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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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■ Software design support and automatic place-and-route provided by 
Altera development systems for Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800 workstations

■ Flexible package options are available in 100 to 484 pins, including 
the innovative FineLine BGATM packages (see Tables 2 and 3)

■ Additional design entry and simulation support provided by EDIF 
2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), 
DesignWare components, Verilog HDL, VHDL, and other interfaces 
to popular EDA tools from manufacturers such as Cadence, 
Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, 
VeriBest, and Viewlogic

Notes:
(1) ACEX 1K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), and FineLine 

BGA packages.
(2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When 

planning device migration, use the I/O pins that are common to all devices. 
(3) This option is supported with a 256-pin FineLine BGA package. By using SameFrameTM pin migration, all FineLine 

BGA packages are pin-compatible. For example, a board can be designed to support 256-pin and 484-pin FineLine 
BGA packages. 

Table 2. ACEX 1K Package Options & I/O Pin Count Notes (1), (2)

Device 100-Pin TQFP 144-Pin TQFP 208-Pin PQFP 256-Pin
FineLine BGA

484-Pin
FineLine BGA

EP1K10 66 92 120 136 136 (3)

EP1K30 102 147 171 171 (3)

EP1K50 102 147 186 249

EP1K100 147 186 333

Table 3. ACEX 1K Package Sizes

Device 100-Pin TQFP 144-Pin TQFP 208-Pin PQFP 256-Pin
FineLine BGA

484-Pin
FineLine BGA

Pitch (mm) 0.50 0.50 0.50 1.0 1.0

Area (mm2) 256 484 936 289 529

Length × width
(mm × mm)

16 × 16 22 × 22 30.6 × 30.6 17 × 17 23 × 23
Altera Corporation  3
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Embedded Array Block

The EAB is a flexible block of RAM, with registers on the input and output 
ports, that is used to implement common gate array megafunctions. 
Because it is large and flexible, the EAB is suitable for functions such as 
multipliers, vector scalars, and error correction circuits. These functions 
can be combined in applications such as digital filters and 
microcontrollers. 

Logic functions are implemented by programming the EAB with a read-
only pattern during configuration, thereby creating a large LUT. With 
LUTs, combinatorial functions are implemented by looking up the results 
rather than by computing them. This implementation of combinatorial 
functions can be faster than using algorithms implemented in general 
logic, a performance advantage that is further enhanced by the fast access 
times of EABs. The large capacity of EABs enables designers to implement 
complex functions in a single logic level without the routing delays 
associated with linked LEs or field-programmable gate array (FPGA) 
RAM blocks. For example, a single EAB can implement any function with 
8 inputs and 16 outputs. Parameterized functions, such as LPM functions, 
can take advantage of the EAB automatically.

The ACEX 1K enhanced EAB supports dual-port RAM. The dual-port 
structure is ideal for FIFO buffers with one or two clocks. The ACEX 1K 
EAB can also support up to 16-bit-wide RAM blocks. The ACEX 1K EAB 
can act in dual-port or single-port mode. When in dual-port mode, 
separate clocks may be used for EAB read and write sections, allowing the 
EAB to be written and read at different rates. It also has separate 
synchronous clock enable signals for the EAB read and write sections, 
which allow independent control of these sections.

The EAB can also be used for bidirectional, dual-port memory 
applications where two ports read or write simultaneously. To implement 
this type of dual-port memory, two EABs are used to support two 
simultaneous reads or writes.

Alternatively, one clock and clock enable can be used to control the input 
registers of the EAB, while a different clock and clock enable control the 
output registers (see Figure 2).
Altera Corporation  9
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Figure 2. ACEX 1K Device in Dual-Port RAM Mode Note (1)

Notes:
(1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
(2) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB 

local interconnect channels. 

