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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Number of I/O 171

Number of Gates 119000
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Mounting Type Surface Mount

Operating Temperature 0°C ~ 70°C (TA)
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Table 5 shows ACEX 1K device performance for more complex designs. 
These designs are available as Altera MegaCoreTM functions.

Each ACEX 1K device contains an embedded array and a logic array. The 
embedded array is used to implement a variety of memory functions or 
complex logic functions, such as digital signal processing (DSP), wide 
data-path manipulation, microcontroller applications, and data-
transformation functions. The logic array performs the same function as 
the sea-of-gates in the gate array and is used to implement general logic 
such as counters, adders, state machines, and multiplexers. The 
combination of embedded and logic arrays provides the high 
performance and high density of embedded gate arrays, enabling 
designers to implement an entire system on a single device.

ACEX 1K devices are configured at system power-up with data stored in 
an Altera serial configuration device or provided by a system controller. 
Altera offers EPC16, EPC2, EPC1, and EPC1441 configuration devices, 
which configure ACEX 1K devices via a serial data stream. Configuration 
data can also be downloaded from system RAM or via the Altera 
MasterBlasterTM, ByteBlasterMVTM, or BitBlasterTM download cables. After 
an ACEX 1K device has been configured, it can be reconfigured in-circuit 
by resetting the device and loading new data. Because reconfiguration 
requires less than 40 ms, real-time changes can be made during system 
operation.

ACEX 1K devices contain an interface that permits microprocessors to 
configure ACEX 1K devices serially or in parallel, and synchronously or 
asynchronously. The interface also enables microprocessors to treat an 
ACEX 1K device as memory and configure it by writing to a virtual 
memory location, simplifying device reconfiguration.

Table 5. ACEX 1K Device Performance for Complex Designs

Application LEs 
Used

Performance

Speed Grade Units

-1 -2 -3

16-bit, 8-tap parallel finite impulse response (FIR) 
filter

597 192 156 116 MSPS

8-bit, 512-point Fast Fourier transform (FFT) 
function

1,854 23.4 28.7 38.9 µs

113 92 68 MHz

a16450 universal asynchronous 
receiver/transmitter (UART)

342 36 28 20.5 MHz
Altera Corporation  5
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f For more information on the configuration of ACEX 1K devices, see the 
following documents:

■ Configuration Devices for ACEX, APEX, FLEX, & Mercury Devices Data 
Sheet

■ MasterBlaster Serial/USB Communications Cable Data Sheet
■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ BitBlaster Serial Download Cable Data Sheet

ACEX 1K devices are supported by Altera development systems, which 
are integrated packages that offer schematic, text (including AHDL), and 
waveform design entry, compilation and logic synthesis, full simulation 
and worst-case timing analysis, and device configuration. The software 
provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other 
interfaces for additional design entry and simulation support from other 
industry-standard PC- and UNIX workstation-based EDA tools. 

The Altera software works easily with common gate array EDA tools for 
synthesis and simulation. For example, the Altera software can generate 
Verilog HDL files for simulation with tools such as Cadence Verilog-XL. 
Additionally, the Altera software contains EDA libraries that use device-
specific features such as carry chains, which are used for fast counter and 
arithmetic functions. For instance, the Synopsys Design Compiler library 
supplied with the Altera development system includes DesignWare 
functions that are optimized for the ACEX 1K device architecture. 

The Altera development systems run on Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800 workstations.

f For more information, see the MAX+PLUS II Programmable Logic 
Development System & Software Data Sheet and the Quartus Programmable 
Logic Development System & Software Data Sheet.

Functional 
Description

Each ACEX 1K device contains an enhanced embedded array that 
implements memory and specialized logic functions, and a logic array 
that implements general logic.

