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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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ACEX 1K Programmable Logic Device Family Data Sheet
f For more information on the configuration of ACEX 1K devices, see the 
following documents:

■ Configuration Devices for ACEX, APEX, FLEX, & Mercury Devices Data 
Sheet

■ MasterBlaster Serial/USB Communications Cable Data Sheet
■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ BitBlaster Serial Download Cable Data Sheet

ACEX 1K devices are supported by Altera development systems, which 
are integrated packages that offer schematic, text (including AHDL), and 
waveform design entry, compilation and logic synthesis, full simulation 
and worst-case timing analysis, and device configuration. The software 
provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other 
interfaces for additional design entry and simulation support from other 
industry-standard PC- and UNIX workstation-based EDA tools. 

The Altera software works easily with common gate array EDA tools for 
synthesis and simulation. For example, the Altera software can generate 
Verilog HDL files for simulation with tools such as Cadence Verilog-XL. 
Additionally, the Altera software contains EDA libraries that use device-
specific features such as carry chains, which are used for fast counter and 
arithmetic functions. For instance, the Synopsys Design Compiler library 
supplied with the Altera development system includes DesignWare 
functions that are optimized for the ACEX 1K device architecture. 

The Altera development systems run on Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800 workstations.

f For more information, see the MAX+PLUS II Programmable Logic 
Development System & Software Data Sheet and the Quartus Programmable 
Logic Development System & Software Data Sheet.

Functional 
Description

Each ACEX 1K device contains an enhanced embedded array that 
implements memory and specialized logic functions, and a logic array 
that implements general logic.

The embedded array consists of a series of EABs. When implementing 
memory functions, each EAB provides 4,096 bits, which can be used to 
create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. 
When implementing logic, each EAB can contribute 100 to 600 gates 
towards complex logic functions such as multipliers, microcontrollers, 
state machines, and DSP functions. EABs can be used independently, or 
multiple EABs can be combined to implement larger functions.
6 Altera Corporation
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The logic array consists of logic array blocks (LABs). Each LAB contains 
eight LEs and a local interconnect. An LE consists of a 4-input LUT, a 
programmable flipflop, and dedicated signal paths for carry and cascade 
functions. The eight LEs can be used to create medium-sized blocks of 
logic—such as 8-bit counters, address decoders, or state machines—or 
combined across LABs to create larger logic blocks. Each LAB represents 
about 96 usable logic gates.

Signal interconnections within ACEX 1K devices (as well as to and from 
device pins) are provided by the FastTrack Interconnect routing structure, 
which is a series of fast, continuous row and column channels that run the 
entire length and width of the device. 

Each I/O pin is fed by an I/O element (IOE) located at the end of each row 
and column of the FastTrack Interconnect routing structure. Each IOE 
contains a bidirectional I/O buffer and a flipflop that can be used as either 
an output or input register to feed input, output, or bidirectional signals. 
When used with a dedicated clock pin, these registers provide exceptional 
performance. As inputs, they provide setup times as low as 1.1 ns and 
hold times of 0 ns. As outputs, these registers provide clock-to-output 
times as low as 2.5 ns. IOEs provide a variety of features, such as JTAG 
BST support, slew-rate control, tri-state buffers, and open-drain outputs. 

Figure 1 shows a block diagram of the ACEX 1K device architecture. Each 
group of LEs is combined into an LAB; groups of LABs are arranged into 
rows and columns. Each row also contains a single EAB. The LABs and 
EABs are interconnected by the FastTrack Interconnect routing structure. 
IOEs are located at the end of each row and column of the FastTrack 
Interconnect routing structure.
Altera Corporation  7
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Figure 1. ACEX 1K Device Block Diagram

ACEX 1K devices provide six dedicated inputs that drive the flipflops’ 
control inputs and ensure the efficient distribution of high-speed, low-
skew (less than 1.0 ns) control signals. These signals use dedicated routing 
channels that provide shorter delays and lower skews than the FastTrack 
Interconnect routing structure. Four of the dedicated inputs drive four 
global signals. These four global signals can also be driven by internal 
logic, providing an ideal solution for a clock divider or an internally 
generated asynchronous clear signal that clears many registers in the 
device. 
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Figure 3. ACEX 1K EAB in Dual-Port RAM Mode

Figure 4. ACEX 1K Device in Single-Port RAM Mode 

Note:
(1) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB 

local interconnect channels. 
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Figure 8. ACEX 1K Logic Element

The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock, clear, and preset control signals on the flipflop can 
be driven by global signals, general-purpose I/O pins, or any internal 
logic. For combinatorial functions, the flipflop is bypassed and the LUT’s 
output drives the LE’s output. 

