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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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General 
Description

Altera® ACEX 1K devices provide a die-efficient, low-cost architecture by 
combining look-up table (LUT) architecture with EABs. LUT-based logic 
provides optimized performance and efficiency for data-path, register 
intensive, mathematical, or digital signal processing (DSP) designs, while 
EABs implement RAM, ROM, dual-port RAM, or first-in first-out (FIFO) 
functions. These elements make ACEX 1K suitable for complex logic 
functions and memory functions such as digital signal processing, wide 
data-path manipulation, data transformation and microcontrollers, as 
required in high-performance communications applications. Based on 
reconfigurable CMOS SRAM elements, the ACEX 1K architecture 
incorporates all features necessary to implement common gate array 
megafunctions, along with a high pin count to enable an effective interface 
with system components. The advanced process and the low voltage 
requirement of the 2.5-V core allow ACEX 1K devices to meet the 
requirements of low-cost, high-volume applications ranging from DSL 
modems to low-cost switches.

The ability to reconfigure ACEX 1K devices enables complete testing prior 
to shipment and allows the designer to focus on simulation and design 
verification. ACEX 1K device reconfigurability eliminates inventory 
management for gate array designs and test vector generation for fault 
coverage.

Table 4 shows ACEX 1K device performance for some common designs. 
All performance results were obtained with Synopsys DesignWare or 
LPM functions. Special design techniques are not required to implement 
the applications; the designer simply infers or instantiates a function in a 
Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or 
schematic design file.

Notes:
(1) This application uses combinatorial inputs and outputs.
(2) This application uses registered inputs and outputs.

Table 4. ACEX 1K Device Performance

Application Resources 
Used

Performance

LEs EABs Speed Grade Units

-1 -2 -3

16-bit loadable counter 16 0 285 232 185 MHz

16-bit accumulator 16 0 285 232 185 MHz

16-to-1 multiplexer (1) 10 0 3.5 4.5 6.6 ns

16-bit multiplier with 3-stage pipeline(2) 592 0 156 131 93 MHz

256 × 16 RAM read cycle speed (2) 0 1 278 196 143 MHz

256 × 16 RAM write cycle speed (2) 0 1 185 143 111 MHz
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Embedded Array Block

The EAB is a flexible block of RAM, with registers on the input and output 
ports, that is used to implement common gate array megafunctions. 
Because it is large and flexible, the EAB is suitable for functions such as 
multipliers, vector scalars, and error correction circuits. These functions 
can be combined in applications such as digital filters and 
microcontrollers. 

Logic functions are implemented by programming the EAB with a read-
only pattern during configuration, thereby creating a large LUT. With 
LUTs, combinatorial functions are implemented by looking up the results 
rather than by computing them. This implementation of combinatorial 
functions can be faster than using algorithms implemented in general 
logic, a performance advantage that is further enhanced by the fast access 
times of EABs. The large capacity of EABs enables designers to implement 
complex functions in a single logic level without the routing delays 
associated with linked LEs or field-programmable gate array (FPGA) 
RAM blocks. For example, a single EAB can implement any function with 
8 inputs and 16 outputs. Parameterized functions, such as LPM functions, 
can take advantage of the EAB automatically.

The ACEX 1K enhanced EAB supports dual-port RAM. The dual-port 
structure is ideal for FIFO buffers with one or two clocks. The ACEX 1K 
EAB can also support up to 16-bit-wide RAM blocks. The ACEX 1K EAB 
can act in dual-port or single-port mode. When in dual-port mode, 
separate clocks may be used for EAB read and write sections, allowing the 
EAB to be written and read at different rates. It also has separate 
synchronous clock enable signals for the EAB read and write sections, 
which allow independent control of these sections.

The EAB can also be used for bidirectional, dual-port memory 
applications where two ports read or write simultaneously. To implement 
this type of dual-port memory, two EABs are used to support two 
simultaneous reads or writes.