The embedded array consists of a series of EABs. When implementing 
memory functions, each EAB provides 4,096 bits, which can be used to 
create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. 
When implementing logic, each EAB can contribute 100 to 600 gates 
towards complex logic functions such as multipliers, microcontrollers, 
state machines, and DSP functions. EABs can be used independently, or 
multiple EABs can be combined to implement larger functions.
6 Altera Corporation
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Figure 3. ACEX 1K EAB in Dual-Port RAM Mode

Figure 4. ACEX 1K Device in Single-Port RAM Mode 

Note:
(1) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB 

local interconnect channels. 
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Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
ACEX 1K architecture to efficiently implement high-speed counters, 
adders, and comparators of arbitrary width. Carry chain logic can be 
created automatically by the compiler during design processing, or 
manually by the designer during design entry. Parameterized functions, 
such as LPM and DesignWare functions, automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EP1K50 device, the carry chain stops at the eighteenth LAB, and a 
new carry chain begins at the nineteenth LAB.

Figure 9 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for an accumulator function. Another portion of the LUT and the carry 
chain logic generates the carry-out signal, which is routed directly to the 
carry-in signal of the next-higher-order bit. The final carry-out signal is 
routed to an LE, where it can be used as a general-purpose signal. 
Altera Corporation  17
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Figure 9. ACEX 1K Carry Chain Operation (n-Bit Full Adder)
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Figure 11. ACEX 1K LE Operating Modes
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FastTrack Interconnect Routing Structure

In the ACEX 1K architecture, connections between LEs, EABs, and device 
I/O pins are provided by the FastTrack Interconnect routing structure, 
which is a series of continuous horizontal and vertical routing channels 
that traverse the device. This global routing structure provides 
predictable performance, even in complex designs. In contrast, the 
segmented routing in FPGAs requires switch matrices to connect a 
variable number of routing paths, increasing the delays between logic 
resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column 
interconnect channels that span the entire device. Each row of LABs is 
served by a dedicated row interconnect. The row interconnect can drive 
I/O pins and feed other LABs in the row. The column interconnect routes 
signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row 
signal is buffered at every LAB or EAB to reduce the effect of fan-out on 
delay. A row channel can be driven by an LE or by one of three column 
channels. These four signals feed dual 4-to-1 multiplexers that connect to 
two specific row channels. These multiplexers, which are connected to 
each LE, allow column channels to drive row channels even when all eight 
LEs in a LAB drive the row interconnect. 

Each column of LABs or EABs is served by a dedicated column 
interconnect. The column interconnect that serves the EABs has twice as 
many channels as other column interconnects. The column interconnect 
can then drive I/O pins or another row’s interconnect to route the signals 
to other LABs or EABs in the device. A signal from the column 
interconnect, which can be either the output of a LE or an input from an 
I/O pin, must be routed to the row interconnect before it can enter a LAB 
or EAB. Each row channel that is driven by an IOE or EAB can drive one 
specific column channel.

Access to row and column channels can be switched between LEs in 
adjacent pairs of LABs. For example, a LE in one LAB can drive the row 
and column channels normally driven by a particular LE in the adjacent 
LAB in the same row, and vice versa. This flexibility enables routing 
resources to be used more efficiently. Figure 13 shows the ACEX 1K LAB.
26 Altera Corporation
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On all ACEX 1K devices, the input path from the I/O pad to the FastTrack 
Interconnect has a programmable delay element that can be used to 
guarantee a zero hold time. Depending on the placement of the IOE 
relative to what it is driving, the designer may choose to turn on the 
programmable delay to ensure a zero hold time or turn it off to minimize 
setup time. This feature is used to reduce setup time for complex pin-to-
register paths (e.g., PCI designs).

Each IOE selects the clock, clear, clock enable, and output enable controls 
from a network of I/O control signals called the peripheral control bus. 
The peripheral control bus uses high-speed drivers to minimize signal 
skew across devices and provides up to 12 peripheral control signals that 
can be allocated as follows:

■ Up to eight output enable signals
■ Up to six clock enable signals
■ Up to two clock signals
■ Up to two clear signals

If more than six clock-enable or eight output-enable signals are required, 
each IOE on the device can be controlled by clock enable and output 
enable signals driven by specific LEs. In addition to the two clock signals 
available on the peripheral control bus, each IOE can use one of two 
dedicated clock pins. Each peripheral control signal can be driven by any 
of the dedicated input pins or the first LE of each LAB in a particular row. 
In addition, a LE in a different row can drive a column interconnect, which 
causes a row interconnect to drive the peripheral control signal. The chip-
wide reset signal resets all IOE registers, overriding any other control 
signals.

