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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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The logic array consists of logic array blocks (LABs). Each LAB contains 
eight LEs and a local interconnect. An LE consists of a 4-input LUT, a 
programmable flipflop, and dedicated signal paths for carry and cascade 
functions. The eight LEs can be used to create medium-sized blocks of 
logic—such as 8-bit counters, address decoders, or state machines—or 
combined across LABs to create larger logic blocks. Each LAB represents 
about 96 usable logic gates.

Signal interconnections within ACEX 1K devices (as well as to and from 
device pins) are provided by the FastTrack Interconnect routing structure, 
which is a series of fast, continuous row and column channels that run the 
entire length and width of the device. 

Each I/O pin is fed by an I/O element (IOE) located at the end of each row 
and column of the FastTrack Interconnect routing structure. Each IOE 
contains a bidirectional I/O buffer and a flipflop that can be used as either 
an output or input register to feed input, output, or bidirectional signals. 
When used with a dedicated clock pin, these registers provide exceptional 
performance. As inputs, they provide setup times as low as 1.1 ns and 
hold times of 0 ns. As outputs, these registers provide clock-to-output 
times as low as 2.5 ns. IOEs provide a variety of features, such as JTAG 
BST support, slew-rate control, tri-state buffers, and open-drain outputs. 

Figure 1 shows a block diagram of the ACEX 1K device architecture. Each 
group of LEs is combined into an LAB; groups of LABs are arranged into 
rows and columns. Each row also contains a single EAB. The LABs and 
EABs are interconnected by the FastTrack Interconnect routing structure. 
IOEs are located at the end of each row and column of the FastTrack 
Interconnect routing structure.
Altera Corporation  7
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Figure 3. ACEX 1K EAB in Dual-Port RAM Mode

Figure 4. ACEX 1K Device in Single-Port RAM Mode 

Note:
(1) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB 

local interconnect channels. 

Port A Port B

address_a[] address_b[]

data_a[] data_b[]

we_a we_b

clkena_a clkena_b

Clock A Clock B

Column Interconnect

EAB Local
Interconnect (1)

Dedicated Inputs
& Global Signals

D Q

D Q

 RAM/ROM
256 × 16
512 × 8

1,024 × 4
2,048 × 2

Data In

Address

Write Enable

Data Out

4, 8, 16, 32

4, 8, 16, 32

D Q

D Q

4

8, 4, 2, 1

8, 9, 10, 11

Row Interconnect
Dedicated
Clocks

2

4, 8

Chip-Wide
Reset
Altera Corporation  11



ACEX 1K Programmable Logic Device Family Data Sheet
EABs can be used to implement synchronous RAM, which is easier to use 
than asynchronous RAM. A circuit using asynchronous RAM must 
generate the RAM write enable signal, while ensuring that its data and 
address signals meet setup and hold time specifications relative to the 
write enable signal. In contrast, the EAB’s synchronous RAM generates its 
own write enable signal and is self-timed with respect to the input or write 
clock. A circuit using the EAB’s self-timed RAM must only meet the setup 
and hold time specifications of the global clock.

When used as RAM, each EAB can be configured in any of the following 
sizes: 256 × 16; 512 × 8; 1,024 × 4; or 2,048 × 2. Figure 5 shows the ACEX 1K 
EAB memory configurations.

Figure 5. ACEX 1K EAB Memory Configurations

Larger blocks of RAM are created by combining multiple EABs. For 
example, two 256 × 16 RAM blocks can be combined to form a 256 × 32 
block, and two 512 × 8 RAM blocks can be combined to form a 
512 × 16 block. Figure 6 shows examples of multiple EAB combination.

Figure 6. Examples of Combining ACEX 1K EABs
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Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
ACEX 1K architecture to efficiently implement high-speed counters, 
adders, and comparators of arbitrary width. Carry chain logic can be 
created automatically by the compiler during design processing, or 
manually by the designer during design entry. Parameterized functions, 
such as LPM and DesignWare functions, automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EP1K50 device, the carry chain stops at the eighteenth LAB, and a 
new carry chain begins at the nineteenth LAB.

Figure 9 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for an accumulator function. Another portion of the LUT and the carry 
chain logic generates the carry-out signal, which is routed directly to the 
carry-in signal of the next-higher-order bit. The final carry-out signal is 
routed to an LE, where it can be used as a general-purpose signal. 
Altera Corporation  17
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Cascade Chain

With the cascade chain, the ACEX 1K architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. With a delay as low as 0.6 ns per LE, each additional LE 
provides four more inputs to the effective width of a function. Cascade 
chain logic can be created automatically by the compiler during design 
processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EP1K50 device, the cascade 
chain stops at the eighteenth LAB, and a new one begins at the nineteenth 
LAB). This break is due to the EAB’s placement in the middle of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to 
form functions with a wide fan-in. These examples show functions of 4n 
variables implemented with n LEs. The LE delay is 1.3 ns; the cascade 
chain delay is 0.6 ns. With the cascade chain, decoding a 16-bit address 
requires 3.1 ns.

