Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 72 | | Number of Logic Elements/Cells | 576 | | Total RAM Bits | 12288 | | Number of I/O | 66 | | Number of Gates | 56000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 100-TQFP | | Supplier Device Package | 100-TQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1k10tc100-2ngz | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # General Description Altera® ACEX 1K devices provide a die-efficient, low-cost architecture by combining look-up table (LUT) architecture with EABs. LUT-based logic provides optimized performance and efficiency for data-path, register intensive, mathematical, or digital signal processing (DSP) designs, while EABs implement RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. These elements make ACEX 1K suitable for complex logic functions and memory functions such as digital signal processing, wide data-path manipulation, data transformation and microcontrollers, as required in high-performance communications applications. Based on reconfigurable CMOS SRAM elements, the ACEX 1K architecture incorporates all features necessary to implement common gate array megafunctions, along with a high pin count to enable an effective interface with system components. The advanced process and the low voltage requirement of the 2.5-V core allow ACEX 1K devices to meet the requirements of low-cost, high-volume applications ranging from DSL modems to low-cost switches. The ability to reconfigure ACEX 1K devices enables complete testing prior to shipment and allows the designer to focus on simulation and design verification. ACEX 1K device reconfigurability eliminates inventory management for gate array designs and test vector generation for fault coverage. Table 4 shows ACEX 1K device performance for some common designs. All performance results were obtained with Synopsys DesignWare or LPM functions. Special design techniques are not required to implement the applications; the designer simply infers or instantiates a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file. | Application | Reso
Us | urces
ed | Performance | | | | |--|------------|-------------|-------------|-----|-------|-----| | | LEs | EABs | Speed Grade | | Units | | | | | | -1 | -2 | -3 | | | 16-bit loadable counter | 16 | 0 | 285 | 232 | 185 | MHz | | 16-bit accumulator | 16 | 0 | 285 | 232 | 185 | MHz | | 16-to-1 multiplexer (1) | 10 | 0 | 3.5 | 4.5 | 6.6 | ns | | 16-bit multiplier with 3-stage pipeline(2) | 592 | 0 | 156 | 131 | 93 | MHz | | 256 × 16 RAM read cycle speed (2) | 0 | 1 | 278 | 196 | 143 | MHz | | 256 × 16 RAM write cycle speed (2) | 0 | 1 | 185 | 143 | 111 | MHz | #### Notes: - This application uses combinatorial inputs and outputs. - (2) This application uses registered inputs and outputs. If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. Altera software automatically combines EABs to meet a designer's RAM specifications. EABs provide flexible options for driving and controlling clock signals. Different clocks and clock enables can be used for reading and writing to the EAB. Registers can be independently inserted on the data input, EAB output, write address, write enable signals, read address, and read enable signals. The global signals and the EAB local interconnect can drive write-enable, read-enable, and clock-enable signals. