

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	216
Number of Logic Elements/Cells	1728
Total RAM Bits	24576
Number of I/O	171
Number of Gates	119000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep1k30fc256-3naa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 5 shows ACEX 1K device performance for more complex designs. These designs are available as Altera MegaCore $^{\rm TM}$ functions.

Table 5. ACEX 1K Device Performance for Complex Designs								
Application	LEs	LEs Performance						
	Used		!	Units				
		-1	-2	-3				
16-bit, 8-tap parallel finite impulse response (FIR) filter	597	192	156	116	MSPS			
8-bit, 512-point Fast Fourier transform (FFT)	1,854	23.4	28.7	38.9	μs			
function		113	92	68	MHz			
a16450 universal asynchronous receiver/transmitter (UART)	342	36	28	20.5	MHz			

Each ACEX 1K device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and data-transformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device.

ACEX 1K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers EPC16, EPC2, EPC1, and EPC1441 configuration devices, which configure ACEX 1K devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera MasterBlaster $^{\text{TM}}$, ByteBlasterMV $^{\text{TM}}$, or BitBlaster $^{\text{TM}}$ download cables. After an ACEX 1K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 40 ms, real-time changes can be made during system operation.

ACEX 1K devices contain an interface that permits microprocessors to configure ACEX 1K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat an ACEX 1K device as memory and configure it by writing to a virtual memory location, simplifying device reconfiguration.

For more information on the configuration of ACEX 1K devices, see the following documents:

- Configuration Devices for ACEX, APEX, FLEX, & Mercury Devices Data Sheet
- MasterBlaster Serial/USB Communications Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- BitBlaster Serial Download Cable Data Sheet

ACEX 1K devices are supported by Altera development systems, which are integrated packages that offer schematic, text (including AHDL), and waveform design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, and device configuration. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX workstation-based EDA tools.

The Altera software works easily with common gate array EDA tools for synthesis and simulation. For example, the Altera software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the Altera software contains EDA libraries that use device-specific features such as carry chains, which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the Altera development system includes DesignWare functions that are optimized for the ACEX 1K device architecture.

The Altera development systems run on Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations.

For more information, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

Functional Description

Each ACEX 1K device contains an enhanced embedded array that implements memory and specialized logic functions, and a logic array that implements general logic.

The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 4,096 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions such as multipliers, microcontrollers, state machines, and DSP functions. EABs can be used independently, or multiple EABs can be combined to implement larger functions.

Figure 3. ACEX 1K EAB in Dual-Port RAM Mode

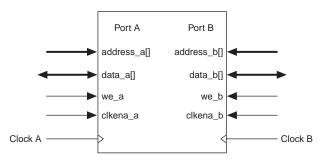
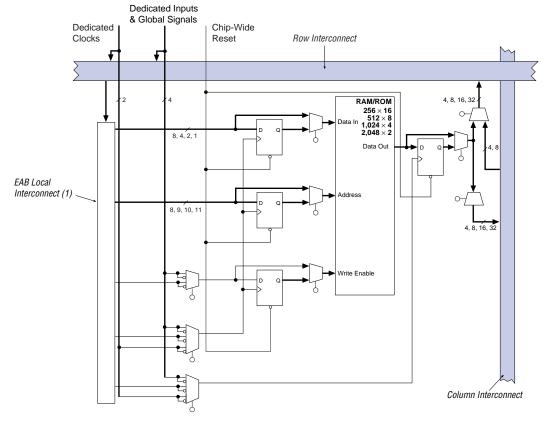



Figure 4. ACEX 1K Device in Single-Port RAM Mode

Note

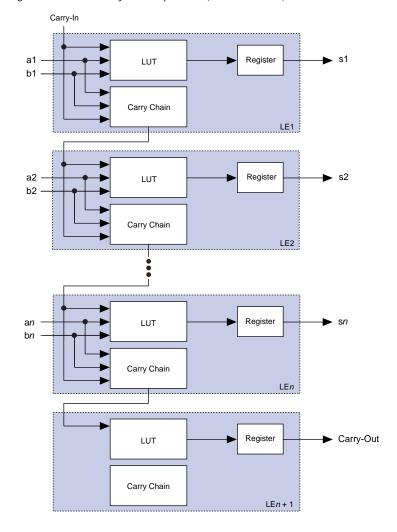
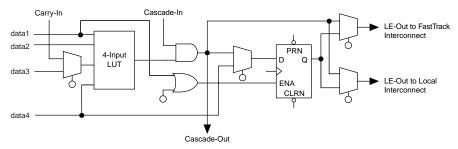
(1) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB local interconnect channels.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the ACEX 1K architecture to efficiently implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the compiler during design processing, or manually by the designer during design entry. Parameterized functions, such as LPM and DesignWare functions, automatically take advantage of carry chains.