The LE has two outputs that drive the interconnect: one drives the local 
interconnect, and the other drives either the row or column FastTrack 
Interconnect routing structure. The two outputs can be controlled 
independently. For example, the LUT can drive one output while the 
register drives the other output. This feature, called register packing, can 
improve LE utilization because the register and the LUT can be used for 
unrelated functions.

The ACEX 1K architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. The carry chain supports high-
speed counters and adders, and the cascade chain implements wide-input 
functions with minimum delay. Carry and cascade chains connect all LEs 
in a LAB and all LABs in the same row. Intensive use of carry and cascade 
chains can reduce routing flexibility. Therefore, the use of these chains 
should be limited to speed-critical portions of a design.
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Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
ACEX 1K architecture to efficiently implement high-speed counters, 
adders, and comparators of arbitrary width. Carry chain logic can be 
created automatically by the compiler during design processing, or 
manually by the designer during design entry. Parameterized functions, 
such as LPM and DesignWare functions, automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EP1K50 device, the carry chain stops at the eighteenth LAB, and a 
new carry chain begins at the nineteenth LAB.

Figure 9 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for an accumulator function. Another portion of the LUT and the carry 
chain logic generates the carry-out signal, which is routed directly to the 
carry-in signal of the next-higher-order bit. The final carry-out signal is 
routed to an LE, where it can be used as a general-purpose signal. 
Altera Corporation  17
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Cascade Chain

With the cascade chain, the ACEX 1K architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. With a delay as low as 0.6 ns per LE, each additional LE 
provides four more inputs to the effective width of a function. Cascade 
chain logic can be created automatically by the compiler during design 
processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EP1K50 device, the cascade 
chain stops at the eighteenth LAB, and a new one begins at the nineteenth 
LAB). This break is due to the EAB’s placement in the middle of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to 
form functions with a wide fan-in. These examples show functions of 4n 
variables implemented with n LEs. The LE delay is 1.3 ns; the cascade 
chain delay is 0.6 ns. With the cascade chain, decoding a 16-bit address 
requires 3.1 ns.

Figure 10. ACEX 1K Cascade Chain Operation
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Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but 
it supports a synchronous clear instead of the up/down control. The clear 
function is substituted for the cascade-in signal in the up/down counter 
mode. Two 3-input LUTs are used; one generates the counter data, and the 
other generates the fast carry bit. Synchronous loading is provided by a 
2-to-1 multiplexer. The output of this multiplexer is AND ed with a 
synchronous clear signal. 

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer. 

Clear & Preset Logic Control

Logic for the programmable register’s clear and preset functions is 
controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The 
clear and preset control structure of the LE asynchronously loads signals 
into a register. Either LABCTRL1 or LABCTRL2 can control the 
asynchronous clear. Alternatively, the register can be set up so that 
LABCTRL1 implements an asynchronous load. The data to be loaded is 
driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the 
register.

During compilation, the compiler automatically selects the best control 
signal implementation. Because the clear and preset functions are active-
low, the Compiler automatically assigns a logic high to an unused clear or 
preset. 

The clear and preset logic is implemented in one of the following six 
modes chosen during design entry: 

■ Asynchronous clear
■ Asynchronous preset
■ Asynchronous clear and preset
■ Asynchronous load with clear
■ Asynchronous load with preset
■ Asynchronous load without clear or preset
Altera Corporation  23
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Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this 
mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with 
an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 
asynchronously loads a one into the register. Alternatively, the Altera 
software can provide preset control by using the clear and inverting the 
register’s input and output. Inversion control is available for the inputs to 
both LEs and IOEs. Therefore, if a register is preset by only one of the two 
LABCTRL signals, the DATA3 input is not needed and can be used for one 
of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls 
the preset, and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that 
asserting LABCTRL1 asynchronously loads a one into the register, 
effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear. LABCTRL2 implements the clear by 
controlling the register clear; LABCTRL2 does not have to feed the preset 
circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the 
Altera software provides preset control by using the clear and inverting 
the input and output of the register. Asserting LABCTRL2 presets the 
register, while asserting LABCTRL1 loads the register. The Altera software 
inverts the signal that drives DATA3 to account for the inversion of the 
register’s output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear.
Altera Corporation  25
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Figure 13. ACEX 1K LAB Connections to Row & Column Interconnect
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For improved routing, the row interconnect consists of a combination of 
full-length and half-length channels. The full-length channels connect to 
all LABs in a row; the half-length channels connect to the LABs in half of 
the row. The EAB can be driven by the half-length channels in the left half 
of the row and by the full-length channels. The EAB drives out to the full-
length channels. In addition to providing a predictable, row-wide 
interconnect, this architecture provides increased routing resources. Two 
neighboring LABs can be connected using a half-row channel, thereby 
saving the other half of the channel for the other half of the row.