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control write-enable, read-enable, clear, clock, and clock-enable signals. An EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs (see Figures 2 and 4). The column interconnect, which is adjacent to the EAB, has twice as many channels as other columns in the device. # Logic Array Block An LAB consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to the ACEX 1K architecture, facilitating efficient routing with optimum device utilization and high performance. Figure 7 shows the ACEX 1K LAB. Each LAB provides four control signals with programmable inversion that can be used in all eight LEs. Two of these signals can be used as clocks, the other two can be used for clear/preset control. The LAB clocks can be driven by the dedicated clock input pins, global signals, I/O signals, or internal signals via the LAB local interconnect. The LAB preset and clear control signals can be driven by the global signals, I/O signals, or internal signals via the LAB local interconnect. The global control signals are typically used for global clock, clear, or preset signals because they provide asynchronous control with very low skew across the device. If logic is required on a control signal, it can be generated in one or more LEs in any LAB and driven into the local interconnect of the target LAB. In addition, the global control signals can be generated from LE outputs. ## Logic Element The LE, the smallest unit of logic in the ACEX 1K architecture, has a compact size that provides efficient logic utilization. Each LE contains a 4-input LUT, which is a function generator that can quickly compute any function of four variables. In addition, each LE contains a programmable flipflop with a synchronous clock enable, a carry chain, and a cascade chain. Each LE drives both the local and the FastTrack Interconnect routing structure. Figure 8 shows the ACEX 1K LE. ### Carry Chain The carry chain provides a very fast (as low as 0.2 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the ACEX 1K architecture to efficiently implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the compiler during design processing, or manually by the designer during design entry. Parameterized functions, such as LPM and DesignWare functions, automatically take advantage of carry chains. Carry chains longer than eight LEs are automatically implemented by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the first LE of the third LAB in the row. The carry chain does not cross the EAB at the middle of the row. For instance, in the EP1K50 device, the carry chain stops at the eighteenth LAB, and a new carry chain begins at the nineteenth LAB. Figure 9 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal. Figure 9. ACEX 1K Carry Chain Operation (n-Bit Full Adder) # LE Operating Modes The ACEX 1K LE can operate in the following four modes: - Normal mode - Arithmetic mode - Up/down counter mode - Clearable counter mode Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance. The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs. Figure 11 shows the ACEX 1K LE operating modes. Figure 11. ACEX 1K LE Operating Modes #### **Normal Mode** #### **Arithmetic Mode** ### **Up/Down Counter Mode** #### **Clearable Counter Mode** For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row. Table 6 summarizes the FastTrack Interconnect routing structure resources available in each ACEX 1K device. | Table 6. ACEX 1 | Table 6. ACEX 1K FastTrack Interconnect Resources | | | | | | | | | |-----------------|---|---------------------|---------|------------------------|--|--|--|--|--| | Device | Rows | Channels per
Row | Columns | Channels per