Alternatively, one clock and clock enable can be used to control the input 
registers of the EAB, while a different clock and clock enable control the 
output registers (see Figure 2).
Altera Corporation  9
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Each LAB provides four control signals with programmable inversion 
that can be used in all eight LEs. Two of these signals can be used as clocks, 
the other two can be used for clear/preset control. The LAB clocks can be 
driven by the dedicated clock input pins, global signals, I/O signals, or 
internal signals via the LAB local interconnect. The LAB preset and clear 
control signals can be driven by the global signals, I/O signals, or internal 
signals via the LAB local interconnect. The global control signals are 
typically used for global clock, clear, or preset signals because they 
provide asynchronous control with very low skew across the device. If 
logic is required on a control signal, it can be generated in one or more LEs 
in any LAB and driven into the local interconnect of the target LAB. In 
addition, the global control signals can be generated from LE outputs.

Logic Element

The LE, the smallest unit of logic in the ACEX 1K architecture, has a 
compact size that provides efficient logic utilization. Each LE contains a 
4-input LUT, which is a function generator that can quickly compute any 
function of four variables. In addition, each LE contains a programmable 
flipflop with a synchronous clock enable, a carry chain, and a cascade 
chain. Each LE drives both the local and the FastTrack Interconnect 
routing structure. Figure 8 shows the ACEX 1K LE.
Altera Corporation  15
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Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but 
it supports a synchronous clear instead of the up/down control. The clear 
function is substituted for the cascade-in signal in the up/down counter 
mode. Two 3-input LUTs are used; one generates the counter data, and the 
other generates the fast carry bit. Synchronous loading is provided by a 
2-to-1 multiplexer. The output of this multiplexer is AND ed with a 
synchronous clear signal. 

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer. 

Clear & Preset Logic Control

Logic for the programmable register’s clear and preset functions is 
controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The 
clear and preset control structure of the LE asynchronously loads signals 
into a register. Either LABCTRL1 or LABCTRL2 can control the 
asynchronous clear. Alternatively, the register can be set up so that 
LABCTRL1 implements an asynchronous load. The data to be loaded is 
driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the 
register.

During compilation, the compiler automatically selects the best control 
signal implementation. Because the clear and preset functions are active-
low, the Compiler automatically assigns a logic high to an unused clear or 
preset. 

The clear and preset logic is implemented in one of the following six 
modes chosen during design entry: 

■ Asynchronous clear
■ Asynchronous preset
■ Asynchronous clear and preset
■ Asynchronous load with clear
■ Asynchronous load with preset
■ Asynchronous load without clear or preset
Altera Corporation  23
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FastTrack Interconnect Routing Structure

In the ACEX 1K architecture, connections between LEs, EABs, and device 
I/O pins are provided by the FastTrack Interconnect routing structure, 
which is a series of continuous horizontal and vertical routing channels 
that traverse the device. This global routing structure provides 
predictable performance, even in complex designs. In contrast, the 
segmented routing in FPGAs requires switch matrices to connect a 
variable number of routing paths, increasing the delays between logic 
resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column 
interconnect channels that span the entire device. Each row of LABs is 
served by a dedicated row interconnect. The row interconnect can drive 
I/O pins and feed other LABs in the row. The column interconnect routes 
signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row 
signal is buffered at every LAB or EAB to reduce the effect of fan-out on 
delay. A row channel can be driven by an LE or by one of three column 
channels. These four signals feed dual 4-to-1 multiplexers that connect to 
two specific row channels. These multiplexers, which are connected to 
each LE, allow column channels to drive row channels even when all eight 
LEs in a LAB drive the row interconnect. 

Each column of LABs or EABs is served by a dedicated column 
interconnect. The column interconnect that serves the EABs has twice as 
many channels as other column interconnects. The column interconnect 
can then drive I/O pins or another row’s interconnect to route the signals 
to other LABs or EABs in the device. A signal from the column 
interconnect, which can be either the output of a LE or an input from an 
I/O pin, must be routed to the row interconnect before it can enter a LAB 
or EAB. Each row channel that is driven by an IOE or EAB can drive one 
specific column channel.