When a dedicated clock pin drives IOE registers, it can be inverted for all 
IOEs in the device. All IOEs must use the same sense of the clock. For 
example, if any IOE uses the inverted clock, all IOEs must use the inverted 
clock, and no IOE can use the non-inverted clock. However, LEs can still 
use the true or complement of the clock on an LAB-by-LAB basis. 

The incoming signal may be inverted at the dedicated clock pin and will 
drive all IOEs. For the true and complement of a clock to be used to drive 
IOEs, drive it into both global clock pins. One global clock pin will supply 
the true, and the other will supply the complement. 

When the true and complement of a dedicated input drives IOE clocks, 
two signals on the peripheral control bus are consumed, one for each 
sense of the clock.
Altera Corporation  31
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When dedicated inputs drive non-inverted and inverted peripheral clears, 
clock enables, and output enables, two signals on the peripheral control 
bus will be used.

Table 7 lists the sources for each peripheral control signal and shows how 
the output enable, clock enable, clock, and clear signals share 
12 peripheral control signals. Table 7 also shows the rows that can drive 
global signals.

Signals on the peripheral control bus can also drive the four global signals, 
referred to as GLOBAL0 through GLOBAL3. An internally generated signal 
can drive a global signal, providing the same low-skew, low-delay 
characteristics as a signal driven by an input pin. An LE drives the global 
signal by driving a row line that drives the peripheral bus which then 
drives the global signal. This feature is ideal for internally generated clear 
or clock signals with high fan-out. However, internally driven global 
signals offer no advantage over the general-purpose interconnect for 
routing data signals.

The chip-wide output enable pin is an active-high pin that can be used to 
tri-state all pins on the device. This option can be set in the Altera 
software. The built-in I/O pin pull-up resistors (which are active during 
configuration) are active when the chip-wide output enable pin is 
asserted. The registers in the IOE can also be reset by the chip-wide reset 
pin.

Table 7. Peripheral Bus Sources for ACEX Devices

Peripheral Control Signal EP1K10 EP1K30 EP1K50 EP1K100

OE0 Row A Row A Row A Row A

OE1 Row A Row B Row B Row C

OE2 Row B Row C Row D Row E

OE3 Row B Row D Row F Row L

OE4 Row C Row E Row H Row I

OE5 Row C Row F Row J Row K

CLKENA0/CLK0/GLOBAL0 Row A Row A Row A Row F

CLKENA1/OE6/GLOBAL1 Row A Row B Row C Row D

CLKENA2/CLR0 Row B Row C Row E Row B

CLKENA3/OE7/GLOBAL2 Row B Row D Row G Row H

CLKENA4/CLR1 Row C Row E Row I Row J

CLKENA5/CLK1/GLOBAL3 Row C Row F Row J Row G
32 Altera Corporation
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SameFrame 
Pin-Outs

ACEX 1K devices support the SameFrame pin-out feature for 
FineLine BGA packages. The SameFrame pin-out feature is the 
arrangement of balls on FineLine BGA packages such that the lower-ball-
count packages form a subset of the higher-ball-count packages. 
SameFrame pin-outs provide the flexibility to migrate not only from 
device to device within the same package, but also from one package to 
another. A given printed circuit board (PCB) layout can support multiple 
device density/package combinations. For example, a single board layout 
can support a range of devices from an EP1K10 device in a 256-pin 
FineLine BGA package to an EP1K100 device in a 484-pin FineLine BGA 
package.

The Altera software provides support to design PCBs with SameFrame 
pin-out devices. Devices can be defined for present and future use. The 
Altera software generates pin-outs describing how to lay out a board that 
takes advantage of this migration. Figure 18 shows an example of 
SameFrame pin-out.