Table 6 summarizes the FastTrack Interconnect routing structure 
resources available in each ACEX 1K device.

In addition to general-purpose I/O pins, ACEX 1K devices have six 
dedicated input pins that provide low-skew signal distribution across the 
device. These six inputs can be used for global clock, clear, preset, and 
peripheral output-enable and clock-enable control signals. These signals 
are available as control signals for all LABs and IOEs in the device. The 
dedicated inputs can also be used as general-purpose data inputs because 
they can feed the local interconnect of each LAB in the device. 

Figure 14 shows the interconnection of adjacent LABs and EABs, with 
row, column, and local interconnects, as well as the associated cascade 
and carry chains. Each LAB is labeled according to its location: a letter 
represents the row and a number represents the column. For example, 
LAB B3 is in row B, column 3.

Table 6. ACEX 1K FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per
Column

EP1K10 3 144 24 24

EP1K30 6 216 36 24

EP1K50 10 216 36 24

EP1K100 12 312 52 24
28 Altera Corporation
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When dedicated inputs drive non-inverted and inverted peripheral clears, 
clock enables, and output enables, two signals on the peripheral control 
bus will be used.

Table 7 lists the sources for each peripheral control signal and shows how 
the output enable, clock enable, clock, and clear signals share 
12 peripheral control signals. Table 7 also shows the rows that can drive 
global signals.

Signals on the peripheral control bus can also drive the four global signals, 
referred to as GLOBAL0 through GLOBAL3. An internally generated signal 
can drive a global signal, providing the same low-skew, low-delay 
characteristics as a signal driven by an input pin. An LE drives the global 
signal by driving a row line that drives the peripheral bus which then 
drives the global signal. This feature is ideal for internally generated clear 
or clock signals with high fan-out. However, internally driven global 
signals offer no advantage over the general-purpose interconnect for 
routing data signals.

The chip-wide output enable pin is an active-high pin that can be used to 
tri-state all pins on the device. This option can be set in the Altera 
software. The built-in I/O pin pull-up resistors (which are active during 
configuration) are active when the chip-wide output enable pin is 
asserted. The registers in the IOE can also be reset by the chip-wide reset 
pin.

Table 7. Peripheral Bus Sources for ACEX Devices

Peripheral Control Signal EP1K10 EP1K30 EP1K50 EP1K100

OE0 Row A Row A Row A Row A

OE1 Row A Row B Row B Row C

OE2 Row B Row C Row D Row E

OE3 Row B Row D Row F Row L

OE4 Row C Row E Row H Row I

OE5 Row C Row F Row J Row K

CLKENA0/CLK0/GLOBAL0 Row A Row A Row A Row F

CLKENA1/OE6/GLOBAL1 Row A Row B Row C Row D

CLKENA2/CLR0 Row B Row C Row E Row B

CLKENA3/OE7/GLOBAL2 Row B Row D Row G Row H

CLKENA4/CLR1 Row C Row E Row I Row J

CLKENA5/CLK1/GLOBAL3 Row C Row F Row J Row G
32 Altera Corporation
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The VCCINT pins must always be connected to a 2.5-V power supply. 
With a 2.5-V VCCINT level, input voltages are compatible with 2.5-V, 3.3-
V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 
3.3-V power supply, depending on the output requirements. When the 
VCCIO pins are connected to a 2.5-V power supply, the output levels are 
compatible with 2.5-V systems. When the VCCIO pins are connected to a 
3.3-V power supply, the output high is at 3.3 V and is therefore compatible 
with 3.3-V or 5.0-V systems. Devices operating with VCCIO levels higher 
than 3.0 V achieve a faster timing delay of tOD2 instead of tOD1.

Table 13 summarizes ACEX 1K MultiVolt I/O support.

Notes:
(1) The PCI clamping diode must be disabled on an input which is driven with a 

voltage higher than VCCIO.
(2) When VCCIO = 3.3 V, an ACEX 1K device can drive a 2.5-V device that has 3.3-V 

tolerant inputs.

