Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 72 | | Number of Logic Elements/Cells | 576 | | Total RAM Bits | 12288 | | Number of I/O | 66 | | Number of Gates | 56000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 100-TQFP | | Supplier Device Package | 100-TQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1k10tc100-3 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # ...and More Features - -1 speed grade devices are compliant with *PCI Local Bus Specification, Revision 2.2* for 5.0-V operation - Built-in Joint Test Action Group (JTAG) boundary-scan test (BST) circuitry compliant with IEEE Std. 1149.1-1990, available without consuming additional device logic. - Operate with a 2.5-V internal supply voltage - In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port - ClockLock™ and ClockBoost™ options for reduced clock delay, clock skew, and clock multiplication - Built-in, low-skew clock distribution trees - 100% functional testing of all devices; test vectors or scan chains are not required - Pull-up on I/O pins before and during configuration #### ■ Flexible interconnect - FastTrack® Interconnect continuous routing structure for fast, predictable interconnect delays - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions) - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions) - Tri-state emulation that implements internal tri-state buses - Up to six global clock signals and four global clear signals # Powerful I/O pins - Individual tri-state output enable control for each pin - Open-drain option on each I/O pin - Programmable output slew-rate control to reduce switching noise - Clamp to V_{CCIO} user-selectable on a pin-by-pin basis - Supports hot-socketing # **Embedded Array Block** The EAB is a flexible block of RAM, with registers on the input and output ports, that is used to implement common gate array megafunctions. Because it is large and flexible, the EAB is suitable for functions such as multipliers, vector scalars, and error correction circuits. These functions can be combined in applications such as digital filters and microcontrollers. Logic functions are implemented by programming the EAB with a read-only pattern during configuration, thereby creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of EABs. The large capacity of EABs enables designers to implement complex functions in a single logic level without the routing delays associated with linked LEs or field-programmable gate array (FPGA) RAM blocks. For example, a single EAB can implement any function with 8 inputs and 16 outputs. Parameterized functions, such as LPM functions, can take advantage of the EAB automatically. The ACEX 1K enhanced EAB supports dual-port RAM. The dual-port structure is ideal for FIFO buffers with one or two clocks. The ACEX 1K EAB can also support up to 16-bit-wide RAM blocks. The ACEX 1K EAB can act in dual-port or single-port mode. When in dual-port mode, separate clocks may be used for EAB read and write sections, allowing the EAB to be written and read at different rates. It also has separate synchronous clock enable signals for the EAB read and write sections, which allow independent control of these sections. The EAB can also be used for bidirectional, dual-port memory applications