Carry chains longer than eight LEs are automatically implemented by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the first LE of the third LAB in the row. The carry chain does not cross the EAB at the middle of the row. For instance, in the EP1K50 device, the carry chain stops at the eighteenth LAB, and a new carry chain begins at the nineteenth LAB.

Figure 9 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal.

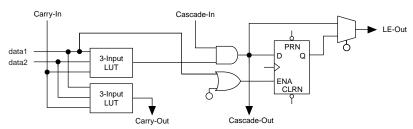
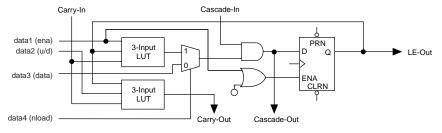
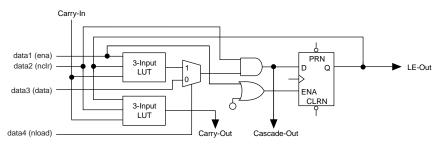

Figure 9. ACEX 1K Carry Chain Operation (n-Bit Full Adder)

Figure 11. ACEX 1K LE Operating Modes


Normal Mode


Arithmetic Mode

Up/Down Counter Mode

Clearable Counter Mode

FastTrack Interconnect Routing Structure

In the ACEX 1K architecture, connections between LEs, EABs, and device I/O pins are provided by the FastTrack Interconnect routing structure, which is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect. The row interconnect can drive I/O pins and feed other LABs in the row. The column interconnect routes signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row signal is buffered at every LAB or EAB to reduce the effect of fan-out on delay. A row channel can be driven by an LE or by one of three column channels. These four signals feed dual 4-to-1 multiplexers that connect to two specific row channels. These multiplexers, which are connected to each LE, allow column channels to drive row channels even when all eight LEs in a LAB drive the row interconnect.

Each column of LABs or EABs is served by a dedicated column interconnect. The column interconnect that serves the EABs has twice as many channels as other column interconnects. The column interconnect can then drive I/O pins or another row's interconnect to route the signals to other LABs or EABs in the device. A signal from the column interconnect, which can be either the output of a LE or an input from an I/O pin, must be routed to the row interconnect before it can enter a LAB or EAB. Each row channel that is driven by an IOE or EAB can drive one specific column channel.

Access to row and column channels can be switched between LEs in adjacent pairs of LABs. For example, a LE in one LAB can drive the row and column channels normally driven by a particular LE in the adjacent LAB in the same row, and vice versa. This flexibility enables routing resources to be used more efficiently. Figure 13 shows the ACEX 1K LAB.

On all ACEX 1K devices, the input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold time or turn it off to minimize setup time. This feature is used to reduce setup time for complex pin-to-register paths (e.g., PCI designs).

Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across devices and provides up to 12 peripheral control signals that can be allocated as follows:

- Up to eight output enable signals
- Up to six clock enable signals
- Up to two clock signals
- Up to two clear signals

If more than six clock-enable or eight output-enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, a LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chipwide reset signal resets all IOE registers, overriding any other control signals.

When a dedicated clock pin drives IOE registers, it can be inverted for all IOEs in the device. All IOEs must use the same sense of the clock. For example, if any IOE uses the inverted clock, all IOEs must use the inverted clock, and no IOE can use the non-inverted clock. However, LEs can still use the true or complement of the clock on an LAB-by-LAB basis.

The incoming signal may be inverted at the dedicated clock pin and will drive all IOEs. For the true and complement of a clock to be used to drive IOEs, drive it into both global clock pins. One global clock pin will supply the true, and the other will supply the complement.

When the true and complement of a dedicated input drives IOE clocks, two signals on the peripheral control bus are consumed, one for each sense of the clock.

When dedicated inputs drive non-inverted and inverted peripheral clears, clock enables, and output enables, two signals on the peripheral control bus will be used.

Table 7 lists the sources for each peripheral control signal and shows how the output enable, clock enable, clock, and clear signals share 12 peripheral control signals. Table 7 also shows the rows that can drive global signals.