Access to row and column channels can be switched between LEs in 
adjacent pairs of LABs. For example, a LE in one LAB can drive the row 
and column channels normally driven by a particular LE in the adjacent 
LAB in the same row, and vice versa. This flexibility enables routing 
resources to be used more efficiently. Figure 13 shows the ACEX 1K LAB.
26 Altera Corporation
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When dedicated inputs drive non-inverted and inverted peripheral clears, 
clock enables, and output enables, two signals on the peripheral control 
bus will be used.

Table 7 lists the sources for each peripheral control signal and shows how 
the output enable, clock enable, clock, and clear signals share 
12 peripheral control signals. Table 7 also shows the rows that can drive 
global signals.

Signals on the peripheral control bus can also drive the four global signals, 
referred to as GLOBAL0 through GLOBAL3. An internally generated signal 
can drive a global signal, providing the same low-skew, low-delay 
characteristics as a signal driven by an input pin. An LE drives the global 
signal by driving a row line that drives the peripheral bus which then 
drives the global signal. This feature is ideal for internally generated clear 
or clock signals with high fan-out. However, internally driven global 
signals offer no advantage over the general-purpose interconnect for 
routing data signals.

The chip-wide output enable pin is an active-high pin that can be used to 
tri-state all pins on the device. This option can be set in the Altera 
software. The built-in I/O pin pull-up resistors (which are active during 
configuration) are active when the chip-wide output enable pin is 
asserted. The registers in the IOE can also be reset by the chip-wide reset 
pin.

Table 7. Peripheral Bus Sources for ACEX Devices

Peripheral Control Signal EP1K10 EP1K30 EP1K50 EP1K100

OE0 Row A Row A Row A Row A

OE1 Row A Row B Row B Row C

OE2 Row B Row C Row D Row E

OE3 Row B Row D Row F Row L

OE4 Row C Row E Row H Row I

OE5 Row C Row F Row J Row K

CLKENA0/CLK0/GLOBAL0 Row A Row A Row A Row F

CLKENA1/OE6/GLOBAL1 Row A Row B Row C Row D

CLKENA2/CLR0 Row B Row C Row E Row B

CLKENA3/OE7/GLOBAL2 Row B Row D Row G Row H

CLKENA4/CLR1 Row C Row E Row I Row J

CLKENA5/CLK1/GLOBAL3 Row C Row F Row J Row G
32 Altera Corporation
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PCI Pull-Up Clamping Diode Option

ACEX 1K devices have a pull-up clamping diode on every I/O, dedicated 
input, and dedicated clock pin. PCI clamping diodes clamp the signal to 
the VCCIO value and are required for 3.3-V PCI compliance. Clamping 
diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When VCCIO is 
3.3 V, a pin that has the clamping diode option turned on can be driven by 
a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When VCCIO is 2.5 V, a pin 
that has the clamping diode option turned on can be driven by a 2.5-V 
signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can 
be activated for a subset of pins, which allows a device to bridge between 
a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can 
be configured for low-noise or high-speed performance. A slower slew 
rate reduces system noise and adds a maximum delay of 4.3 ns. The fast 
slew rate should be used for speed-critical outputs in systems that are 
adequately protected against noise. Designers can specify the slew rate 
pin-by-pin or assign a default slew rate to all pins on a device-wide basis. 
The slow slew rate setting affects only the falling edge of the output.

Open-Drain Output Option

ACEX 1K devices provide an optional open-drain output (electrically 
equivalent to open-collector output) for each I/O pin. This open-drain 
output enables the device to provide system-level control signals (e.g., 
interrupt and write enable signals) that can be asserted by any of several 
devices. It can also provide an additional wired-OR plane. 