where two ports read or write simultaneously. To implement this type of dual-port memory, two EABs are used to support two simultaneous reads or writes. Alternatively, one clock and clock enable can be used to control the input registers of the EAB, while a different clock and clock enable control the output registers (see Figure 2). # LE Operating Modes The ACEX 1K LE can operate in the following four modes: - Normal mode - Arithmetic mode - Up/down counter mode - Clearable counter mode Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance. The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs. Figure 11 shows the ACEX 1K LE operating modes. #### Normal Mode The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a 4-input LUT. The compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time. The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a 3-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a 4-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa. #### Arithmetic Mode The arithmetic mode offers two 3-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a 3-input function; the other generates a carry output. As shown in Figure 11, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. #### **Up/Down Counter Mode** The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Two 3-input LUTs are used; one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources. In addition to the six clear and preset modes, ACEX 1K devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality. Figure 12. ACEX 1K LE Clear & Preset Modes # **Asynchronous Clear** The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this mode, the preset signal is tied to VCC to deactivate it. # **Asynchronous Preset** An asynchronous preset is implemented as an asynchronous load, or with an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the Altera software can provide preset control by using the clear and inverting the register's input and output. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes. # **Asynchronous Preset & Clear** When implementing asynchronous clear and preset, LABCTRL1 controls the preset, and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register. # **Asynchronous Load with Clear** When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits. # **Asynchronous Load with Preset** When implementing an asynchronous load in conjunction with preset, the Altera software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The Altera software inverts the signal that drives DATA3 to account for the inversion of the register's output. #### Asynchronous Load without Preset or Clear When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row. Table 6 summarizes the FastTrack Interconnect routing structure resources available in each ACEX 1K device. | Table 6. ACEX 1 | IK FastTrack | Interconnect Reso | urces | | |-----------------|--------------|---------------------|---------|------------------------| | Device | Rows | Channels per
Row | Columns | Channels per