The EAB can use Altera megafunctions to implement dual-port RAM 
applications where both ports can read or write, as shown in Figure 3. The 
ACEX 1K EAB can also be used in a single-port mode (see Figure 4).
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Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
ACEX 1K architecture to efficiently implement high-speed counters, 
adders, and comparators of arbitrary width. Carry chain logic can be 
created automatically by the compiler during design processing, or 
manually by the designer during design entry. Parameterized functions, 
such as LPM and DesignWare functions, automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EP1K50 device, the carry chain stops at the eighteenth LAB, and a 
new carry chain begins at the nineteenth LAB.

Figure 9 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for an accumulator function. Another portion of the LUT and the carry 
chain logic generates the carry-out signal, which is routed directly to the 
carry-in signal of the next-higher-order bit. The final carry-out signal is 
routed to an LE, where it can be used as a general-purpose signal. 
Altera Corporation  17
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Figure 9. ACEX 1K Carry Chain Operation (n-Bit Full Adder)
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Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this 
mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with 
an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 
asynchronously loads a one into the register. Alternatively, the Altera 
software can provide preset control by using the clear and inverting the 
register’s input and output. Inversion control is available for the inputs to 
both LEs and IOEs. Therefore, if a register is preset by only one of the two 
LABCTRL signals, the DATA3 input is not needed and can be used for one 
of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls 
the preset, and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that 
asserting LABCTRL1 asynchronously loads a one into the register, 
effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear. LABCTRL2 implements the clear by 
controlling the register clear; LABCTRL2 does not have to feed the preset 
circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the 
Altera software provides preset control by using the clear and inverting 
the input and output of the register. Asserting LABCTRL2 presets the 
register, while asserting LABCTRL1 loads the register. The Altera software 
inverts the signal that drives DATA3 to account for the inversion of the 
register’s output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear.
Altera Corporation  25
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When dedicated inputs drive non-inverted and inverted peripheral clears, 
clock enables, and output enables, two signals on the peripheral control 
bus will be used.

Table 7 lists the sources for each peripheral control signal and shows how 
the output enable, clock enable, clock, and clear signals share 
12 peripheral control signals. Table 7 also shows the rows that can drive 
global signals.

Signals on the peripheral control bus can also drive the four global signals, 
referred to as GLOBAL0 through GLOBAL3. An internally generated signal 
can drive a global signal, providing the same low-skew, low-delay 
characteristics as a signal driven by an input pin. An LE drives the global 
signal by driving a row line that drives the peripheral bus which then 
drives the global signal. This feature is ideal for internally generated clear 
or clock signals with high fan-out. However, internally driven global 
signals offer no advantage over the general-purpose interconnect for 
routing data signals.

The chip-wide output enable pin is an active-high pin that can be used to 
tri-state all pins on the device. This option can be set in the Altera 
software. The built-in I/O pin pull-up resistors (which are active during 
configuration) are active when the chip-wide output enable pin is 
asserted. The registers in the IOE can also be reset by the chip-wide reset 
pin.

Table 7. Peripheral Bus Sources for ACEX Devices

Peripheral Control Signal EP1K10 EP1K30 EP1K50 EP1K100

OE0 Row A Row A Row A Row A

OE1 Row A Row B Row B Row C

OE2 Row B Row C Row D Row E

OE3 Row B Row D Row F Row L

OE4 Row C Row E Row H Row I

OE5 Row C Row F Row J Row K

CLKENA0/CLK0/GLOBAL0 Row A Row A Row A Row F

CLKENA1/OE6/GLOBAL1 Row A Row B Row C Row D

CLKENA2/CLR0 Row B Row C Row E Row B

CLKENA3/OE7/GLOBAL2 Row B Row D Row G Row H

CLKENA4/CLR1 Row C Row E Row I Row J

CLKENA5/CLK1/GLOBAL3 Row C Row F Row J Row G
32 Altera Corporation
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SameFrame 
Pin-Outs

ACEX 1K devices support the SameFrame pin-out feature for 
FineLine BGA packages. The SameFrame pin-out feature is the 
arrangement of balls on FineLine BGA packages such that the lower-ball-
count packages form a subset of the higher-ball-count packages. 
SameFrame pin-outs provide the flexibility to migrate not only from 
device to device within the same package, but also from one package to 
another. A given printed circuit board (PCB) layout can support multiple 
device density/package combinations. For example, a single board layout 
can support a range of devices from an EP1K10 device in a 256-pin 
FineLine BGA package to an EP1K100 device in a 484-pin FineLine BGA 
package.