MultiVolt I/O Interface 

The ACEX 1K device architecture supports the MultiVolt I/O interface 
feature, which allows ACEX 1K devices in all packages to interface with 
systems of differing supply voltages. These devices have one set of VCC 
pins for internal operation and input buffers (VCCINT), and another set for 
I/O output drivers (VCCIO). 
40 Altera Corporation
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The VCCINT pins must always be connected to a 2.5-V power supply. 
With a 2.5-V VCCINT level, input voltages are compatible with 2.5-V, 3.3-
V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 
3.3-V power supply, depending on the output requirements. When the 
VCCIO pins are connected to a 2.5-V power supply, the output levels are 
compatible with 2.5-V systems. When the VCCIO pins are connected to a 
3.3-V power supply, the output high is at 3.3 V and is therefore compatible 
with 3.3-V or 5.0-V systems. Devices operating with VCCIO levels higher 
than 3.0 V achieve a faster timing delay of tOD2 instead of tOD1.

Table 13 summarizes ACEX 1K MultiVolt I/O support.

Notes:
(1) The PCI clamping diode must be disabled on an input which is driven with a 

voltage higher than VCCIO.
(2) When VCCIO = 3.3 V, an ACEX 1K device can drive a 2.5-V device that has 3.3-V 

tolerant inputs.

Open-drain output pins on ACEX 1K devices (with a pull-up resistor to 
the 5.0-V supply) can drive 5.0-V CMOS input pins that require a higher 
VIH than LVTTL. When the open-drain pin is active, it will drive low. 
When the pin is inactive, the resistor will pull up the trace to 5.0 V, thereby 
meeting the CMOS VOH requirement. The open-drain pin will only drive 
low or tri-state; it will never drive high. The rise time is dependent on the 
value of the pull-up resistor and load impedance. The IOL current 
specification should be considered when selecting a pull-up resistor.

Power 
Sequencing & 
Hot-Socketing

Because ACEX 1K devices can be used in a mixed-voltage environment, 
they have been designed specifically to tolerate any possible power-up 
sequence. The VCCIO and VCCINT power planes can be powered in any 
order.

Signals can be driven into ACEX 1K devices before and during power up 
without damaging the device. Additionally, ACEX 1K devices do not 
drive out during power up. Once operating conditions are reached, 
ACEX 1K devices operate as specified by the user.

Table 13. ACEX 1K MultiVolt I/O Support

VCCIO (V) Input Signal (V) Output Signal (V)

2.5 3.3 5.0 2.5 3.3 5.0

2.5 v v (1) v (1) v

3.3 v v v (1) v (2) v v
Altera Corporation  41
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Notes to tables:
(1) The most significant bit (MSB) is on the left.
(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

ACEX 1K devices include weak pull-up resistors on the JTAG pins.

f For more information, see the following documents:

■ Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in 
Altera Devices) 

■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ BitBlaster Serial Download Cable Data Sheet
■ Jam Programming & Test Language Specification

Figure 20 shows the timing requirements for the JTAG signals.

Table 16.  32-Bit IDCODE for ACEX 1K Devices Note (1)

Device IDCODE (32 Bits)

Version 
(4 Bits)

Part Number (16 Bits) Manufacturer’s
Identity (11 Bits)

1 (1 Bit) (2)

EP1K10 0001 0001 0000 0001 0000 00001101110 1

EP1K30 0001 0001 0000 0011 0000 00001101110 1

EP1K50 0001 0001 0000 0101 0000 00001101110 1

EP1K100 0010 0000 0001 0000 0000 00001101110 1
Altera Corporation  43
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Generic Testing Each ACEX 1K device is functionally tested. Complete testing of each 
configurable static random access memory (SRAM) bit and all logic 
functionality ensures 100% yield. AC test measurements for ACEX 1K 
devices are made under conditions equivalent to those shown in 
Figure 21. Multiple test patterns can be used to configure devices during 
all stages of the production flow.

Figure 21. ACEX 1K AC Test Conditions

Operating 
Conditions

Tables 18 through 21 provide information on absolute maximum ratings, 
recommended operating conditions, DC operating conditions, and 
capacitance for 2.5-V ACEX 1K devices.