Figure 18. SameFrame Pin-Out Example

Table 10 shows the ACEX 1K device/package combinations that support 
SameFrame pin-outs for ACEX 1K devices. All FineLine BGA packages 
support SameFrame pin-outs, providing the flexibility to migrate not only 
from device to device within the same package, but also from one package 
to another. The I/O count will vary from device to device. 

Designed for 484-Pin FineLine BGA Package
Printed Circuit Board

256-Pin FineLine BGA Package
(Reduced I/O Count or
Logic Requirements)

484-Pin FineLine BGA Package
(Increased I/O Count or

Logic Requirements)

256-Pin
FineLine

BGA

484-Pin
FineLine

BGA



ACEX 1K Programmable Logic Device Family Data Sheet
Figure 20. ACEX 1K JTAG Waveforms

Table 17 shows the timing parameters and values for ACEX 1K devices.
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Table 17. ACEX 1K JTAG Timing Parameters & Values

Symbol Parameter Min Max Unit

tJCP TCK clock period  100 ns

tJCH TCK clock high time  50 ns

tJCL TCK clock low time  50 ns

tJPSU JTAG port setup time  20 ns

tJPH JTAG port hold time  45 ns

tJPCO JTAG port clock to output 25 ns

tJPZX JTAG port high impedance to valid output 25 ns

tJPXZ JTAG port valid output to high impedance 25 ns

tJSSU Capture register setup time 20 ns

tJSH Capture register hold time 45 ns

tJSCO Update register clock to output 35 ns

tJSZX Update register high impedance to valid output 35 ns

tJSXZ Update register valid output to high impedance 35 ns
44 Altera Corporation
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Generic Testing Each ACEX 1K device is functionally tested. Complete testing of each 
configurable static random access memory (SRAM) bit and all logic 
functionality ensures 100% yield. AC test measurements for ACEX 1K 
devices are made under conditions equivalent to those shown in 
Figure 21. Multiple test patterns can be used to configure devices during 
all stages of the production flow.

Figure 21. ACEX 1K AC Test Conditions

Operating 
Conditions

Tables 18 through 21 provide information on absolute maximum ratings, 
recommended operating conditions, DC operating conditions, and 
capacitance for 2.5-V ACEX 1K devices.

To Test
System

C1 (includes
JIG capacitance)

Device input
rise and fall
times < 3 ns

Device
Output
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8.06 k Ω
[481    ]Ω

[481    ]Ω
 

VCCIO

Power supply transients can affect AC
measurements. Simultaneous transitions of 
multiple outputs should be avoided for 
accurate measurement. Threshold tests 
must not be performed under AC 
conditions. Large-amplitude, fast-ground-
current transients normally occur as the 
device outputs discharge the load 
capacitances. When these transients flow 
through the parasitic inductance between 
the device ground pin and the test system 
ground, significant reductions in 
observable noise immunity can result. 
Numbers in brackets are for 2.5-V devices 
or outputs. Numbers without brackets are 
for 3.3-V devices or outputs.

Table 18. ACEX 1K Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage With respect to ground (2) –0.5 3.6 V

VCCIO –0.5 4.6 V

VI DC input voltage –2.0 5.75 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, TQFP, and BGA packages, under 
bias

135 ° C
Altera Corporation  45
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Figure 23. Output Drive Characteristics of ACEX 1K Devices

Timing Model The continuous, high-performance FastTrack Interconnect routing 
resources ensure accurate simulation and timing analysis as well as 
predictable performance. This predictable performance contrasts with 
that of FPGAs, which use a segmented connection scheme and, therefore, 
have an unpredictable performance. 

Device performance can be estimated by following the signal path from a 
source, through the interconnect, to the destination. For example, the 
registered performance between two LEs on the same row can be 
calculated by adding the following parameters: 

■ LE register clock-to-output delay (tCO)
■ Interconnect delay (tSAMEROW)
■ LE look-up table delay (tLUT)
■ LE register setup time (tSU)

The routing delay depends on the placement of the source and destination 
LEs. A more complex registered path may involve multiple combinatorial 
LEs between the source and destination LEs. 