The Altera software provides support to design PCBs with SameFrame 
pin-out devices. Devices can be defined for present and future use. The 
Altera software generates pin-outs describing how to lay out a board that 
takes advantage of this migration. Figure 18 shows an example of 
SameFrame pin-out.

Figure 18. SameFrame Pin-Out Example

Table 10 shows the ACEX 1K device/package combinations that support 
SameFrame pin-outs for ACEX 1K devices. All FineLine BGA packages 
support SameFrame pin-outs, providing the flexibility to migrate not only 
from device to device within the same package, but also from one package 
to another. The I/O count will vary from device to device. 

Designed for 484-Pin FineLine BGA Package
Printed Circuit Board

256-Pin FineLine BGA Package
(Reduced I/O Count or
Logic Requirements)

484-Pin FineLine BGA Package
(Increased I/O Count or

Logic Requirements)

256-Pin
FineLine

BGA

484-Pin
FineLine

BGA



ACEX 1K Programmable Logic Device Family Data Sheet

D
evelopm

ent

13

Tools
Notes to tables:
(1) The most significant bit (MSB) is on the left.
(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

ACEX 1K devices include weak pull-up resistors on the JTAG pins.

f For more information, see the following documents:

■ Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in 
Altera Devices) 

■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ BitBlaster Serial Download Cable Data Sheet
■ Jam Programming & Test Language Specification

Figure 20 shows the timing requirements for the JTAG signals.

Table 16.  32-Bit IDCODE for ACEX 1K Devices Note (1)

Device IDCODE (32 Bits)

Version 
(4 Bits)

Part Number (16 Bits) Manufacturer’s
Identity (11 Bits)

1 (1 Bit) (2)

EP1K10 0001 0001 0000 0001 0000 00001101110 1

EP1K30 0001 0001 0000 0011 0000 00001101110 1

EP1K50 0001 0001 0000 0101 0000 00001101110 1

EP1K100 0010 0000 0001 0000 0000 00001101110 1
Altera Corporation  43
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Figure 20. ACEX 1K JTAG Waveforms

Table 17 shows the timing parameters and values for ACEX 1K devices.
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Table 17. ACEX 1K JTAG Timing Parameters & Values

Symbol Parameter Min Max Unit

tJCP TCK clock period  100 ns

tJCH TCK clock high time  50 ns

tJCL TCK clock low time  50 ns

tJPSU JTAG port setup time  20 ns

tJPH JTAG port hold time  45 ns

tJPCO JTAG port clock to output 25 ns

tJPZX JTAG port high impedance to valid output 25 ns

tJPXZ JTAG port valid output to high impedance 25 ns

tJSSU Capture register setup time 20 ns

tJSH Capture register hold time 45 ns

tJSCO Update register clock to output 35 ns

tJSZX Update register high impedance to valid output 35 ns

tJSXZ Update register valid output to high impedance 35 ns
44 Altera Corporation
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Figure 24 shows the overall timing model, which maps the possible paths 
to and from the various elements of the ACEX 1K device.

Figure 24. ACEX 1K Device Timing Model

Figures 25 through 28 show the delays that correspond to various paths 
and functions within the LE, IOE, EAB, and bidirectional timing models.