Column | | | | | | | EP1K10 | 3 | 144 | 24 | 24 | | | | | | | EP1K30 | 6 | 216 | 36 | 24 | | | | | | | EP1K50 | 10 | 216 | 36 | 24 | | | | | | | EP1K100 | 12 | 312 | 52 | 24 | | | | | | In addition to general-purpose I/O pins, ACEX 1K devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output-enable and clock-enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device. Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3. #### Column-to-IOE Connections When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels is different for each IOE (see Figure 17). Each IOE is driven by a m-to-1 multiplexer Column Interconnect Figure 17. ACEX 1K Column-to-IOE Connections Note (1) # Note: The values for m and n are shown in Table 9. Table 9 lists the ACEX 1K column-to-IOE interconnect resources. Each IOE can drive two column channels. | Table 9. ACEX 1K Column-to-IOE Interconnect Resources | | | | | | | | | |---|-------------------------|-----------------------------|--|--|--|--|--|--| | Device | Channels per Column (n) | Column Channels per Pin (m) | | | | | | | | EP1K10 | 24 | 16 | | | | | | | | EP1K30 | 24 | 16 | | | | | | | | EP1K50 | 24 | 16 | | | | | | | | EP1K100 | 24 | 16 | | | | | | | | Table 12. | ClockLock & ClockBoost Parameters for -2 | ? Speed-Grade De | vices | | | | |-----------------------|---|----------------------------|-------|-----|----------------|------| | Symbol | Parameter | Condition | Min | Тур | Max | Unit | | t_R | Input rise time | | | | 5 | ns | | t_{\digamma} | Input fall time | | | | 5 | ns | | t _{INDUTY} | Input duty cycle | | 40 | | 60 | % | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | | 25 | | 80 | MHz | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | | 16 | | 40 | MHz | | f _{CLKDEV} | Input deviation from user specification in the software (1) | | | | 25,000 | PPM | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | | | 100 | ps | | t _{LOCK} | Time required for ClockLock or ClockBoost to acquire lock (3) | | | | 10 | μs | | t _{JITTER} | Jitter on ClockLock or ClockBoost- | $t_{INCLKSTB}$ < 100 | | | 250 <i>(4)</i> | ps | | | generated clock (4) | t _{INCLKSTB} < 50 | | | 200 (4) | ps | | toutduty | Duty cycle for ClockLock or ClockBoost-
generated clock | | 40 | 50 | 60 | % | #### Notes to tables: - (1) To implement the ClockLock and ClockBoost circuitry with the Altera software, designers must specify the input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter. - (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period. - (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration. - (4) The t_{IITTER} specification is measured under long-term observation. The maximum value for t_{IITTER} is 200 ps if $t_{INCLKSTB}$ is lower than 50 ps. # I/O Configuration This section discusses the PCI pull-up clamping diode option, slew-rate control, open-drain output option, and MultiVolt I/O interface for ACEX 1K devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via Altera software logic options. The MultiVolt I/O interface is controlled by connecting $V_{\rm CCIO}$ to a different voltage than $V_{\rm CCINT}$. Its effect can be simulated in the Altera software via the **Global Project Device Options** dialog box (Assign menu). | Table 2 | 0. ACEX 1K Device DC Operatii | ng Conditions (Part 2 of a | 2) Notes (6 | 6), (7) | | | |-------------------|--|--|--------------------|---------|-------------------------|------| | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | V _{OL} | 3.3-V low-level TTL output voltage | I _{OL} = 12 mA DC,
V _{CCIO} = 3.00 V (10) | | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 3.00 V (10) | | | 0.2 | V | | | 3.3-V low-level PCI output voltage | I_{OL} = 1.5 mA DC,
V_{CCIO} = 3.00 to 3.60 V
(10) | | | 0.1 × V _{CCIO} | V | | | 2.5-V low-level output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 2.375 V (10) | | | 0.2 | V | | | | I _{OL} = 1 mA DC,