To Test
System

C1 (includes
JIG capacitance)

Device input
rise and fall
times < 3 ns

Device
Output

703 Ω

8.06 k Ω
[481    ]Ω

[481    ]Ω
 

VCCIO

Power supply transients can affect AC
measurements. Simultaneous transitions of 
multiple outputs should be avoided for 
accurate measurement. Threshold tests 
must not be performed under AC 
conditions. Large-amplitude, fast-ground-
current transients normally occur as the 
device outputs discharge the load 
capacitances. When these transients flow 
through the parasitic inductance between 
the device ground pin and the test system 
ground, significant reductions in 
observable noise immunity can result. 
Numbers in brackets are for 2.5-V devices 
or outputs. Numbers without brackets are 
for 3.3-V devices or outputs.

Table 18. ACEX 1K Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage With respect to ground (2) –0.5 3.6 V

VCCIO –0.5 4.6 V

VI DC input voltage –2.0 5.75 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, TQFP, and BGA packages, under 
bias

135 ° C
Altera Corporation  45
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Figure 28. Synchronous Bidirectional Pin External Timing Model

Tables 29 and 30 show the asynchronous and synchronous timing 
waveforms, respectively, for the EAB macroparameters in Table 24.

Figure 29. EAB Asynchronous Timing Waveforms
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Table 25. EAB Timing Macroparameters Notes (1), (6)

Symbol Parameter Conditions

tEABAA EAB address access delay

tEABRCCOMB EAB asynchronous read cycle time

tEABRCREG EAB synchronous read cycle time

tEABWP EAB write pulse width

tEABWCCOMB EAB asynchronous write cycle time

tEABWCREG EAB synchronous write cycle time

tEABDD EAB data-in to data-out valid delay

tEABDATACO EAB clock-to-output delay when using output registers

tEABDATASU EAB data/address setup time before clock when using input register

tEABDATAH EAB data/address hold time after clock when using input register

tEABWESU EAB WE setup time before clock when using input register

tEABWEH EAB WE hold time after clock when using input register

tEABWDSU EAB data setup time before falling edge of write pulse when not using input 
registers

tEABWDH EAB data hold time after falling edge of write pulse when not using input 
registers

tEABWASU EAB address setup time before rising edge of write pulse when not using 
input registers

tEABWAH EAB address hold time after falling edge of write pulse when not using input 
registers

tEABWO EAB write enable to data output valid delay
Altera Corporation  57
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Notes to tables:
(1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be 

measured explicitly.
(2) Operating conditions: VCCIO = 3.3 V ± 10% for commercial or industrial and extended use in ACEX 1K devices
(3) Operating conditions: VCCIO = 2.5 V ± 5% for commercial or industrial and extended use in ACEX 1K devices.
(4) Operating conditions: VCCIO = 2.5 V or 3.3 V.
(5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. 
(6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; 

these parameters are calculated by summing selected microparameters. 
(7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing 

analysis are required to determine actual worst-case performance.

Table 26. Interconnect Timing Microparameters Note (1)

Symbol Parameter Conditions

tDIN2IOE Delay from dedicated input pin to IOE control input (7)

tDIN2LE Delay from dedicated input pin to LE or EAB control input (7)

tDIN2DATA Delay from dedicated input or clock to LE or EAB data (7)

tDCLK2IOE Delay from dedicated clock pin to IOE clock (7)

tDCLK2LE Delay from dedicated clock pin to LE or EAB clock (7)

tSAMELAB Routing delay for an LE driving another LE in the same LAB (7)

tSAMEROW Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the 
same row

(7)

tSAMECOLUMN Routing delay for an LE driving an IOE in the same column (7)

tDIFFROW Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different 
row

(7)

tTWOROWS Routing delay for a row IOE or EAB driving an LE or EAB in a different row (7)

tLEPERIPH Routing delay for an LE driving a control signal of an IOE via the peripheral 
control bus