Figure 25. ACEX 1K Device LE Timing Model
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Table 25. EAB Timing Macroparameters Notes (1), (6)

Symbol Parameter Conditions

tEABAA EAB address access delay

tEABRCCOMB EAB asynchronous read cycle time

tEABRCREG EAB synchronous read cycle time

tEABWP EAB write pulse width

tEABWCCOMB EAB asynchronous write cycle time

tEABWCREG EAB synchronous write cycle time

tEABDD EAB data-in to data-out valid delay

tEABDATACO EAB clock-to-output delay when using output registers

tEABDATASU EAB data/address setup time before clock when using input register

tEABDATAH EAB data/address hold time after clock when using input register

tEABWESU EAB WE setup time before clock when using input register

tEABWEH EAB WE hold time after clock when using input register

tEABWDSU EAB data setup time before falling edge of write pulse when not using input 
registers

tEABWDH EAB data hold time after falling edge of write pulse when not using input 
registers

tEABWASU EAB address setup time before rising edge of write pulse when not using 
input registers

tEABWAH EAB address hold time after falling edge of write pulse when not using input 
registers

tEABWO EAB write enable to data output valid delay
Altera Corporation  57
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Notes to tables:
(1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be 

measured explicitly.
(2) Operating conditions: VCCIO = 3.3 V ± 10% for commercial or industrial and extended use in ACEX 1K devices
(3) Operating conditions: VCCIO = 2.5 V ± 5% for commercial or industrial and extended use in ACEX 1K devices.
(4) Operating conditions: VCCIO = 2.5 V or 3.3 V.
(5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. 
(6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; 

these parameters are calculated by summing selected microparameters. 
(7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing 

analysis are required to determine actual worst-case performance.

Table 26. Interconnect Timing Microparameters Note (1)

Symbol Parameter Conditions

tDIN2IOE Delay from dedicated input pin to IOE control input (7)

tDIN2LE Delay from dedicated input pin to LE or EAB control input (7)

tDIN2DATA Delay from dedicated input or clock to LE or EAB data (7)

tDCLK2IOE Delay from dedicated clock pin to IOE clock (7)

tDCLK2LE Delay from dedicated clock pin to LE or EAB clock (7)

tSAMELAB Routing delay for an LE driving another LE in the same LAB (7)

tSAMEROW Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the 
same row

(7)

tSAMECOLUMN Routing delay for an LE driving an IOE in the same column (7)

tDIFFROW Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different 
row

(7)

tTWOROWS Routing delay for a row IOE or EAB driving an LE or EAB in a different row (7)

tLEPERIPH Routing delay for an LE driving a control signal of an IOE via the peripheral 
control bus

(7)

tLABCARRY Routing delay for the carry-out signal of an LE driving the carry-in signal of a 
different LE in a different LAB

tLABCASC Routing delay for the cascade-out signal of an LE driving the cascade-in 
signal of a different LE in a different LAB
58 Altera Corporation
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Table 39. EP1K30 Device EAB Internal Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABDATA1 1.7 2.0 2.3 ns

tEABDATA1 0.6 0.7 0.8 ns

tEABWE1 1.1 1.3 1.4 ns

tEABWE2 0.4 0.4 0.5 ns

tEABRE1 0.8 0.9 1.0 ns

tEABRE2 0.4 0.4 0.5 ns

tEABCLK 0.0 0.0  0.0 ns

tEABCO 0.3 0.3 0.4 ns

tEABBYPASS 0.5 0.6 0.7 ns

tEABSU 0.9 1.0 1.2 ns

tEABH 0.4 0.4 0.5 ns

tEABCLR 0.3 0.3 0.3 ns

tAA 3.2 3.8 4.4 ns

tWP 2.5 2.9 3.3 ns

tRP 0.9 1.1 1.2 ns

tWDSU 0.9 1.0 1.1 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.7 2.0 2.3 ns

tWAH 1.8 2.1 2.4 ns

tRASU 3.1 3.7 4.2 ns

tRAH 0.2 0.2 0.2 ns

tWO 2.5 2.9 3.3 ns

tDD 2.5 2.9 3.3 ns

tEABOUT 0.5 0.6 0.7 ns

tEABCH 1.5 2.0 2.3 ns

tEABCL 2.5 2.9 3.3 ns
Altera Corporation  67
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Table 41. EP1K30 Device Interconnect Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDIN2IOE 1.8 2.4 2.9 ns