Timing simulation and delay prediction are available with the simulator 
and Timing Analyzer, or with industry-standard EDA tools. The 
Simulator offers both pre-synthesis functional simulation to evaluate logic 
design accuracy and post-synthesis timing simulation with 0.1-ns 
resolution. The Timing Analyzer provides point-to-point timing delay 
information, setup and hold time analysis, and device-wide performance 
analysis.
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Figure 26. ACEX 1K Device IOE Timing Model

Figure 27. ACEX 1K Device EAB Timing Model

Data-In

I/O Register
Delays

tIOCO

tIOCOMB

tIOSU

tIOH

tIOCLR

Output Data
Delay

tIOD

I/O Element
Contol Delay

tIOC

Input Register Delay

tINREG

Output
Delays

tOD1

tOD2

tOD3

tXZ

tZX1

tZX2

tZX3

I/O Register
Feedback Delay

tIOFD

Input Delay

tINCOMB

Clock Enable
Clear

Data Feedback
into FastTrack
Interconnect

Clock
Output Enable

EAB Data Input
Delays

tEABDATA1

tEABDATA2

Data-In

Write Enable
Input Delays

tEABWE1

tEABWE2

EAB Clock
Delay

tEABCLK

Input Register
Delays

tEABCO

tEABBYPASS

tEABSU

tEABH

tEABCH

tEABCL

tEABRE1

tEABRE2

RAM/ROM
Block Delays

tAA

tRP
tRASU
tRAH

tDD

tWP

tWDSU

tWDH

tWASU

tWAH

tWO

Output Register
Delays

tEABCO

tEABBYPASS

tEABSU

tEABH

tEABCH

tEABCL

tEABOUT

Address

WE

Input Register
Clock

Output Register
Clock

Data-Out

EAB Output
Delay

Read Enable
Input Delays

RE
52 Altera Corporation



ACEX 1K Programmable Logic Device Family Data Sheet

D
evelopm

ent

13

Tools
Altera Corporation  53

Figure 28. Synchronous Bidirectional Pin External Timing Model

Tables 29 and 30 show the asynchronous and synchronous timing 
waveforms, respectively, for the EAB macroparameters in Table 24.

Figure 29. EAB Asynchronous Timing Waveforms
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Table 25. EAB Timing Macroparameters Notes (1), (6)

Symbol Parameter Conditions

tEABAA EAB address access delay

tEABRCCOMB EAB asynchronous read cycle time

tEABRCREG EAB synchronous read cycle time

tEABWP EAB write pulse width

tEABWCCOMB EAB asynchronous write cycle time

tEABWCREG EAB synchronous write cycle time

tEABDD EAB data-in to data-out valid delay

tEABDATACO EAB clock-to-output delay when using output registers

tEABDATASU EAB data/address setup time before clock when using input register

tEABDATAH EAB data/address hold time after clock when using input register

tEABWESU EAB WE setup time before clock when using input register

tEABWEH EAB WE hold time after clock when using input register

tEABWDSU EAB data setup time before falling edge of write pulse when not using input 
registers

tEABWDH EAB data hold time after falling edge of write pulse when not using input 
registers

tEABWASU EAB address setup time before rising edge of write pulse when not using 
input registers

tEABWAH EAB address hold time after falling edge of write pulse when not using input 
registers

tEABWO EAB write enable to data output valid delay
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Tables 30 through 36 show EP1K10 device internal and external timing 
parameters. 