Figure 10. ACEX 1K Cascade Chain Operation

LE1

LUT

LE2

LUT

d[3..0]

d[7..4]

d[(4n – 1)..(4n – 4)]

d[3..0]

d[7..4]

LEn

LE1

LE2

LEn

LUT

LUT

LUT

LUT

AND Cascade Chain OR Cascade Chain

d[(4n – 1)..(4n – 4)]
Altera Corporation  19



ACEX 1K Programmable Logic Device Family Data Sheet
FastTrack Interconnect Routing Structure

In the ACEX 1K architecture, connections between LEs, EABs, and device 
I/O pins are provided by the FastTrack Interconnect routing structure, 
which is a series of continuous horizontal and vertical routing channels 
that traverse the device. This global routing structure provides 
predictable performance, even in complex designs. In contrast, the 
segmented routing in FPGAs requires switch matrices to connect a 
variable number of routing paths, increasing the delays between logic 
resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column 
interconnect channels that span the entire device. Each row of LABs is 
served by a dedicated row interconnect. The row interconnect can drive 
I/O pins and feed other LABs in the row. The column interconnect routes 
signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row 
signal is buffered at every LAB or EAB to reduce the effect of fan-out on 
delay. A row channel can be driven by an LE or by one of three column 
channels. These four signals feed dual 4-to-1 multiplexers that connect to 
two specific row channels. These multiplexers, which are connected to 
each LE, allow column channels to drive row channels even when all eight 
LEs in a LAB drive the row interconnect. 

Each column of LABs or EABs is served by a dedicated column 
interconnect. The column interconnect that serves the EABs has twice as 
many channels as other column interconnects. The column interconnect 
can then drive I/O pins or another row’s interconnect to route the signals 
to other LABs or EABs in the device. A signal from the column 
interconnect, which can be either the output of a LE or an input from an 
I/O pin, must be routed to the row interconnect before it can enter a LAB 
or EAB. Each row channel that is driven by an IOE or EAB can drive one 
specific column channel.

Access to row and column channels can be switched between LEs in 
adjacent pairs of LABs. For example, a LE in one LAB can drive the row 
and column channels normally driven by a particular LE in the adjacent 
LAB in the same row, and vice versa. This flexibility enables routing 
resources to be used more efficiently. Figure 13 shows the ACEX 1K LAB.
26 Altera Corporation
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Figure 15. ACEX 1K Bidirectional I/O Registers 
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For designs that require both a multiplied and non-multiplied clock, the 
clock trace on the board can be connected to the GCLK1 pin. In the Altera 
software, the GCLK1 pin can feed both the ClockLock and ClockBoost 
circuitry in the ACEX 1K device. However, when both circuits are used, 
the other clock pin cannot be used.

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the 
incoming clock must meet certain requirements. If these specifications are 
not met, the circuitry may not lock onto the incoming clock, which 
generates an erroneous clock within the device. The clock generated by 
the ClockLock and ClockBoost circuitry must also meet certain 
specifications. If the incoming clock meets these requirements during 
configuration, the ClockLock and ClockBoost circuitry will lock onto the 
clock during configuration. The circuit will be ready for use immediately 
after configuration. Figure 19 shows the incoming and generated clock 
specifications.

Figure 19. Specifications for the Incoming & Generated Clocks Note (1)

Note:
(1) The tI parameter refers to the nominal input clock period; the tO parameter refers to the nominal output clock 

period.

Input
Clock

ClockLock
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tR tF tO tI + tINCLKSTB
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Notes to tables:
(1) To implement the ClockLock and ClockBoost circuitry with the Altera software, designers must specify the input 

frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The 
fCLKDEV parameter specifies how much the incoming clock can differ from the specified frequency during device 
operation. Simulation does not reflect this parameter.

(2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
(3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If 

the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during 
configuration because the tLOCK value is less than the time required for configuration.

(4) The tJITTER specification is measured under long-term observation. The maximum value for tJITTER is 200 ps if 
tINCLKSTB is lower than 50 ps.