(7)

tLABCARRY Routing delay for the carry-out signal of an LE driving the carry-in signal of a 
different LE in a different LAB

tLABCASC Routing delay for the cascade-out signal of an LE driving the cascade-in 
signal of a different LE in a different LAB
58 Altera Corporation
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Table 33. EP1K10 Device EAB Internal Timing Macroparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABAA 6.7 7.3 7.3 ns

tEABRCCOMB 6.7 7.3 7.3 ns

tEABRCREG 4.7 4.9 4.9 ns

tEABWP 2.7 2.8 2.8 ns

tEABWCCOMB 6.4 6.7 6.7 ns

tEABWCREG 7.4 7.6 7.6 ns

tEABDD 6.0 6.5 6.5 ns

tEABDATACO 0.8 0.9 0.9 ns

tEABDATASU 1.6 1.7 1.7 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 1.4 1.4 1.4 ns

tEABWEH 0.1 0.0 0.0 ns

tEABWDSU 1.6 1.7 1.7 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.1 3.4 3.4 ns

tEABWAH 0.6 0.5 0.5 ns

tEABWO 5.4 5.8 5.8 ns
Altera Corporation  63
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Notes to tables:
(1) All timing parameters are described in Tables 22 through 29 in this data sheet.
(2) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(3) These parameters are specified by characterization.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 37 through 43 show EP1K30 device internal and external timing 
parameters.  

Table 36. EP1K10 External Bidirectional Timing Parameters Notes (1), (3)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSUBIDIR (2) 2.2 2.3 3.2 ns

tINHBIDIR (2) 0.0 0.0 0.0 ns

tOUTCOBIDIR (2) 2.0 6.6 2.0 7.8 2.0 9.6 ns

tXZBIDIR (2) 8.8 11.2 14.0 ns

tZXBIDIR (2) 8.8 11.2 14.0 ns

tINSUBIDIR (4) 3.1 3.3 – –

tINHBIDIR (4) 0.0 0.0 –

tOUTCOBIDIR (4) 0.5 5.1 0.5 6.4 – – ns

tXZBIDIR(4) 7.3 9.2 – ns

tZXBIDIR (4) 7.3 9.2 – ns

Table 37. EP1K30 Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tLUT 0.7 0.8 1.1 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.6 0.7 1.0 ns

tPACKED 0.3 0.4 0.5 ns

tEN 0.6 0.8 1.0 ns

tCICO 0.1 0.1 0.2 ns

tCGEN 0.4 0.5 0.7 ns

tCGENR 0.1 0.1 0.2 ns

tCASC 0.6 0.8 1.0 ns

tC 0.0 0.0 0.0 ns

tCO 0.3 0.4 0.5 ns
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tCOMB 0.4 0.4 0.6 ns

tSU 0.4 0.6 0.6 ns

tH 0.7 1.0 1.3 ns

tPRE 0.8 0.9 1.2 ns

tCLR 0.8 0.9 1.2 ns

tCH 2.0 2.5 2.5 ns

tCL 2.0 2.5 2.5 ns

Table 38. EP1K30 Device IOE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tIOD 2.4 2.8 3.8 ns

tIOC 0.3 0.4 0.5 ns

tIOCO 1.0 1.1 1.6 ns

tIOCOMB 0.0 0.0 0.0 ns

tIOSU 1.2 1.4 1.9 ns

tIOH 0.3 0.4 0.5 ns

tIOCLR 1.0 1.1 1.6 ns

tOD1 1.9 2.3 3.0 ns

tOD2 1.4 1.8 2.5 ns

tOD3 4.4 5.2 7.0 ns

tXZ 2.7 3.1 4.3 ns

tZX1 2.7 3.1 4.3 ns

tZX2 2.2 2.6 3.8 ns

tZX3 5.2 6.0 8.3 ns

tINREG 3.4 4.1 5.5 ns

tIOFD 0.8 1.3 2.4 ns

tINCOMB 0.8 1.3 2.4 ns

Table 37. EP1K30 Device LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max
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Table 39. EP1K30 Device EAB Internal Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABDATA1 1.7 2.0 2.3 ns

