altera.com) or the *Altera Documentation Library* for pin-out information.