Open-drain output pins on ACEX 1K devices (with a pull-up resistor to 
the 5.0-V supply) can drive 5.0-V CMOS input pins that require a higher 
VIH than LVTTL. When the open-drain pin is active, it will drive low. 
When the pin is inactive, the resistor will pull up the trace to 5.0 V, thereby 
meeting the CMOS VOH requirement. The open-drain pin will only drive 
low or tri-state; it will never drive high. The rise time is dependent on the 
value of the pull-up resistor and load impedance. The IOL current 
specification should be considered when selecting a pull-up resistor.

Power 
Sequencing & 
Hot-Socketing

Because ACEX 1K devices can be used in a mixed-voltage environment, 
they have been designed specifically to tolerate any possible power-up 
sequence. The VCCIO and VCCINT power planes can be powered in any 
order.

Signals can be driven into ACEX 1K devices before and during power up 
without damaging the device. Additionally, ACEX 1K devices do not 
drive out during power up. Once operating conditions are reached, 
ACEX 1K devices operate as specified by the user.

Table 13. ACEX 1K MultiVolt I/O Support

VCCIO (V) Input Signal (V) Output Signal (V)

2.5 3.3 5.0 2.5 3.3 5.0

2.5 v v (1) v (1) v

3.3 v v v (1) v (2) v v
Altera Corporation  41
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Figure 22 shows the required relationship between VCCIO and VCCINT to 
satisfy 3.3-V PCI compliance.

Figure 22. Relationship between VCCIO & VCCINT for 3.3-V PCI Compliance

Figure 23 shows the typical output drive characteristics of ACEX 1K 
devices with 3.3-V and 2.5-V VCCIO. The output driver is compliant to the 
3.3-V PCI Local Bus Specification, Revision 2.2 (when VCCIO pins are 
connected to 3.3 V). ACEX 1K devices with a -1 speed grade also comply 
with the drive strength requirements of the PCI Local Bus Specification, 
Revision 2.2 (when VCCINT pins are powered with a minimum supply of 
2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices 
can be used in open 5.0-V PCI systems.
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Figure 23. Output Drive Characteristics of ACEX 1K Devices

Timing Model The continuous, high-performance FastTrack Interconnect routing 
resources ensure accurate simulation and timing analysis as well as 
predictable performance. This predictable performance contrasts with 
that of FPGAs, which use a segmented connection scheme and, therefore, 
have an unpredictable performance. 

Device performance can be estimated by following the signal path from a 
source, through the interconnect, to the destination. For example, the 
registered performance between two LEs on the same row can be 
calculated by adding the following parameters: 

■ LE register clock-to-output delay (tCO)
■ Interconnect delay (tSAMEROW)
■ LE look-up table delay (tLUT)
■ LE register setup time (tSU)

The routing delay depends on the placement of the source and destination 
LEs. A more complex registered path may involve multiple combinatorial 
LEs between the source and destination LEs. 

Timing simulation and delay prediction are available with the simulator 
and Timing Analyzer, or with industry-standard EDA tools. The 
Simulator offers both pre-synthesis functional simulation to evaluate logic 
design accuracy and post-synthesis timing simulation with 0.1-ns 
resolution. The Timing Analyzer provides point-to-point timing delay 
information, setup and hold time analysis, and device-wide performance 
analysis.
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Figure 30. EAB Synchronous Timing Waveforms

Tables 22 through 26 describe the ACEX 1K device internal timing 
parameters. 
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Table 22. LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol Parameter Conditions

tLUT LUT delay for data-in

tCLUT LUT delay for carry-in

tRLUT LUT delay for LE register feedback

tPACKED Data-in to packed register delay

tEN LE register enable delay

tCICO Carry-in to carry-out delay

tCGEN Data-in to carry-out delay

tCGENR LE register feedback to carry-out delay
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tCASC Cascade-in to cascade-out delay

tC LE register control signal delay

tCO LE register clock-to-output delay

tCOMB Combinatorial delay

tSU LE register setup time for data and enable signals before clock; LE register 
recovery time after asynchronous clear, preset, or load

tH LE register hold time for data and enable signals after clock

tPRE LE register preset delay

tCLR LE register clear delay

tCH Minimum clock high time from clock pin

tCL Minimum clock low time from clock pin

Table 23. IOE Timing Microparameters Note (1)