Table 7. Peripheral Bus Sources for ACEX Devices							
Peripheral Control Signal	EP1K10	EP1K30	EP1K50	EP1K100			
OE0	Row A	Row A	Row A	Row A			
OE1	Row A	Row B	Row B	Row C			
OE2	Row B	Row C	Row D	Row E			
OE3	Row B	Row D	Row F	Row L			
OE4	Row C	Row E	Row H	Row I			
OE5	Row C	Row F	Row J	Row K			
CLKENAO/CLKO/GLOBALO	Row A	Row A	Row A	Row F			
CLKENA1/OE6/GLOBAL1	Row A	Row B	Row C	Row D			
CLKENA2/CLR0	Row B	Row C	Row E	Row B			
CLKENA3/OE7/GLOBAL2	Row B	Row D	Row G	Row H			
CLKENA4/CLR1	Row C	Row E	Row I	Row J			
CLKENA5/CLK1/GLOBAL3	Row C	Row F	Row J	Row G			

Signals on the peripheral control bus can also drive the four global signals, referred to as <code>GLOBALO</code> through <code>GLOBALO</code>. An internally generated signal can drive a global signal, providing the same low-skew, low-delay characteristics as a signal driven by an input pin. An LE drives the global signal by driving a row line that drives the peripheral bus which then drives the global signal. This feature is ideal for internally generated clear or clock signals with high fan-out. However, internally driven global signals offer no advantage over the general-purpose interconnect for routing data signals.

The chip-wide output enable pin is an active-high pin that can be used to tri-state all pins on the device. This option can be set in the Altera software. The built-in I/O pin pull-up resistors (which are active during configuration) are active when the chip-wide output enable pin is asserted. The registers in the IOE can also be reset by the chip-wide reset pin.

SameFrame Pin-Outs

ACEX 1K devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EP1K10 device in a 256-pin FineLine BGA package to an EP1K100 device in a 484-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board that takes advantage of this migration. Figure 18 shows an example of SameFrame pin-out.

Figure 18. SameFrame Pin-Out Example

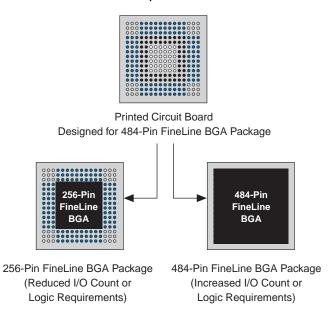


Table 10 shows the ACEX 1K device/package combinations that support SameFrame pin-outs for ACEX 1K devices. All FineLine BGA packages support SameFrame pin-outs, providing the flexibility to migrate not only from device to device within the same package, but also from one package to another. The I/O count will vary from device to device.

Figure 20. ACEX 1K JTAG Waveforms

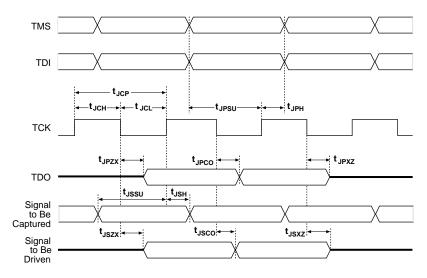
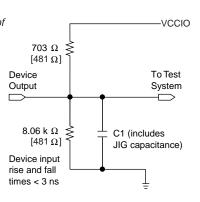


Table 17 shows the timing parameters and values for ACEX 1K devices.


Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		35	ns
t _{JSZX}	Update register high impedance to valid output		35	ns
t _{JSXZ}	Update register valid output to high impedance		35	ns

Generic Testing

Each ACEX 1K device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for ACEX 1K devices are made under conditions equivalent to those shown in Figure 21. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 21. ACEX 1K AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices or outputs. Numbers without brackets are for 3.3-V devices or outputs.

Operating Conditions

Tables 18 through 21 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V ACEX 1K devices.

Table 18. ACEX 1K Device Absolute Maximum Ratings Note (1)								
Symbol	Parameter	Min	Max	Unit				
V _{CCINT}	Supply voltage	-0.5	3.6	V				
V _{CCIO}			-0.5	4.6	V			
V _I	DC input voltage		-2.0	5.75	V			
I _{OUT}	DC output current, per pin		-25	25	mA			
T _{STG}	Storage temperature	No bias	-65	150	° C			
T _{AMB}	Ambient temperature	Under bias	-65	135	° C			
TJ	Junction temperature	PQFP, TQFP, and BGA packages, under bias		135	° C			

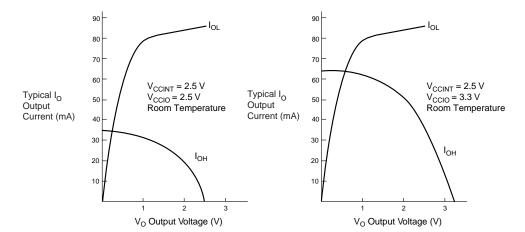


Figure 23. Output Drive Characteristics of ACEX 1K Devices

Timing Model

The continuous, high-performance FastTrack Interconnect routing resources ensure accurate simulation and timing analysis as well as predictable performance. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and, therefore, have an unpredictable performance.

Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:

- LE register clock-to-output delay (t_{CO})
- Interconnect delay (*t_{SAMEROW}*)
- LE look-up table delay (t_{LUT})
- LE register setup time (t_{SI})

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

Timing simulation and delay prediction are available with the simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis.

Figure 26. ACEX 1K Device IOE Timing Model

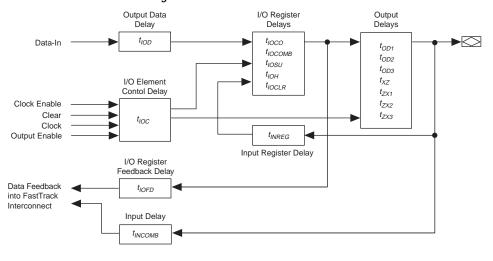
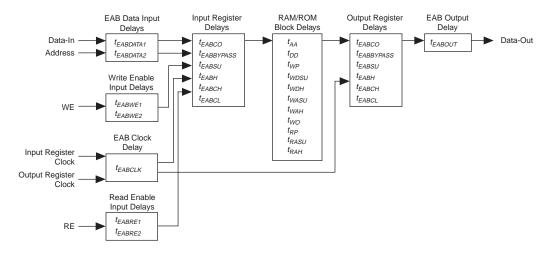
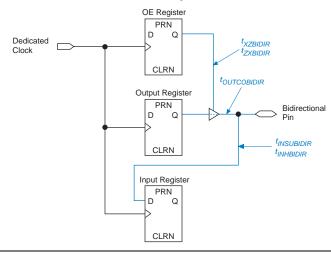
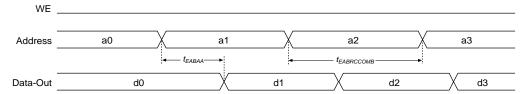


Figure 27. ACEX 1K Device EAB Timing Model


Figure 28. Synchronous Bidirectional Pin External Timing Model

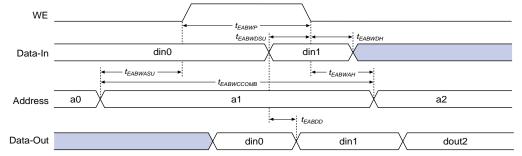

Tables 29 and 30 show the asynchronous and synchronous timing waveforms, respectively, for the EAB macroparameters in Table 24.

Figure 29. EAB Asynchronous Timing Waveforms

EAB Asynchronous Write

Table 25. EAB Timing Macroparameters Notes (1), (6)							
Symbol	Parameter	Conditions					
t _{EABAA}	EAB address access delay						
t _{EABRCCOMB}	EAB asynchronous read cycle time						
t _{EABRCREG}	EAB synchronous read cycle time						
t _{EABWP}	EAB write pulse width						
t _{EABWCCOMB}	EAB asynchronous write cycle time						
t _{EABWCREG}	EAB synchronous write cycle time						
t_{EABDD}	EAB data-in to data-out valid delay						
t _{EABDATACO}	EAB clock-to-output delay when using output registers						
t _{EABDATASU}	EAB data/address setup time before clock when using input register						
t _{EABDATAH}	EAB data/address hold time after clock when using input register						
t _{EABWESU}	EAB WE setup time before clock when using input register						
t _{EABWEH}	EAB WE hold time after clock when using input register						
t _{EABWDSU}	EAB data setup time before falling edge of write pulse when not using input registers						
t _{EABWDH}	EAB data hold time after falling edge of write pulse when not using input						
t _{EABWASU}	registers EAB address setup time before rising edge of write pulse when not using input registers						
t _{EABWAH}	EAB address hold time after falling edge of write pulse when not using input registers						
t _{EABWO}	EAB write enable to data output valid delay						

Tables 30 through 36 show EP1K10 device internal and external timing parameters.