Column | | EP1K10 | 3 | 144 | 24 | 24 | | EP1K30 | 6 | 216 | 36 | 24 | | EP1K50 | 10 | 216 | 36 | 24 | | EP1K100 | 12 | 312 | 52 | 24 | In addition to general-purpose I/O pins, ACEX 1K devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output-enable and clock-enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device. Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3. When dedicated inputs drive non-inverted and inverted peripheral clears, clock enables, and output enables, two signals on the peripheral control bus will be used. Table 7 lists the sources for each peripheral control signal and shows how the output enable, clock enable, clock, and clear signals share 12 peripheral control signals. Table 7 also shows the rows that can drive global signals. | Table 7. Peripheral Bus Sources | for ACEX Devices | | | | |---------------------------------|------------------|--------|--------|---------| | Peripheral Control Signal | EP1K10 | EP1K30 | EP1K50 | EP1K100 | | OE0 | Row A | Row A | Row A | Row A | | OE1 | Row A | Row B | Row B | Row C | | OE2 | Row B | Row C | Row D | Row E | | OE3 | Row B | Row D | Row F | Row L | | OE4 | Row C | Row E | Row H | Row I | | OE5 | Row C | Row F | Row J | Row K | | CLKENAO/CLKO/GLOBALO | Row A | Row A | Row A | Row F | | CLKENA1/OE6/GLOBAL1 | Row A | Row B | Row C | Row D | | CLKENA2/CLR0 | Row B | Row C | Row E | Row B | | CLKENA3/OE7/GLOBAL2 | Row B | Row D | Row G | Row H | | CLKENA4/CLR1 | Row C | Row E | Row I | Row J | | CLKENA5/CLK1/GLOBAL3 | Row C | Row F | Row J | Row G | Signals on the peripheral control bus can also drive the four global signals, referred to as <code>GLOBALO</code> through <code>GLOBALO</code>. An internally generated signal can drive a global signal, providing the same low-skew, low-delay characteristics as a signal driven by an input pin. An LE drives the global signal by driving a row line that drives the peripheral bus which then drives the global signal. This feature is ideal for internally generated clear or clock signals with high fan-out. However, internally driven global signals offer no advantage over the general-purpose interconnect for routing data signals. The chip-wide output enable pin is an active-high pin that can be used to tri-state all pins on the device. This option can be set in the Altera software. The built-in I/O pin pull-up resistors (which are active during configuration) are active when the chip-wide output enable pin is asserted. The registers in the IOE can also be reset by the chip-wide reset pin. Figure 20. ACEX 1K JTAG Waveforms Table 17 shows the timing parameters and values for ACEX 1K devices. | Symbol | Parameter | Min | Max | Unit | |-------------------|--|-----|-----|------| | t _{JCP} | TCK clock period | 100 | | ns | | t _{JCH} | TCK clock high time | 50 | | ns | | t _{JCL} | TCK clock low time | 50 | | ns | | t _{JPSU} | JTAG port setup time | 20 | | ns | | t _{JPH} | JTAG port hold time | 45 | | ns | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | t _{JSSU} | Capture register setup time | 20 | | ns | | t _{JSH} | Capture register hold time | 45 | | ns | | t _{JSCO} | Update register clock to output | | 35 | ns | | t _{JSZX} | Update register high impedance to valid output | | 35 | ns | | t _{JSXZ} | Update register valid output to high impedance | | 35 | ns | | Table 2 | 0. ACEX 1K Device DC Operatii | ng Conditions (Part 2 of a | 2) Notes (6 | 6), (7) | | | |-------------------|--|--|--------------------|---------|-------------------------|------| | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | V _{OL} | 3.3-V low-level TTL output voltage | I _{OL} = 12 mA DC,