tEABDATA1 0.6 0.7 0.8 ns

tEABWE1 1.1 1.3 1.4 ns

tEABWE2 0.4 0.4 0.5 ns

tEABRE1 0.8 0.9 1.0 ns

tEABRE2 0.4 0.4 0.5 ns

tEABCLK 0.0 0.0  0.0 ns

tEABCO 0.3 0.3 0.4 ns

tEABBYPASS 0.5 0.6 0.7 ns

tEABSU 0.9 1.0 1.2 ns

tEABH 0.4 0.4 0.5 ns

tEABCLR 0.3 0.3 0.3 ns

tAA 3.2 3.8 4.4 ns

tWP 2.5 2.9 3.3 ns

tRP 0.9 1.1 1.2 ns

tWDSU 0.9 1.0 1.1 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.7 2.0 2.3 ns

tWAH 1.8 2.1 2.4 ns

tRASU 3.1 3.7 4.2 ns

tRAH 0.2 0.2 0.2 ns

tWO 2.5 2.9 3.3 ns

tDD 2.5 2.9 3.3 ns

tEABOUT 0.5 0.6 0.7 ns

tEABCH 1.5 2.0 2.3 ns

tEABCL 2.5 2.9 3.3 ns
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Notes to tables:
(1) All timing parameters are described in Tables 22 through 29 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 44 through 50 show EP1K50 device external timing parameters. 
 

Table 43. EP1K30 External Bidirectional Timing Parameters Notes (1), (2)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSUBIDIR (3) 2.8 3.9 5.2 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 3.8 4.9 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 4.9 2.0 5.9 2.0 7.6 ns

tXZBIDIR (3) 6.1 7.5 9.7 ns

tZXBIDIR (3) 6.1 7.5 9.7 ns

tOUTCOBIDIR (4)  0.5 3.9 0.5 4.9 – – ns

tXZBIDIR (4) 5.1  6.5 – ns

tZXBIDIR (4) 5.1  6.5 – ns

Table 44. EP1K50 Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tLUT 0.6 0.8 1.1 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.6 0.7 0.9 ns

tPACKED 0.2 0.3 0.4 ns

tEN 0.6 0.7 0.9 ns

tCICO 0.1 0.1 0.1 ns

tCGEN 0.4 0.5 0.6 ns

tCGENR 0.1 0.1 0.1 ns

tCASC 0.5 0.8 1.0 ns

tC 0.5 0.6 0.8 ns
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Table 52. EP1K100 Device IOE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tIOD 1.7 2.0 2.6 ns

tIOC 0.0 0.0 0.0 ns

tIOCO 1.4 1.6 2.1 ns

tIOCOMB 0.5 0.7 0.9 ns

tIOSU 0.8 1.0 1.3 ns

tIOH 0.7 0.9 1.2 ns

tIOCLR 0.5 0.7 0.9 ns

tOD1 3.0 4.2 5.6 ns

tOD2 3.0 4.2 5.6 ns

tOD3 4.0 5.5 7.3 ns

tXZ 3.5 4.6 6.1 ns

tZX1 3.5 4.6 6.1 ns

tZX2 3.5 4.6 6.1 ns

tZX3 4.5 5.9 7.8 ns

tINREG 2.0 2.6 3.5 ns

tIOFD 0.5 0.8 1.2 ns

tINCOMB 0.5 0.8 1.2 ns
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Table 54. EP1K100 Device EAB Internal Timing Macroparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABAA 5.9 7.6 9.9 ns

tEABRCOMB 5.9 7.6 9.9 ns

tEABRCREG 5.1 6.5 8.5 ns

tEABWP 2.7 3.5 4.7 ns

tEABWCOMB 5.9 7.7 10.3 ns

tEABWCREG 5.4 7.0 9.4 ns

tEABDD 3.4 4.5 5.9 ns

tEABDATACO 0.5 0.7 0.8 ns

tEABDATASU 0.8 1.0 1.4 ns

tEABDATAH 0.1 0.1 0.2 ns

tEABWESU 1.1 1.4 1.9 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.0 1.3 1.7 ns

tEABWDH 0.2 0.2 0.3 ns

tEABWASU 4.1 5.2 6.8 ns

tEABWAH 0.0 0.0 0.0 ns

tEABWO 3.4 4.5 5.9 ns
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