Table 30. EP1K10 Device LE Timing Microparameters Note (1)								
Symbol		Unit						
	-	1	-	-2		-3		
	Min	Max	Min	Max	Min	Max		
t_{LUT}		0.7		0.8		1.1	ns	
t_{CLUT}		0.5		0.6		0.8	ns	
t _{RLUT}		0.6		0.7		1.0	ns	
t _{PACKED}		0.4		0.4		0.5	ns	
t_{EN}		0.9		1.0		1.3	ns	
t_{CICO}		0.1		0.1		0.2	ns	
t _{CGEN}		0.4		0.5		0.7	ns	
t _{CGENR}		0.1		0.1		0.2	ns	
t_{CASC}		0.7		0.9		1.1	ns	
t_{C}		1.1		1.3		1.7	ns	
$t_{\rm CO}$		0.5		0.7		0.9	ns	
t _{COMB}		0.4		0.5		0.7	ns	
t_{SU}	0.7		0.8		1.0		ns	
t _H	0.9		1.0		1.1		ns	
t _{PRE}		0.8		1.0		1.4	ns	
t _{CLR}		0.9		1.0		1.4	ns	
t _{CH}	2.0		2.5		2.5		ns	
t_{CL}	2.0		2.5		2.5		ns	

Symbol			Speed	Grade			Unit
	-	1	-2		-3		
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		3.1		3.7		4.6	ns
t _{DIN2LE}		1.7		2.1		2.7	ns
t _{DIN2DATA}		2.7		3.1		5.1	ns
t _{DCLK2IOE}		1.6		1.9		2.6	ns
t _{DCLK2LE}		1.7		2.1		2.7	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.5		1.7		2.4	ns
t _{SAME} COLUMN		1.0		1.3		2.1	ns
t _{DIFFROW}		2.5		3.0		4.5	ns
t _{TWOROWS}		4.0		4.7		6.9	ns
t _{LEPERIPH}		2.6		2.9		3.4	ns
t _{LABCARRY}		0.1		0.2		0.2	ns
LABCASC		0.8		1.0		1.3	ns

Table 49. EP1K50 External Timing Parameters Note (1)								
Symbol	Speed Grade						Unit	
	-1		-1 -2		-3			
	Min	Max	Min	Max	Min	Max		
t _{DRR}		8.0		9.5		12.5	ns	
t _{INSU} (2)	2.4		2.9		3.9		ns	
t _{INH} (2)	0.0		0.0		0.0		ns	
t _{оитсо} (2)	2.0	4.3	2.0	5.2	2.0	7.3	ns	
t _{INSU} (3)	2.4		2.9		-		ns	
t _{INH} (3)	0.0		0.0		-		ns	
t _{оитсо} (3)	0.5	3.3	0.5	4.1	-	-	ns	
t _{PCISU}	2.4		2.9		-		ns	
t _{PCIH}	0.0		0.0		-		ns	
t _{PCICO}	2.0	6.0	2.0	7.7	-	-	ns	

Symbol			Speed	Grade			Unit
	-1		-2		-3		ı
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (2)	2.7		3.2		4.3		ns
t _{INHBIDIR} (2)	0.0		0.0		0.0		ns
t _{INSUBIDIR} (3)	3.7		4.2		-		ns
t _{INHBIDIR} (3)	0.0		0.0		_		ns
t _{OUTCOBIDIR} (2)	2.0	4.5	2.0	5.2	2.0	7.3	ns
t _{XZBIDIR} (2)		6.8		7.8		10.1	ns
t _{ZXBIDIR} (2)		6.8		7.8		10.1	ns
toutcobidir (3)	0.5	3.5	0.5	4.2	=	-	
t _{XZBIDIR} (3)		6.8		8.4		-	ns
t _{ZXBIDIR} (3)		6.8		8.4	•	-	ns

Notes to tables:

- All timing parameters are described in Tables 22 through 29. This parameter is measured without use of the ClockLock or ClockBoost circuits. (2)
- This parameter is measured with use of the ClockLock or ClockBoost circuits (3)

The I_{CCACTIVE} value can be calculated with the following equation:

$$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} (\mu A)$$

Where:

f_{MAX} = Maximum operating frequency in MHz
 N = Total number of LEs used in the device

tog_{LC} = Average percent of LEs toggling at each clock

(typically 12.5%)

K = Constant

Table 58 provides the constant (K) values for ACEX 1K devices.

Table 58. ACEX 1K Constant Values					
Device	K Value				
EP1K10	4.5				
EP1K30	4.5				
EP1K50	4.5				
EP1K100	4.5				

This supply power calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant K in the power calculation equations) for continuous interconnect ACEX 1K devices assumes that LEs drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all LEs drive only one short interconnect segment. This assumption may lead to inaccurate results when compared to measured power consumption for actual designs in segmented FPGAs.

Figure 31 shows the relationship between the current and operating frequency of ACEX 1K devices. For information on other ACEX 1K devices, contact Altera Applications at (800) 800-EPLD.