Symbol Parameter Conditions

tIOD IOE data delay

tIOC IOE register control signal delay

tIOCO IOE register clock-to-output delay

tIOCOMB IOE combinatorial delay

tIOSU IOE register setup time for data and enable signals before clock; IOE register 
recovery time after asynchronous clear

tIOH IOE register hold time for data and enable signals after clock

tIOCLR IOE register clear time

tOD1 Output buffer and pad delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tOD2 Output buffer and pad delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tOD3 Output buffer and pad delay, slow slew rate = on C1 = 35 pF (4)

tXZ IOE output buffer disable delay

tZX1 IOE output buffer enable delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tZX2 IOE output buffer enable delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tZX3 IOE output buffer enable delay, slow slew rate = on C1 = 35 pF (4)

tINREG IOE input pad and buffer to IOE register delay

tIOFD IOE register feedback delay

tINCOMB IOE input pad and buffer to FastTrack Interconnect delay

Table 22. LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Parameter Conditions
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Table 32. EP1K10 Device EAB Internal Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABDATA1 1.8 1.9 1.9 ns

tEABDATA2 0.6 0.7 0.7 ns

tEABWE1 1.2 1.2 1.2 ns

tEABWE2 0.4 0.4 0.4 ns

tEABRE1 0.9 0.9 0.9 ns

tEABRE2 0.4 0.4 0.4 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.3 0.3 ns

tEABBYPASS 0.5 0.6 0.6 ns

tEABSU 1.0 1.0 1.0 ns

tEABH 0.5 0.4 0.4 ns

tEABCLR 0.3 0.3 0.3 ns

tAA 3.4 3.6 3.6 ns

tWP 2.7 2.8 2.8 ns

tRP 1.0 1.0 1.0 ns

tWDSU 1.0 1.0 1.0 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.8 1.9 1.9 ns

tWAH 1.9 2.0 2.0 ns

tRASU 3.1 3.5 3.5 ns

tRAH 0.2 0.2 0.2 ns

tWO 2.7 2.8 2.8 ns

tDD 2.7 2.8 2.8 ns

tEABOUT 0.5 0.6 0.6 ns

tEABCH 1.5 2.0 2.0 ns

tEABCL 2.7 2.8 2.8 ns
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Table 48. EP1K50 Device Interconnect Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDIN2IOE 3.1 3.7 4.6 ns

tDIN2LE 1.7 2.1 2.7 ns

tDIN2DATA 2.7 3.1 5.1 ns

tDCLK2IOE 1.6 1.9 2.6 ns

tDCLK2LE 1.7 2.1 2.7 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.5 1.7 2.4 ns

tSAMECOLUMN 1.0 1.3 2.1 ns

tDIFFROW 2.5 3.0 4.5 ns

tTWOROWS 4.0 4.7 6.9 ns

tLEPERIPH 2.6 2.9 3.4 ns

tLABCARRY 0.1 0.2 0.2 ns

tLABCASC 0.8 1.0 1.3 ns

Table 49. EP1K50 External Timing Parameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDRR 8.0 9.5 12.5 ns

tINSU (2) 2.4 2.9 3.9 ns

tINH (2) 0.0 0.0 0.0 ns

tOUTCO (2) 2.0 4.3 2.0  5.2 2.0 7.3 ns

tINSU (3) 2.4 2.9 – ns

tINH (3) 0.0 0.0 – ns

tOUTCO (3) 0.5 3.3 0.5 4.1 – – ns

tPCISU  2.4 2.9 – ns

tPCIH  0.0  0.0 – ns

tPCICO  2.0  6.0  2.0 7.7 – – ns
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Tables 51 through 57 show EP1K100 device internal and external timing 
parameters.  

Table 51. EP1K100 Device LE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tLUT 0.7 1.0 1.5 ns

tCLUT 0.5 0.7 0.9 ns

tRLUT 0.6 0.8 1.1 ns

tPACKED 0.3 0.4 0.5 ns

tEN 0.2 0.3 0.3 ns

tCICO 0.1 0.1 0.2 ns

tCGEN 0.4 0.5 0.7 ns

tCGENR 0.1 0.1 0.2 ns

tCASC 0.6 0.9 1.2 ns

tC 0.8 1.0 1.4 ns

tCO 0.6 0.8 1.1 ns

tCOMB 0.4 0.5 0.7 ns

tSU 0.4 0.6 0.7 ns

tH 0.5 0.7 0.9 ns

tPRE 0.8 1.0 1.4 ns

tCLR 0.8 1.0 1.4 ns

tCH 1.5 2.0 2.5 ns

tCL 1.5 2.0 2.5 ns
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