Table 30. EP1K10 Device LE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tLUT 0.7 0.8 1.1 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.6 0.7 1.0 ns

tPACKED 0.4 0.4 0.5 ns

tEN 0.9 1.0 1.3 ns

tCICO 0.1 0.1 0.2 ns

tCGEN 0.4 0.5 0.7 ns

tCGENR 0.1 0.1 0.2 ns

tCASC 0.7 0.9 1.1 ns

tC 1.1 1.3 1.7 ns

tCO 0.5 0.7 0.9 ns

tCOMB 0.4 0.5 0.7 ns

tSU 0.7 0.8 1.0 ns

tH 0.9 1.0 1.1 ns

tPRE 0.8 1.0 1.4 ns

tCLR 0.9 1.0 1.4 ns

tCH 2.0 2.5 2.5 ns

tCL 2.0 2.5 2.5 ns
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Table 48. EP1K50 Device Interconnect Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDIN2IOE 3.1 3.7 4.6 ns

tDIN2LE 1.7 2.1 2.7 ns

tDIN2DATA 2.7 3.1 5.1 ns

tDCLK2IOE 1.6 1.9 2.6 ns

tDCLK2LE 1.7 2.1 2.7 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.5 1.7 2.4 ns

tSAMECOLUMN 1.0 1.3 2.1 ns

tDIFFROW 2.5 3.0 4.5 ns

tTWOROWS 4.0 4.7 6.9 ns

tLEPERIPH 2.6 2.9 3.4 ns

tLABCARRY 0.1 0.2 0.2 ns

tLABCASC 0.8 1.0 1.3 ns

Table 49. EP1K50 External Timing Parameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDRR 8.0 9.5 12.5 ns

tINSU (2) 2.4 2.9 3.9 ns

tINH (2) 0.0 0.0 0.0 ns

tOUTCO (2) 2.0 4.3 2.0  5.2 2.0 7.3 ns

tINSU (3) 2.4 2.9 – ns

tINH (3) 0.0 0.0 – ns

tOUTCO (3) 0.5 3.3 0.5 4.1 – – ns

tPCISU  2.4 2.9 – ns

tPCIH  0.0  0.0 – ns

tPCICO  2.0  6.0  2.0 7.7 – – ns
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Notes to tables:
(1) All timing parameters are described in Tables 22 through 29.
(2) This parameter is measured without use of the ClockLock or ClockBoost circuits.
(3) This parameter is measured with use of the ClockLock or ClockBoost circuits

Table 50. EP1K50 External Bidirectional Timing Parameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSUBIDIR (2) 2.7 3.2 4.3 ns

tINHBIDIR (2) 0.0 0.0 0.0 ns

tINSUBIDIR (3) 3.7 4.2 – ns

tINHBIDIR (3) 0.0 0.0 – ns

tOUTCOBIDIR (2) 2.0 4.5 2.0 5.2 2.0 7.3 ns

tXZBIDIR (2) 6.8 7.8 10.1 ns

tZXBIDIR (2) 6.8 7.8 10.1 ns

tOUTCOBIDIR (3) 0.5 3.5 0.5 4.2 – –

tXZBIDIR (3) 6.8 8.4 – ns

tZXBIDIR (3) 6.8 8.4 – ns
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The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K × fMAX × N × togLC (µA)

Where:

fMAX = Maximum operating frequency in MHz
N = Total number of LEs used in the device 
togLC = Average percent of LEs toggling at each clock 

(typically 12.5%)
K = Constant

Table 58 provides the constant (K) values for ACEX 1K devices.

This supply power calculation provides an ICC estimate based on typical 
conditions with no output load. The actual ICC should be verified during 
operation because this measurement is sensitive to the actual pattern in 
the device and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant K in 
the power calculation equations) for continuous interconnect ACEX 1K 
devices assumes that LEs drive FastTrack Interconnect channels. In 
contrast, the power model of segmented FPGAs assumes that all LEs drive 
only one short interconnect segment. This assumption may lead to 
inaccurate results when compared to measured power consumption for 
actual designs in segmented FPGAs.

Figure 31 shows the relationship between the current and operating 
frequency of ACEX 1K devices. For information on other ACEX 1K 
devices, contact Altera Applications at (800) 800-EPLD.

Table 58.  ACEX 1K Constant Values

Device K Value

EP1K10 4.5

EP1K30 4.5

EP1K50 4.5

EP1K100 4.5
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