V _{CCIO} = 2.375 V (10) | | | 0.4 | V | | | | I _{OL} = 2 mA DC,
V _{CCIO} = 2.375 V (10) | | | 0.7 | V | | I _I | Input pin leakage current | $V_I = 5.3 \text{ to } -0.3 \text{ V } (11)$ | -10 | | 10 | μΑ | | I _{OZ} | Tri-stated I/O pin leakage current | $V_{O} = 5.3 \text{ to } -0.3 \text{ V } (11)$ | -10 | | 10 | μΑ | | I _{CC0} | V _{CC} supply current (standby) | V _I = ground, no load,
no toggling inputs | | 5 | | mA | | | | V _I = ground, no load,
no toggling inputs (12) | | 10 | | mA | | R _{CONF} | Value of I/O pin pull-up | V _{CCIO} = 3.0 V (13) | 20 | | 50 | kΩ | | | resistor before and during configuration | V _{CCIO} = 2.375 V (13) | 30 | | 80 | kΩ | Figure 22 shows the required relationship between V_{CCIO} and V_{CCINT} to satisfy 3.3-V PCI compliance. Figure 22. Relationship between V_{CCIO} & V_{CCINT} for 3.3-V PCI Compliance Figure 23 shows the typical output drive characteristics of ACEX 1K devices with 3.3-V and 2.5-V $V_{\rm CCIO}$. The output driver is compliant to the 3.3-V *PCI Local Bus Specification, Revision 2.2* (when VCCIO pins are connected to 3.3 V). ACEX 1K devices with a -1 speed grade also comply with the drive strength requirements of the *PCI Local Bus Specification, Revision 2.2* (when VCCINT pins are powered with a minimum supply of 2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices can be used in open 5.0-V PCI systems. Figure 24 shows the overall timing model, which maps the possible paths to and from the various elements of the ACEX 1K device. Figure 24. ACEX 1K Device Timing Model Figures 25 through 28 show the delays that correspond to various paths and functions within the LE, IOE, EAB, and bidirectional timing models. Figure 25. ACEX 1K Device LE Timing Model Tables 30 through 36 show EP1K10 device internal and external timing parameters. | Table 30. EP1K10 | 0 Device LE | Timing Micro | parameters | Note (1) | | | | | |---------------------|-------------|--------------|------------|----------|-----|-----|----|--| | Symbol | | Unit | | | | | | | | | - | 1 | - | -2 | | -3 | | | | | Min | Max | Min | Max | Min | Max | | | | t_{LUT} | | 0.7 | | 0.8 | | 1.1 | ns | | | t_{CLUT} | | 0.5 | | 0.6 | | 0.8 | ns | | | t _{RLUT} | | 0.6 | | 0.7 | | 1.0 | ns | | | t _{PACKED} | | 0.4 | | 0.4 | | 0.5 | ns | | | t_{EN} | | 0.9 | | 1.0 | | 1.3 | ns | | | t_{CICO} | | 0.1 | | 0.1 | | 0.2 | ns | | | t _{CGEN} | | 0.4 | | 0.5 | | 0.7 | ns | | | t _{CGENR} | | 0.1 | | 0.1 | | 0.2 | ns | | | t _{CASC} | | 0.7 | | 0.9 | | 1.1 | ns | | | t_{C} | | 1.1 | | 1.3 | | 1.7 | ns | | | $t_{\rm CO}$ | | 0.5 | | 0.7 | | 0.9 | ns | | | t _{COMB} | | 0.4 | | 0.5 | | 0.7 | ns | | | t _{SU} | 0.7 | | 0.8 | | 1.0 | | ns | | | t _H | 0.9 | | 1.0 | | 1.1 | | ns | | | t _{PRE} | | 0.8 | | 1.0 | | 1.4 | ns | | | t _{CLR} | | 0.9 | | 1.0 | | 1.4 | ns | | | t _{CH} | 2.0 | | 2.5 | | 2.5 | | ns | | | t_{CL} | 2.0 | | 2.5 | | 2.5 | | ns | | | Symbol | Speed Grade | | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|------|----|--|--| | | -1 | | -2 | | -3 | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t_{IOD} | | 2.6 | | 3.1 | | 4.0 | ns | | | | t _{IOC} | | 0.3 | | 0.4 | | 0.5 | ns | | | | t _{IOCO} | | 0.9 | | 1.0 | | 1.4 | ns | | | | t _{IOCOMB} | | 0.0 | | 0.0 | | 0.0 | ns | | | | t _{iosu} | 1.3 | | 1.5 | | 2.0 | | ns | | | | t _{IOH} | 0.9 | | 1.0 | | 1.4 | | ns | | | | t _{IOCLR} | | 1.1 | | 1.3 | | 1.7 | ns | | | | t _{OD1} | | 3.1 | | 3.7 | | 4.1 | ns | | | | t _{OD2} | | 2.6 | | 3.3 | | 3.9 | ns | | | | t _{OD3} | | 5.8 | | 6.9 | | 8.3 | ns | | | | t_{XZ} | | 3.8 | | 4.5 | | 5.9 | ns | | | | t_{ZX1} | | 3.8 | | 4.5 | | 5.9 | ns | | | | t_{ZX2} | | 3.3 | | 4.1 | | 5.7 | ns | | | | t_{ZX3} | | 6.5 | | 7.7 | | 10.1 | ns | | | | t _{INREG} | | 3.7 | | 4.3 | | 5.7 | ns | | | | t _{IOFD} | | 0.9 | | 1.0 | | 1.4 | ns | | | | t _{INCOMB} | | 1.9 | | 2.3 | | 3.0 | ns | | | | Symbol | Speed Grade | | | | | | | | | |------------------------|-------------|-----|-----|-----|-----|-----|----|--|--| | | -1 | | -2 | | -3 | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{EABDATA1} | | 1.8 | | 1.9 | | 1.9 | ns | | | | t _{EABDATA2} | | 0.6 | | 0.7 | | 0.7 | ns | | | | t _{EABWE1} | | 1.2 | | 1.2 | | 1.2 | ns | | | | t _{EABWE2} | | 0.4 | | 0.4 | | 0.4 | ns | | | | t _{EABRE1} | | 0.9 | | 0.9 | | 0.9 | ns | | | | t _{EABRE2} | | 0.4 | | 0.4 | | 0.4 | ns | | | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | | | t _{EABCO} | | 0.3 | | 0.3 | | 0.3 | ns | | | | t _{EABBYPASS} | | 0.5 | | 0.6 | | 0.6 | ns | | | | t _{EABSU} | 1.0 | | 1.0 | | 1.0 | | ns | | | | t _{EABH} | 0.5 | | 0.4 | | 0.4 | | ns | | | | t _{EABCLR} | 0.3 | | 0.3 | | 0.3 | | ns | | | | t_{AA} | | 3.4 | | 3.6 | | 3.6 | ns | | | | t_{WP} | 2.7 | | 2.8 | | 2.8 | | ns | | | | t_{RP} | 1.0 | | 1.0 | | 1.0 | | ns | | | | t _{WDSU} | 1.0 | | 1.0 | | 1.0 | | ns | | | | t _{WDH} | 0.1 | | 0.1 | | 0.1 | | ns | | | | t _{WASU} | 1.8 | | 1.9 | | 1.9 | | ns | | | | t _{WAH} | 1.9 | | 2.0 | | 2.0 | | ns | | | | t _{RASU} | 3.1 | | 3.5 | | 3.5 | | ns | | | | t _{RAH} | 0.2 | | 0.2 | | 0.2 | | ns | | | | t_{WO} | | 2.7 | | 2.8 | | 2.8 | ns | | | | t_{DD} | | 2.7 | | 2.8 | | 2.8 | ns | | | | t _{EABOUT} | | 0.5 | | 0.6 | | 0.6 | ns | | | | t _{EABCH} | 1.5 | | 2.0 | | 2.0 | | ns | | | | t _{EABCL} | 2.7 | | 2.8 | | 2.8 | | ns | | | | Symbol | | | Speed | l Grade | | | Unit | |-----------------------------|-----|-----|-------|---------|-----|------|------| | | -1 | | -2 | | -3 | | | | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (2) | 2.2 | | 2.3 | | 3.2 | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} (2) | 2.0 | 6.6 | 2.0 | 7.8 | 2.0 | 9.6 | ns | | t _{XZBIDIR} (2) | | 8.8 | | 11.2 | | 14.0 | ns | | t _{ZXBIDIR} (2) | | 8.8 | | 11.2 | | 14.0 | ns | | t _{INSUBIDIR} (4) | 3.1 | | 3.3 | | - | - | | | t _{INHBIDIR} (4) | 0.0 | | 0.0 | | - | | | | toutcobidir (4) | 0.5 | 5.1 | 0.5 | 6.4 | - | - | ns | | t _{XZBIDIR} (4) | | 7.3 | | 9.2 | | - | ns | | t _{ZXBIDIR} (4) | | 7.3 | | 9.2 | | - | ns | #### Notes to tables: - (1) All timing parameters are described in Tables 22 through 29 in this data sheet. - (2) This parameter is measured without the use of the ClockLock or ClockBoost circuits. - (3) These parameters are specified by characterization. - (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits. Tables 37 through 43 show EP1K30 device internal and external timing parameters. | Symbol | | | Speed | Grade | | | Unit | |---------------------|-----|-----|-------|-------|-----|-----|------| | | - | 1 | -2 | | -3 | | | | | Min | Max | Min | Max | Min | Max | | | t_{LUT} | | 0.7 | | 0.8 | | 1.1 | ns | | t _{CLUT} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{RLUT} | | 0.6 | | 0.7 | | 1.0 | ns | | t _{PACKED} | | 0.3 | | 0.4 | | 0.5 | ns | | t_{EN} | | 0.6 | | 0.8 | | 1.0 | ns | | t _{CICO} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{CGEN} | | 0.4 | | 0.5 | | 0.7 | ns | | t _{CGENR} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{CASC} | | 0.6 | | 0.8 | | 1.0 | ns | | t _C | | 0.0 | | 0.0 | | 0.0 | ns | | t _{co} | | 0.3 | | 0.4 | | 0.5 | ns | | Table 37. EP1K3 | 0 Device LE 1 | Timing Micr | oparameters | (Part 2 of . | 2) Note | (1) | | |-------------------|---------------|-------------|-------------|--------------|----------------|-----|----| | Symbol | | Unit | | | | | | | | _ | 1 | - | 2 | - | -3 | | | | Min | Max | Min | Max | Min | Max | | | t _{COMB} | | 0.4 | | 0.4 | | 0.6 | ns | | t_{SU} | 0.4 | | 0.6 | | 0.6 | | ns | | t _H | 0.7 | | 1.0 | | 1.3 | | ns | | t _{PRE} | | 0.8 | | 0.9 | | 1.2 | ns | | t_{CLR} | | 0.8 | | 0.9 | | 1.2 | ns | | t _{CH} | 2.0 | | 2.5 | | 2.5 | | ns | | t_{CL} | 2.0 | | 2.5 | | 2.5 | | ns | | Symbol | Speed Grade | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{IOD} | | 2.4 | | 2.8 | | 3.8 | ns | | | t _{ioc} | | 0.3 | | 0.4 | | 0.5 | ns | | | t _{IOCO} | | 1.0 | | 1.1 | | 1.6 | ns | | | t _{IOCOMB} | | 0.0 | | 0.0 | | 0.0 | ns | | | t _{iosu} | 1.2 | | 1.4 | | 1.9 | | ns | | | t _{IOH} | 0.3 | | 0.4 | | 0.5 | | ns | | | t _{IOCLR} | | 1.0 | | 1.1 | | 1.6 | ns | | | t _{OD1} | | 1.9 | | 2.3 | | 3.0 | ns | | | t _{OD2} | | 1.4 | | 1.8 | | 2.5 | ns | | | t _{OD3} | | 4.4 | | 5.2 | | 7.0 | ns | | | t_{XZ} | | 2.7 | | 3.1 | • | 4.3 | ns | | | t _{ZX1} | | 2.7 | | 3.1 | • | 4.3 | ns | | | t_{ZX2} | | 2.2 | | 2.6 | | 3.8 | ns | | | tzx3 | | 5.2 | | 6.0 | • | 8.3 | ns | | | [†] INREG | | 3.4 | | 4.1 | • | 5.5 | ns | | | IOFD | | 0.8 | | 1.3 | | 2.4 | ns | | | t _{INCOMB} | | 0.8 | | 1.3 | | 2.4 | ns | | **ACEX 1K Programmable Logic Device Family Data Sheet** | Symbol | Speed Grade | | | | | | | | |-------------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{EABAA} | | 6.4 | | 7.6 | | 8.8 | ns | | | t _{EABRCOMB} | 6.4 | | 7.6 | | 8.8 | | ns | | | t _{EABRCREG} | 4.4 | | 5.1 | | 6.0 | | ns | | | t _{EABWP} | 2.5 | | 2.9 | | 3.3 | | ns | | | t _{EABWCOMB} | 6.0 | | 7.0 | | 8.0 | | ns | | | t _{EABWCREG} | 6.8 | | 7.8 | | 9.0 | | ns | | | t _{EABDD} | | 5.7 | | 6.7 | | 7.7 | ns | | | t _{EABDATA} CO | | 0.8 | | 0.9 | | 1.1 | ns | | | t _{EABDATASU} | 1.5 | | 1.7 | | 2.0 | | ns | | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWESU} | 1.3 | | 1.4 | | 1.7 | | ns | | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWDSU} | 1.5 | | 1.7 | | 2.0 | | ns | | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWASU} | 3.0 | | 3.6 | | 4.3 | | ns | | | t _{EABWAH} | 0.5 | | 0.5 | | 0.4 | | ns | | | t _{EABWO} | | 5.1 | | 6.0 | | 6.8 | ns | | | Symbol | Speed Grade | | | | | | | | |--------------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{DIN2IOE} | | 3.1 | | 3.6 | | 4.4 | ns | | | t _{DIN2LE} | | 0.3 | | 0.4 | | 0.5 | ns | | | t _{DIN2DATA} | | 1.6 | | 1.8 | | 2.0 | ns | | | t _{DCLK2IOE} | | 0.8 | | 1.1 | | 1.4 | ns | | | t _{DCLK2LE} | | 0.3 | | 0.4 | | 0.5 | ns | | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.2 | ns | | | t _{SAMEROW} | | 1.5 | | 2.5 | | 3.4 | ns | | | t _{SAME} COLUMN | | 0.4 | | 1.0 | | 1.6 | ns | | | t _{DIFFROW} | | 1.9 | | 3.5 | | 5.0 | ns | | | t _{TWOROWS} | | 3.4 | | 6.0 | | 8.4 | ns | | | t _{LEPERIPH} | | 4.3 | | 5.4 | | 6.5 | ns | | | t _{LABCARRY} | | 0.5 | | 0.7 | | 0.9 | ns | | | t _{LABCASC} | | 0.8 | | 1.0 | | 1.4 | ns | | | Table 56. EP1K100 External Timing Parameters Notes (1), (2) | | | | | | | | | | |---|--------------------|-----|-----|------|-----|------|----|--|--| | Symbol | Symbol Speed Grade | | | | | | | | | | | -1 | | -2 | | -3 | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{DRR} | | 9.0 | | 12.0 | | 16.0 | ns | | | | t _{INSU} (3) | 2.0 | | 2.5 | | 3.3 | | ns | | | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{оитсо} (3) | 2.0 | 5.2 | 2.0 | 6.9 | 2.0 | 9.1 | ns | | | | t _{INSU} (4) | 2.0 | | 2.2 | | _ | | ns | | | | t _{INH} (4) | 0.0 | | 0.0 | | - | | ns | | | | t _{OUTCO} (4) | 0.5 | 3.0 | 0.5 | 4.6 | _ | _ | ns | | | | t _{PCISU} | 3.0 | | 6.2 | | _ | | ns | | | | t _{PCIH} | 0.0 | | 0.0 | | _ | | ns | | | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 6.9 | _ | _ | ns | | |