I/O 
Configuration

This section discusses the PCI pull-up clamping diode option, slew-rate 
control, open-drain output option, and MultiVolt I/O interface for 
ACEX 1K devices. The PCI pull-up clamping diode, slew-rate control, and 
open-drain output options are controlled pin-by-pin via Altera software 
logic options. The MultiVolt I/O interface is controlled by connecting 
VCCIO to a different voltage than VCCINT. Its effect can be simulated in the 
Altera software via the Global Project Device Options dialog box (Assign 
menu).

Table 12. ClockLock & ClockBoost Parameters for -2 Speed-Grade Devices

Symbol Parameter Condition Min Typ Max Unit

tR Input rise time 5 ns

tF Input fall time 5 ns

tINDUTY Input duty cycle 40 60 %

fCLK1 Input clock frequency (ClockBoost clock 
multiplication factor equals 1)

25 80 MHz

fCLK2 Input clock frequency (ClockBoost clock 
multiplication factor equals 2)

16 40 MHz

fCLKDEV Input deviation from user specification in 
the software (1)

25,000 PPM

tINCLKSTB Input clock stability (measured between 
adjacent clocks)

100 ps

tLOCK Time required for ClockLock or ClockBoost 
to acquire lock (3)

10 µs

tJITTER Jitter on ClockLock or ClockBoost-
generated clock (4)

tINCLKSTB < 100 250 (4) ps

tINCLKSTB < 50 200 (4) ps

tOUTDUTY Duty cycle for ClockLock or ClockBoost-
generated clock

40 50 60 %
Altera Corporation  39
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Notes to tables:
(1) The most significant bit (MSB) is on the left.
(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

ACEX 1K devices include weak pull-up resistors on the JTAG pins.

f For more information, see the following documents:

■ Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in 
Altera Devices) 

■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ BitBlaster Serial Download Cable Data Sheet
■ Jam Programming & Test Language Specification

Figure 20 shows the timing requirements for the JTAG signals.

Table 16.  32-Bit IDCODE for ACEX 1K Devices Note (1)

Device IDCODE (32 Bits)

Version 
(4 Bits)

Part Number (16 Bits) Manufacturer’s
Identity (11 Bits)

1 (1 Bit) (2)

EP1K10 0001 0001 0000 0001 0000 00001101110 1

EP1K30 0001 0001 0000 0011 0000 00001101110 1

EP1K50 0001 0001 0000 0101 0000 00001101110 1

EP1K100 0010 0000 0001 0000 0000 00001101110 1
Altera Corporation  43
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Figure 20. ACEX 1K JTAG Waveforms

Table 17 shows the timing parameters and values for ACEX 1K devices.
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Table 17. ACEX 1K JTAG Timing Parameters & Values

Symbol Parameter Min Max Unit

tJCP TCK clock period  100 ns

tJCH TCK clock high time  50 ns

tJCL TCK clock low time  50 ns

tJPSU JTAG port setup time  20 ns

tJPH JTAG port hold time  45 ns

tJPCO JTAG port clock to output 25 ns

tJPZX JTAG port high impedance to valid output 25 ns

tJPXZ JTAG port valid output to high impedance 25 ns

tJSSU Capture register setup time 20 ns

tJSH Capture register hold time 45 ns

tJSCO Update register clock to output 35 ns

tJSZX Update register high impedance to valid output 35 ns

tJSXZ Update register valid output to high impedance 35 ns
44 Altera Corporation
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Table 19.  ACEX 1K Device Recommended Operating Conditions

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage for internal logic 
and input buffers

(3), (4) 2.375 
(2.375)

2.625 
(2.625)

V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

Supply voltage for output buffers, 
2.5-V operation

(3), (4) 2.375 
(2.375)

2.625 
(2.625)

V

VI Input voltage (2), (5) –0.5 5.75 V

VO Output voltage 0 VCCIO V

TA Ambient temperature Commercial range 0 70 ° C

Industrial range –40 85 ° C

TJ Junction temperature Commercial range 0 85 ° C

Industrial range –40 100 ° C

Extended range –40 125 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns

Table 20. ACEX 1K Device DC Operating Conditions  (Part 1 of 2) Notes (6), (7)

Symbol Parameter Conditions Min Typ Max Unit

VIH High-level input voltage 1.7,
0.5 × VCCIO (8)

5.75 V

VIL Low-level input voltage –0.5 0.8, 
0.3 × VCCIO (8)

V

VOH 3.3-V high-level TTL output 
voltage

IOH = –8 mA DC, 
VCCIO = 3.00 V (9)

2.4 V

3.3-V high-level CMOS output 
voltage

IOH = –0.1 mA DC, 
VCCIO = 3.00 V (9)

VCCIO – 0.2 V

3.3-V high-level PCI output 
voltage

IOH = –0.5 mA DC, 
VCCIO = 3.00 to 3.60 V 
(9)

0.9 ×†VCCIO V

2.5-V high-level output voltage IOH = –0.1 mA DC, 
VCCIO = 2.375 V (9)

2.1 V

IOH = –1 mA DC, 
VCCIO = 2.375 V (9)

2.0 V

IOH = –2 mA DC, 
VCCIO = 2.375 V (9)

1.7 V
46 Altera Corporation
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Figure 22 shows the required relationship between VCCIO and VCCINT to 
satisfy 3.3-V PCI compliance.