tDIN2LE 1.5 1.8 2.4 ns

tDIN2DATA 1.5 1.8 2.2 ns

tDCLK2IOE 2.2 2.6 3.0 ns

tDCLK2LE 1.5 1.8 2.4 ns

tSAMELAB 0.1 0.2 0.3 ns

tSAMEROW 2.0 2.4 2.7 ns

tSAMECOLUMN 0.7 1.0 0.8 ns

tDIFFROW 2.7 3.4 3.5 ns

tTWOROWS 4.7 5.8 6.2 ns

tLEPERIPH 2.7 3.4 3.8 ns

tLABCARRY 0.3 0.4 0.5 ns

tLABCASC 0.8 0.8 1.1 ns

Table 42. EP1K30 External Timing Parameters Notes (1), (2)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDRR 8.0 9.5 12.5 ns

tINSU (3) 2.1 2.5 3.9 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0  4.9 2.0 5.9 2.0 7.6 ns

tINSU (4) 1.1 1.5 – ns

tINH (4) 0.0 0.0 – ns

tOUTCO (4) 0.5 3.9 0.5 4.9 – – ns

tPCISU 3.0 4.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 7.5 – – ns
Altera Corporation  69
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Notes to tables:
(1) All timing parameters are described in Tables 22 through 29 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 44 through 50 show EP1K50 device external timing parameters. 
 

Table 43. EP1K30 External Bidirectional Timing Parameters Notes (1), (2)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSUBIDIR (3) 2.8 3.9 5.2 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 3.8 4.9 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 4.9 2.0 5.9 2.0 7.6 ns

tXZBIDIR (3) 6.1 7.5 9.7 ns

tZXBIDIR (3) 6.1 7.5 9.7 ns

tOUTCOBIDIR (4)  0.5 3.9 0.5 4.9 – – ns

tXZBIDIR (4) 5.1  6.5 – ns

tZXBIDIR (4) 5.1  6.5 – ns

Table 44. EP1K50 Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tLUT 0.6 0.8 1.1 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.6 0.7 0.9 ns

tPACKED 0.2 0.3 0.4 ns

tEN 0.6 0.7 0.9 ns

tCICO 0.1 0.1 0.1 ns

tCGEN 0.4 0.5 0.6 ns

tCGENR 0.1 0.1 0.1 ns

tCASC 0.5 0.8 1.0 ns

tC 0.5 0.6 0.8 ns
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Table 53. EP1K100 Device EAB Internal Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABDATA1 1.5 2.0 2.6 ns

tEABDATA1 0.0 0.0 0.0 ns

tEABWE1 1.5 2.0 2.6 ns

tEABWE2 0.3 0.4 0.5 ns

tEABRE1 0.3 0.4 0.5 ns

tEABRE2 0.0 0.0 0.0 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.4 0.5 ns

tEABBYPASS 0.1 0.1 0.2 ns

tEABSU 0.8 1.0 1.4 ns

tEABH 0.1 0.1 0.2 ns

tEABCLR 0.3 0.4 0.5 ns

tAA 4.0 5.1 6.6 ns

tWP 2.7 3.5 4.7 ns

tRP 1.0 1.3 1.7 ns

tWDSU 1.0 1.3 1.7 ns

tWDH 0.2 0.2 0.3 ns

tWASU 1.6 2.1 2.8 ns

tWAH 1.6 2.1 2.8 ns

tRASU 3.0 3.9 5.2 ns

tRAH 0.1 0.1 0.2 ns

tWO 1.5 2.0 2.6 ns

tDD 1.5 2.0 2.6 ns

tEABOUT 0.2 0.3 0.3 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.7 3.5 4.7 ns
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Notes to tables:
(1) All timing parameters are described in Tables 22 through 29 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Power 
Consumption

The supply power (P) for ACEX 1K devices can be calculated with the 
following equation:

P = PINT + PIO = (ICCSTANDBY + ICCACTIVE) × VCC + PIO

The ICCACTIVE value depends on the switching frequency and the 
application logic. This value is calculated based on the amount of current 
that each LE typically consumes. The PIO value, which depends on the 
device output load characteristics and switching frequency, can be 
calculated using the guidelines given in Application Note 74 (Evaluating 
Power for Altera Devices).