V _{CCIO} = 3.00 V (10) | | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 3.00 V (10) | | | 0.2 | V | | | 3.3-V low-level PCI output voltage | I_{OL} = 1.5 mA DC,
V_{CCIO} = 3.00 to 3.60 V
(10) | | | 0.1 × V _{CCIO} | V | | | 2.5-V low-level output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 2.375 V (10) | | | 0.2 | V | | | | I _{OL} = 1 mA DC,
V _{CCIO} = 2.375 V (10) | | | 0.4 | V | | | | I _{OL} = 2 mA DC,
V _{CCIO} = 2.375 V (10) | | | 0.7 | V | | I _I | Input pin leakage current | $V_I = 5.3 \text{ to } -0.3 \text{ V } (11)$ | -10 | | 10 | μΑ | | I _{OZ} | Tri-stated I/O pin leakage current | $V_{O} = 5.3 \text{ to } -0.3 \text{ V } (11)$ | -10 | | 10 | μΑ | | I _{CC0} | V _{CC} supply current (standby) | V _I = ground, no load,
no toggling inputs | | 5 | | mA | | | | V _I = ground, no load,
no toggling inputs (12) | | 10 | | mA | | R _{CONF} | Value of I/O pin pull-up | V _{CCIO} = 3.0 V (13) | 20 | | 50 | kΩ | | | resistor before and during configuration | V _{CCIO} = 2.375 V (13) | 30 | | 80 | kΩ | Figure 23. Output Drive Characteristics of ACEX 1K Devices # **Timing Model** The continuous, high-performance FastTrack Interconnect routing resources ensure accurate simulation and timing analysis as well as predictable performance. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and, therefore, have an unpredictable performance. Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters: - LE register clock-to-output delay (t_{CO}) - Interconnect delay (*t_{SAMEROW}*) - LE look-up table delay (t_{LUT}) - LE register setup time (t_{SI}) The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs. Timing simulation and delay prediction are available with the simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis. Tables 30 through 36 show EP1K10 device internal and external timing parameters. | Table 30. EP1K10 | 0 Device LE | Timing Micro | parameters | Note (1) | | | | |---------------------|-------------|--------------|------------|----------|-----|-----|----| | Symbol | | | Unit | | | | | | | -1 | | - | 2 | - | -3 | | | | Min | Max | Min | Max | Min | Max | | | t_{LUT} | | 0.7 | | 0.8 | | 1.1 | ns | | t_{CLUT} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{RLUT} | | 0.6 | | 0.7 | | 1.0 | ns | | t _{PACKED} | | 0.4 | | 0.4 | | 0.5 | ns | | t_{EN} | | 0.9 | | 1.0 | | 1.3 | ns | | t_{CICO} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{CGEN} | | 0.4 | | 0.5 | | 0.7 | ns | | t _{CGENR} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{CASC} | | 0.7 | | 0.9 | | 1.1 | ns | | t_{C} | | 1.1 | | 1.3 | | 1.7 | ns | | $t_{\rm CO}$ | | 0.5 | | 0.7 | | 0.9 | ns | | t _{COMB} | | 0.4 | | 0.5 | | 0.7 | ns | | t _{SU} | 0.7 | | 0.8 | | 1.0 | | ns | | t _H | 0.9 | | 1.0 | | 1.1 | | ns | | t _{PRE} | | 0.8 | | 1.0 | | 1.4 | ns | | t _{CLR} | | 0.9 | | 1.0 | | 1.4 | ns | | t _{CH} | 2.0 | | 2.5 | | 2.5 | | ns | | t_{CL} | 2.0 | | 2.5 | | 2.5 | | ns | | Symbol | | | Speed | l Grade | | | Unit | | |-----------------------------|-----|-----|-------|---------|-----|------|------|--| | | -1 | | - | 2 | - | 3 | | | | | Min | Max | Min | Max | Min | Max | | | | t _{INSUBIDIR} (2) | 2.2 | | 2.3 | | 3.2 | | ns | | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{OUTCOBIDIR} (2) | 2.0 | 6.6 | 2.0 | 7.8 | 2.0 | 9.6 | ns | | | t _{XZBIDIR} (2) | | 8.8 | | 11.2 | | 14.0 | ns | | | t _{ZXBIDIR} (2) | | 8.8 | | 11.2 | | 14.0 | ns | | | t _{INSUBIDIR} (4) | 3.1 | | 3.3 | | - | - | | | | t _{INHBIDIR} (4) | 0.0 | | 0.0 | | - | | | | | toutcobidir (4) | 0.5 | 5.1 | 0.5 | 6.4 | - | - | ns | | | t _{XZBIDIR} (4) | | 7.3 | | 9.2 | | - | ns | | | t _{ZXBIDIR} (4) | | 7.3 | | 9.2 | | - | ns | | # Notes to tables: - (1) All timing parameters are described in Tables 22 through 29 in this data sheet. - (2) This parameter is measured without the use of the ClockLock or ClockBoost circuits. - (3) These parameters are specified by characterization. - (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits. Tables 37 through 43 show EP1K30 device internal and external timing parameters. | Symbol | | Speed Grade | | | | | | | | | |---------------------|-----|-------------|-----|-----|-----|-----|----|--|--|--| | | - | 1 | - | 2 | -3 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t_{LUT} | | 0.7 | | 0.8 | | 1.1 | ns | | | | | t _{CLUT} | | 0.5 | | 0.6 | | 0.8 | ns | | | | | t _{RLUT} | | 0.6 | | 0.7 | | 1.0 | ns | | | | | t _{PACKED} | | 0.3 | | 0.4 | | 0.5 | ns | | | | | t_{EN} | | 0.6 | | 0.8 | | 1.0 | ns | | | | | t _{CICO} | | 0.1 | | 0.1 | | 0.2 | ns | | | | | t _{CGEN} | | 0.4 | | 0.5 | | 0.7 | ns | | | | | t _{CGENR} | | 0.1 | | 0.1 | | 0.2 | ns | | | | | t _{CASC} | | 0.6 | | 0.8 | | 1.0 | ns | | | | | t _C | | 0.0 | | 0.0 | | 0.0 | ns | | | | | t _{co} | | 0.3 | | 0.4 | | 0.5 | ns | | | | | Table 37. EP1K3 | 0 Device LE 1 | Timing Micr | oparameters | (Part 2 of . | 2) Note | (1) | | |-------------------|---------------|-------------|-------------|--------------|----------------|-----|----| | Symbol | | Unit | | | | | | | | _ | -1 | | 2 | - | -3 | | | | Min | Max | Min | Max | Min | Max | | | t _{COMB} | | 0.4 | | 0.4 | | 0.6 | ns | | t_{SU} | 0.4 | | 0.6 | | 0.6 | | ns | | t _H | 0.7 | | 1.0 | | 1.3 | | ns | | t _{PRE} | | 0.8 | | 0.9 | | 1.2 | ns | | t_{CLR} | | 0.8 | | 0.9 | | 1.2 | ns | | t _{CH} | 2.0 | | 2.5 | | 2.5 | | ns | | t_{CL} | 2.0 | | 2.5 | | 2.5 | | ns | | Symbol | Speed Grade | | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|-----|----|--|--| | | -1 | | - | -2 | | 3 | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{IOD} | | 2.4 | | 2.8 | | 3.8 | ns | | | | t _{ioc} | | 0.3 | | 0.4 | | 0.5 | ns | | | | t _{IOCO} | | 1.0 | | 1.1 | | 1.6 | ns | | | | t _{IOCOMB} | | 0.0 | | 0.0 | | 0.0 | ns | | | | t _{iosu} | 1.2 | | 1.4 | | 1.9 | | ns | | | | t _{IOH} | 0.3 | | 0.4 | | 0.5 | | ns | | | | t _{IOCLR} | | 1.0 | | 1.1 | | 1.6 | ns | | | | t _{OD1} | | 1.9 | | 2.3 | | 3.0 | ns | | | | OD2 | | 1.4 | | 1.8 | | 2.5 | ns | | | | t _{OD3} | | 4.4 | | 5.2 | | 7.0 | ns | | | | t _{XZ} | | 2.7 | | 3.1 | • | 4.3 | ns | | | | t _{ZX1} | | 2.7 | | 3.1 | • | 4.3 | ns | | | | t _{ZX2} | | 2.2 | | 2.6 | • | 3.8 | ns | | | | tzx3 | | 5.2 | | 6.0 | | 8.3 | ns | | | | INREG | | 3.4 | | 4.1 | • | 5.5 | ns | | | | IOFD | | 0.8 | | 1.3 | | 2.4 | ns | | | | t _{INCOMB} | | 0.8 | | 1.3 | | 2.4 | ns | | | | Symbol | Speed Grade | | | | | | | | | |------------------------|-------------|-----|-----|-----|-----|-----|----|--|--| | | _ | -1 | | 2 | _ | 3 | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{EABDATA1} | | 1.7 | | 2.0 | | 2.3 | ns | | | | t _{EABDATA1} | | 0.6 | | 0.7 | | 0.8 | ns | | | | t _{EABWE1} | | 1.1 | | 1.3 | | 1.4 | ns | | | | t _{EABWE2} | | 0.4 | | 0.4 | | 0.5 | ns | | | | t _{EABRE1} | | 0.8 | | 0.9 | | 1.0 | ns | | | | t _{EABRE2} | | 0.4 | | 0.4 | | 0.5 | ns | | | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | | | t _{EABCO} | | 0.3 | | 0.3 | | 0.4 | ns | | | | t _{EABBYPASS} | | 0.5 | | 0.6 | | 0.7 | ns | | | | t _{EABSU} | 0.9 | | 1.0 | | 1.2 | | ns | | | | t _{EABH} | 0.4 | | 0.4 | | 0.5 | | ns | | | | t _{EABCLR} | 0.3 | | 0.3 | | 0.3 | | ns | | | | t_{AA} | | 3.2 | | 3.8 | | 4.4 | ns | | | | t_{WP} | 2.5 | | 2.9 | | 3.3 | | ns | | | | t_{RP} | 0.9 | | 1.1 | | 1.2 | | ns | | | | t _{WDSU} | 0.9 | | 1.0 | | 1.1 | | ns | | | | t_{WDH} | 0.1 | | 0.1 | | 0.1 | | ns | | | | t _{WASU} | 1.7 | | 2.0 | | 2.3 | | ns | | | | t _{WAH} | 1.8 | | 2.1 | | 2.4 | | ns | | | | t _{RASU} | 3.1 | | 3.7 | | 4.2 | | ns | | | | t _{RAH} | 0.2 | | 0.2 | | 0.2 | | ns | | | | t_{WO} | | 2.5 | | 2.9 | | 3.3 | ns | | | | t_{DD} | | 2.5 | | 2.9 | | 3.3 | ns | | | | t _{EABOUT} | | 0.5 | | 0.6 | | 0.7 | ns | | | | t _{EABCH} | 1.5 | | 2.0 | | 2.3 | | ns | | | | t _{EABCL} | 2.5 | | 2.9 | | 3.3 | | ns | | | **ACEX 1K Programmable Logic Device Family Data Sheet** | Symbol | Speed Grade | | | | | | | | | |-------------------------|-------------|-----|-----|-----|-----|-----|----|--|--| | | -1 | | - | 2 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{EABAA} | | 6.4 | | 7.6 | | 8.8 | ns | | | | t _{EABRCOMB} | 6.4 | | 7.6 | | 8.8 | | ns | | | | t _{EABRCREG} | 4.4 | | 5.1 | | 6.0 | | ns | | | | t _{EABWP} | 2.5 | | 2.9 | | 3.3 | | ns | | | | t _{EABWCOMB} | 6.0 | | 7.0 | | 8.0 | | ns | | | | t _{EABWCREG} | 6.8 | | 7.8 | | 9.0 | | ns | | | | t _{EABDD} | | 5.7 | | 6.7 | | 7.7 | ns | | | | t _{EABDATA} CO | | 0.8 | | 0.9 | | 1.1 | ns | | | | t _{EABDATASU} | 1.5 | | 1.7 | | 2.0 | | ns | | | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{EABWESU} | 1.3 | | 1.4 | | 1.7 | | ns | | | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{EABWDSU} | 1.5 | | 1.7 | | 2.0 | | ns | | | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{EABWASU} | 3.0 | | 3.6 | | 4.3 | | ns | | | | t _{EABWAH} | 0.5 | | 0.5 | | 0.4 | | ns | | | | t _{EABWO} | | 5.1 | | 6.0 | | 6.8 | ns | | | | Symbol | Speed Grade | | | | | | | | |-------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t_{CO} | | 0.6 | | 0.6 | | 0.7 | ns | | | t _{COMB} | | 0.3 | | 0.4 | | 0.5 | ns | | | t _{SU} | 0.5 | | 0.6 | | 0.7 | | ns | | | t_H | 0.5 | | 0.6 | | 0.8 | | ns | | | t _{PRE} | | 0.4 | | 0.5 | | 0.7 | ns | | | t _{CLR} | | 0.8 | | 1.0 | | 1.2 | ns | | | t _{CH} | 2.0 | | 2.5 | | 3.0 | | ns | | | t_{CL} | 2.0 | | 2.5 | | 3.0 | | ns | | | Symbol | Speed Grade | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|-----|----|--| | • | _ | 1 | - | 2 | _ | 3 | | | | | Min | Max | Min | Max | Min | Max | | | | t_{IOD} | | 1.3 | | 1.3 | | 1.9 | ns | | | t _{IOC} | | 0.3 | | 0.4 | | 0.4 | ns | | | t _{IOCO} | | 1.7 | | 2.1 | | 2.6 | ns | | | t _{IOCOMB} | | 0.5 | | 0.6 | | 0.8 | ns | | | t _{IOSU} | 0.8 | | 1.0 | | 1.3 | | ns | | | t _{IOH} | 0.4 | | 0.5 | | 0.6 | | ns | | | t _{IOCLR} | | 0.2 | | 0.2 | | 0.4 | ns | | | t _{OD1} | | 1.2 | | 1.2 | | 1.9 | ns | | | t _{OD2} | | 0.7 | | 0.8 | | 1.7 | ns | | | t _{OD3} | | 2.7 | | 3.0 | | 4.3 | ns | | | t_{XZ} | | 4.7 | | 5.7 | | 7.5 | ns | | | t_{ZX1} | | 4.7 | | 5.7 | | 7.5 | ns | | | t_{ZX2} | | 4.2 | | 5.3 | | 7.3 | ns | | | t_{ZX3} | | 6.2 | | 7.5 | | 9.9 | ns | | | t _{INREG} | | 3.5 | | 4.2 | | 5.6 | ns | | | t _{IOFD} | | 1.1 | | 1.3 | | 1.8 | ns | | | t _{INCOMB} | | 1.1 | | 1.3 | | 1.8 | ns | | Tables 51 through 57 show EP1K100 device internal and external timing parameters. | Symbol | Speed Grade | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t_{LUT} | | 0.7 | | 1.0 | | 1.5 | ns | | | t _{CLUT} | | 0.5 | | 0.7 | | 0.9 | ns | | | t _{RLUT} | | 0.6 | | 0.8 | | 1.1 | ns | | | t _{PACKED} | | 0.3 | | 0.4 | | 0.5 | ns | | | t _{EN} | | 0.2 | | 0.3 | | 0.3 | ns | | | t _{CICO} | | 0.1 | | 0.1 | | 0.2 | ns | | | t _{CGEN} | | 0.4 | | 0.5 | | 0.7 | ns | | | t _{CGENR} | | 0.1 | | 0.1 | | 0.2 | ns | | | t _{CASC} | | 0.6 | | 0.9 | | 1.2 | ns | | | t_C | | 0.8 | | 1.0 | | 1.4 | ns | | | t_{CO} | | 0.6 | | 0.8 | | 1.1 | ns | | | t _{COMB} | | 0.4 | | 0.5 | | 0.7 | ns | | | t _{SU} | 0.4 | | 0.6 | | 0.7 | | ns | | | t _H | 0.5 | | 0.7 | | 0.9 | | ns | | | t _{PRE} | | 0.8 | | 1.0 | | 1.4 | ns | | | t _{CLR} | | 0.8 | | 1.0 | | 1.4 | ns | | | t _{CH} | 1.5 | | 2.0 | | 2.5 | | ns | | | t_{CL} | 1.5 | | 2.0 | | 2.5 | i i | ns | | | Symbol | Speed Grade | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t_{IOD} | | 1.7 | | 2.0 | | 2.6 | ns | | | t _{IOC} | | 0.0 | | 0.0 | | 0.0 | ns | | | t _{IOCO} | | 1.4 | | 1.6 | | 2.1 | ns | | | t _{IOCOMB} | | 0.5 | | 0.7 | | 0.9 | ns | | | t _{IOSU} | 0.8 | | 1.0 | | 1.3 | | ns | | | t _{IOH} | 0.7 | | 0.9 | | 1.2 | | ns | | | t _{IOCLR} | | 0.5 | | 0.7 | | 0.9 | ns | | | t _{OD1} | | 3.0 | | 4.2 | | 5.6 | ns | | | t _{OD2} | | 3.0 | | 4.2 | | 5.6 | ns | | | t _{OD3} | | 4.0 | | 5.5 | | 7.3 | ns | | | t_{XZ} | | 3.5 | | 4.6 | | 6.1 | ns | | | t_{ZX1} | | 3.5 | | 4.6 | | 6.1 | ns | | | t_{ZX2} | | 3.5 | | 4.6 | | 6.1 | ns | | | t_{ZX3} | | 4.5 | | 5.9 | | 7.8 | ns | | | t _{INREG} | | 2.0 | | 2.6 | | 3.5 | ns | | | t _{IOFD} | | 0.5 | | 0.8 | | 1.2 | ns | | | t _{INCOMB} | | 0.5 | | 0.8 | | 1.2 | ns | | | Symbol | Speed Grade | | | | | | | | |-------------------------|-------------|-----|-----|-----|------|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{EABAA} | | 5.9 | | 7.6 | | 9.9 | ns | | | t _{EABRCOMB} | 5.9 | | 7.6 | | 9.9 | | ns | | | t _{EABRCREG} | 5.1 | | 6.5 | | 8.5 | | ns | | | t _{EABWP} | 2.7 | | 3.5 | | 4.7 | | ns | | | t _{EABWCOMB} | 5.9 | | 7.7 | | 10.3 | | ns | | | t _{EABWCREG} | 5.4 | | 7.0 | | 9.4 | | ns | | | t _{EABDD} | | 3.4 | | 4.5 | | 5.9 | ns | | | t _{EABDATA} CO | | 0.5 | | 0.7 | | 0.8 | ns | | | t _{EABDATASU} | 0.8 | | 1.0 | | 1.4 | | ns | | | t _{EABDATAH} | 0.1 | | 0.1 | | 0.2 | | ns | | | t _{EABWESU} | 1.1 | | 1.4 | | 1.9 | | ns | | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWDSU} | 1.0 | | 1.3 | | 1.7 | | ns | | | t _{EABWDH} | 0.2 | | 0.2 | | 0.3 | | ns | | | t _{EABWASU} | 4.1 | | 5.2 | | 6.8 | | ns | | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWO} | | 3.4 | | 4.5 | | 5.9 | ns | |