Figure 22. Relationship between VCCIO & VCCINT for 3.3-V PCI Compliance

Figure 23 shows the typical output drive characteristics of ACEX 1K 
devices with 3.3-V and 2.5-V VCCIO. The output driver is compliant to the 
3.3-V PCI Local Bus Specification, Revision 2.2 (when VCCIO pins are 
connected to 3.3 V). ACEX 1K devices with a -1 speed grade also comply 
with the drive strength requirements of the PCI Local Bus Specification, 
Revision 2.2 (when VCCINT pins are powered with a minimum supply of 
2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices 
can be used in open 5.0-V PCI systems.
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tCASC Cascade-in to cascade-out delay

tC LE register control signal delay

tCO LE register clock-to-output delay

tCOMB Combinatorial delay

tSU LE register setup time for data and enable signals before clock; LE register 
recovery time after asynchronous clear, preset, or load

tH LE register hold time for data and enable signals after clock

tPRE LE register preset delay

tCLR LE register clear delay

tCH Minimum clock high time from clock pin

tCL Minimum clock low time from clock pin

Table 23. IOE Timing Microparameters Note (1)

Symbol Parameter Conditions

tIOD IOE data delay

tIOC IOE register control signal delay

tIOCO IOE register clock-to-output delay

tIOCOMB IOE combinatorial delay

tIOSU IOE register setup time for data and enable signals before clock; IOE register 
recovery time after asynchronous clear

tIOH IOE register hold time for data and enable signals after clock

tIOCLR IOE register clear time

tOD1 Output buffer and pad delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tOD2 Output buffer and pad delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tOD3 Output buffer and pad delay, slow slew rate = on C1 = 35 pF (4)

tXZ IOE output buffer disable delay

tZX1 IOE output buffer enable delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tZX2 IOE output buffer enable delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tZX3 IOE output buffer enable delay, slow slew rate = on C1 = 35 pF (4)

tINREG IOE input pad and buffer to IOE register delay

tIOFD IOE register feedback delay

tINCOMB IOE input pad and buffer to FastTrack Interconnect delay

Table 22. LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Parameter Conditions
Altera Corporation  55
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Table 24. EAB Timing Microparameters Note (1)

Symbol Parameter Conditions

tEABDATA1 Data or address delay to EAB for combinatorial input

tEABDATA2 Data or address delay to EAB for registered input

tEABWE1 Write enable delay to EAB for combinatorial input

tEABWE2 Write enable delay to EAB for registered input

tEABRE1 Read enable delay to EAB for combinatorial input

tEABRE2 Read enable delay to EAB for registered input

tEABCLK EAB register clock delay

tEABCO EAB register clock-to-output delay

tEABBYPASS Bypass register delay

tEABSU EAB register setup time before clock

tEABH EAB register hold time after clock

tEABCLR EAB register asynchronous clear time to output delay

tAA Address access delay (including the read enable to output delay)

tWP Write pulse width

tRP Read pulse width

tWDSU Data setup time before falling edge of write pulse (5)

tWDH Data hold time after falling edge of write pulse (5)

tWASU Address setup time before rising edge of write pulse (5)

tWAH Address hold time after falling edge of write pulse (5)

tRASU Address setup time before rising edge of read pulse

tRAH Address hold time after falling edge of read pulse

tWO Write enable to data output valid delay

tDD Data-in to data-out valid delay

tEABOUT Data-out delay

tEABCH Clock high time

tEABCL Clock low time
56 Altera Corporation
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Table 32. EP1K10 Device EAB Internal Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABDATA1 1.8 1.9 1.9 ns

tEABDATA2 0.6 0.7 0.7 ns

tEABWE1 1.2 1.2 1.2 ns

tEABWE2 0.4 0.4 0.4 ns

tEABRE1 0.9 0.9 0.9 ns

tEABRE2 0.4 0.4 0.4 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.3 0.3 ns