1 Compared to the rest of the device, the embedded array 
consumes a negligible amount of power. Therefore, the 
embedded array can be ignored when calculating supply 
current.

Table 57. EP1K100 External Bidirectional Timing Parameters Notes (1), (2)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSUBIDIR (3) 1.7 2.5 3.3 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 2.0 2.8 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 5.2 2.0 6.9 2.0 9.1 ns

tXZBIDIR (3) 5.6 7.5 10.1 ns

tZXBIDIR (3) 5.6 7.5  10.1 ns

tOUTCOBIDIR (4) 0.5 3.0 0.5 4.6 – – ns

tXZBIDIR (4) 4.6 6.5 – ns

tZXBIDIR (4) 4.6  6.5 – ns
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The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K × fMAX × N × togLC (µA)

Where:

fMAX = Maximum operating frequency in MHz
N = Total number of LEs used in the device 
togLC = Average percent of LEs toggling at each clock 

(typically 12.5%)
K = Constant

Table 58 provides the constant (K) values for ACEX 1K devices.

This supply power calculation provides an ICC estimate based on typical 
conditions with no output load. The actual ICC should be verified during 
operation because this measurement is sensitive to the actual pattern in 
the device and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant K in 
the power calculation equations) for continuous interconnect ACEX 1K 
devices assumes that LEs drive FastTrack Interconnect channels. In 
contrast, the power model of segmented FPGAs assumes that all LEs drive 
only one short interconnect segment. This assumption may lead to 
inaccurate results when compared to measured power consumption for 
actual designs in segmented FPGAs.

Figure 31 shows the relationship between the current and operating 
frequency of ACEX 1K devices. For information on other ACEX 1K 
devices, contact Altera Applications at (800) 800-EPLD.

Table 58.  ACEX 1K Constant Values

Device K Value

EP1K10 4.5

EP1K30 4.5

EP1K50 4.5

EP1K100 4.5
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During initialization, which occurs immediately after configuration, the 
device resets registers, enables I/O pins, and begins to operate as a logic 
device. Before and during configuration, all I/O pins (except dedicated 
inputs, clock, or configuration pins) are pulled high by a weak pull-up 
resistor. Together, the configuration and initialization processes are called 
command mode; normal device operation is called user mode.

SRAM configuration elements allow ACEX 1K devices to be reconfigured 
in-circuit by loading new configuration data into the device. Real-time 
reconfiguration is performed by forcing the device into command mode 
with a device pin, loading different configuration data, re-initializing the 
device, and resuming user-mode operation. The entire reconfiguration 
process requires less than 40 ms and can be used to reconfigure an entire 
system dynamically. In-field upgrades can be performed by distributing 
new configuration files.

Configuration Schemes

The configuration data for an ACEX 1K device can be loaded with one of 
five configuration schemes (see Table 59), chosen on the basis of the target 
application. An EPC16, EPC2, EPC1, or EPC1441 configuration device, 
intelligent controller, or the JTAG port can be used to control the 
configuration of a ACEX 1K device, allowing automatic configuration on 
system power-up.

Multiple ACEX 1K devices can be configured in any of the five 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device. Additional 
APEX 20K, APEX 20KE, FLEX 10K, FLEX 10KA, FLEX 10KE, ACEX 1K, 
and FLEX 6000 devices can be configured in the same serial chain.

Device Pin-
Outs

See the Altera web site (http://www.altera.com) or the Altera Documen-
tation Library for pin-out information.

Table 59. Data Sources for ACEX 1K Configuration

Configuration Scheme Data Source

Configuration device EPC16, EPC2, EPC1, or EPC1441 configuration device

Passive serial (PS) BitBlaster or ByteBlasterMV download cables, or serial data 
source

Passive parallel asynchronous (PPA) Parallel data source

Passive parallel synchronous (PPS) Parallel data source

JTAG BitBlaster or ByteBlasterMV download cables, or 
microprocessor with a Jam STAPL File or JBC File
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