tEABBYPASS 0.5 0.6 0.6 ns

tEABSU 1.0 1.0 1.0 ns

tEABH 0.5 0.4 0.4 ns

tEABCLR 0.3 0.3 0.3 ns

tAA 3.4 3.6 3.6 ns

tWP 2.7 2.8 2.8 ns

tRP 1.0 1.0 1.0 ns

tWDSU 1.0 1.0 1.0 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.8 1.9 1.9 ns

tWAH 1.9 2.0 2.0 ns

tRASU 3.1 3.5 3.5 ns

tRAH 0.2 0.2 0.2 ns

tWO 2.7 2.8 2.8 ns

tDD 2.7 2.8 2.8 ns

tEABOUT 0.5 0.6 0.6 ns

tEABCH 1.5 2.0 2.0 ns

tEABCL 2.7 2.8 2.8 ns
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Table 41. EP1K30 Device Interconnect Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDIN2IOE 1.8 2.4 2.9 ns

tDIN2LE 1.5 1.8 2.4 ns

tDIN2DATA 1.5 1.8 2.2 ns

tDCLK2IOE 2.2 2.6 3.0 ns

tDCLK2LE 1.5 1.8 2.4 ns

tSAMELAB 0.1 0.2 0.3 ns

tSAMEROW 2.0 2.4 2.7 ns

tSAMECOLUMN 0.7 1.0 0.8 ns

tDIFFROW 2.7 3.4 3.5 ns

tTWOROWS 4.7 5.8 6.2 ns

tLEPERIPH 2.7 3.4 3.8 ns

tLABCARRY 0.3 0.4 0.5 ns

tLABCASC 0.8 0.8 1.1 ns

Table 42. EP1K30 External Timing Parameters Notes (1), (2)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDRR 8.0 9.5 12.5 ns

tINSU (3) 2.1 2.5 3.9 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0  4.9 2.0 5.9 2.0 7.6 ns

tINSU (4) 1.1 1.5 – ns

tINH (4) 0.0 0.0 – ns

tOUTCO (4) 0.5 3.9 0.5 4.9 – – ns

tPCISU 3.0 4.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 7.5 – – ns
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Table 46. EP1K50 Device EAB Internal Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABDATA1 1.7 2.4 3.2 ns

tEABDATA2 0.4 0.6 0.8 ns

tEABWE1 1.0 1.4 1.9 ns

tEABWE2 0.0 0.0 0.0 ns

tEABRE1 0.0 0.0 0.0

tEABRE2 0.4 0.6 0.8

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.8 1.1 1.5 ns

tEABBYPASS 0.0 0.0 0.0 ns

tEABSU 0.7 1.0 1.3 ns

tEABH 0.4 0.6 0.8 ns

tEABCLR 0.8 1.1 1.5

tAA 2.0 2.8 3.8 ns

tWP 2.0 2.8 3.8 ns

tRP 1.0 1.4 1.9

tWDSU 0.5 0.7 0.9 ns

tWDH 0.1 0.1 0.2 ns

tWASU 1.0 1.4 1.9 ns

tWAH 1.5 2.1 2.9 ns

tRASU 1.5 2.1 2.8

tRAH 0.1 0.1 0.2

tWO 2.1 2.9 4.0 ns

tDD 2.1 2.9 4.0 ns

tEABOUT 0.0 0.0 0.0 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 1.5 2.0 2.5 ns
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Notes to tables:
(1) All timing parameters are described in Tables 22 through 29 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Power 
Consumption

The supply power (P) for ACEX 1K devices can be calculated with the 
following equation:

P = PINT + PIO = (ICCSTANDBY + ICCACTIVE) × VCC + PIO

The ICCACTIVE value depends on the switching frequency and the 
application logic. This value is calculated based on the amount of current 
that each LE typically consumes. The PIO value, which depends on the 
device output load characteristics and switching frequency, can be 
calculated using the guidelines given in Application Note 74 (Evaluating 
Power for Altera Devices).

1 Compared to the rest of the device, the embedded array 
consumes a negligible amount of power. Therefore, the 
embedded array can be ignored when calculating supply 
current.

Table 57. EP1K100 External Bidirectional Timing Parameters Notes (1), (2)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSUBIDIR (3) 1.7 2.5 3.3 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 2.0 2.8 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 5.2 2.0 6.9 2.0 9.1 ns

tXZBIDIR (3) 5.6 7.5 10.1 ns

tZXBIDIR (3) 5.6 7.5  10.1 ns

tOUTCOBIDIR (4) 0.5 3.0 0.5 4.6 – – ns

tXZBIDIR (4) 4.6 6.5 – ns

tZXBIDIR (4) 4.6  6.5 – ns
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