Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 216 | | Number of Logic Elements/Cells | 1728 | | Total RAM Bits | 24576 | | Number of I/O | 171 | | Number of Gates | 119000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 85°C (TA) | | Package / Case | 256-BGA | | Supplier Device Package | 256-FBGA (17x17) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1k30fi256-2n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## **Embedded Array Block** The EAB is a flexible block of RAM, with registers on the input and output ports, that is used to implement common gate array megafunctions. Because it is large and flexible, the EAB is suitable for functions such as multipliers, vector scalars, and error correction circuits. These functions can be combined in applications such as digital filters and microcontrollers. Logic functions are implemented by programming the EAB with a read-only pattern during configuration, thereby creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of EABs. The large capacity of EABs enables designers to implement complex functions in a single logic level without the routing delays associated with linked LEs or field-programmable gate array (FPGA) RAM blocks. For example, a single EAB can implement any function with 8 inputs and 16 outputs. Parameterized functions, such as LPM functions, can take advantage of the EAB automatically. The ACEX 1K enhanced EAB supports dual-port RAM. The dual-port structure is ideal for FIFO buffers with one or two clocks. The ACEX 1K EAB can also support up to 16-bit-wide RAM blocks. The ACEX 1K EAB can act in dual-port or single-port mode. When in dual-port mode, separate clocks may be used for EAB read and write sections, allowing the EAB to be written and read at different rates. It also has separate synchronous clock enable signals for the EAB read and write sections, which allow independent control of these sections. The EAB can also be used for bidirectional, dual-port memory applications where two ports read or write simultaneously. To implement this type of dual-port memory, two EABs are used to support two simultaneous reads or writes. Alternatively, one clock and clock enable can be used to control the input registers of the EAB, while a different clock and clock enable control the output registers (see Figure 2). Figure 2. ACEX 1K Device in Dual-Port RAM Mode Note (1) #### Notes: - (1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset. - (2) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB local interconnect channels. The EAB can use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3. The ACEX 1K EAB can also be used in a single-port mode (see Figure 4). Figure 3. ACEX 1K EAB in Dual-Port RAM Mode Figure 4. ACEX 1K Device in Single-Port RAM Mode #### Note (1) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB local interconnect channels. #### Cascade Chain With the cascade chain, the ACEX 1K architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical ${\tt AND}$ or logical ${\tt OR}$ (via De Morgan's inversion) to connect the outputs of adjacent LEs. With a delay as low as 0.6 ns per LE, each additional LE provides four more inputs to the effective width of a function. Cascade chain logic can be created automatically by the compiler during design processing, or manually by the designer during design entry. Cascade chains longer than eight bits are implemented automatically by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EP1K50 device, the cascade chain stops at the eighteenth LAB, and a new one begins at the nineteenth LAB). This break is due to the EAB's placement in the middle of the row. Figure 10 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. The LE delay is 1.3 ns; the cascade chain delay is 0.6 ns. With the cascade chain, decoding a 16-bit address requires 3.1 ns. Figure 10. ACEX 1K Cascade Chain Operation Figure 13. ACEX 1K LAB Connections to Row & Column Interconnect For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row. Table 6 summarizes the FastTrack Interconnect routing structure resources available in each ACEX 1K device. | Table 6. ACEX 1K FastTrack Interconnect Resources | | | | | | | | | | |--|----|-----|----|----|--|--|--|--|--| | Device Rows Channels per Columns Channels per Column | | | | | | | | | | | EP1K10 | 3 | 144 | 24 | 24 | | | | | | | EP1K30 | 6 | 216 | 36 | 24 | | | | | | | EP1K50 | 10 | 216 | 36 | 24 | | | | | | | EP1K100 | 12 | 312 | 52 | 24 | | | | | | In addition to general-purpose I/O pins, ACEX 1K devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output-enable and clock-enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device. Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3. See Figure 17 for details. I/O Element (IOE) IOF IIOF IOE IOE IOE IOE Row LAB LAB See Figure 16 I AR Interconnect Α1 A2 АЗ for details. Column ►To LAB A5 Interconnect ►To LAB A4 IOE IOE LAB LAB I AR Cascade & B1 R2 В3 Carry Chains To LAB B5 ►To LAB B4 IOE IOE IOE Figure 14. ACEX 1K Interconnect Resources ### I/O Element An IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast setup time or as an output register for data that requires fast clock-to-output performance. In some cases, using an LE register for an input register will result in a faster setup time than using an IOE register. IOEs can be used as input, output, or bidirectional pins. The compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. For bidirectional registered I/O implementation, the output register should be in the IOE and the data input and output enable registers should be LE registers placed adjacent to the bidirectional pin. Figure 15 shows the bidirectional I/O registers. Figure 15. ACEX 1K Bidirectional I/O Registers On all ACEX 1K devices, the input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold time or turn it off to minimize setup time. This feature is used to reduce setup time for complex pin-to-register paths (e.g., PCI designs). Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across devices and provides up to 12 peripheral control signals that can be allocated as follows: - Up to eight output enable signals - Up to six clock enable signals - Up to two clock signals - Up to two clear signals If more than six clock-enable or eight output-enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, a LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chipwide reset signal resets all IOE registers, overriding any other control signals. When a dedicated clock pin drives IOE registers, it can be inverted for all IOEs in the device. All IOEs must use the same sense of the clock. For example, if any IOE uses the inverted clock, all IOEs must use the inverted clock, and no IOE can use the non-inverted clock. However, LEs can still use the true or complement of the clock on an LAB-by-LAB basis. The incoming signal may be inverted at the dedicated clock pin and will drive all IOEs. For the true and complement of a clock to be used to drive IOEs, drive it into both global clock pins. One global clock pin will supply the true, and the other will supply the complement. When the true and complement of a dedicated input drives IOE clocks, two signals on the peripheral control bus are consumed, one for each sense of the clock. For more information, search for "SameFrame" in MAX+PLUS II Help. | Table 10. ACEX 1K SameFrame Pin-Out Support | | | | | | | | |---|----------------------------|----------------------------|--|--|--|--|--| | Device | 256-Pin
FineLine
BGA | 484-Pin
FineLine
BGA | | | | | | | EP1K10 | ✓ | (1) | | | | | | | EP1K30 | ✓ | (1) | | | | | | | EP1K50 | ✓ | ✓ | | | | | | | EP1K100 | ✓ | ✓ | | | | | | #### Note: This option is supported with a 256-pin FineLine BGA package and SameFrame migration. # ClockLock & ClockBoost Features To support high-speed designs, -1 and -2 speed grade ACEX 1K devices offer ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) that is used to increase design speed and reduce resource usage. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost feature allows the designer to distribute a low-speed clock and multiply that clock on-device. Combined, the ClockLock and ClockBoost features provide significant improvements in system performance and bandwidth. The ClockLock and ClockBoost features in ACEX 1K devices are enabled through the Altera software. External devices are not required to use these features. The output of the ClockLock and ClockBoost circuits is not available at any of the device pins. The ClockLock and ClockBoost circuitry lock onto the rising edge of the incoming clock. The circuit output can drive the clock inputs of registers only; the generated clock cannot be gated or inverted. The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and ClockBoost circuitry. When the dedicated clock pin is driving the ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device. The VCCINT pins must always be connected to a 2.5-V power supply. With a 2.5-V $V_{\rm CCINT}$ level, input voltages are compatible with 2.5-V, 3.3-V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels higher than 3.0 V achieve a faster timing delay of t_{OD2} instead of t_{OD1} . Table 13 summarizes ACEX 1K MultiVolt I/O support. | Table 13. ACEX 1K MultiVolt I/O Support | | | | | | | | | | |---|----------|------------------------------------|--------------|--------------|----------|----------|--|--|--| | V _{CCIO} (V) | Inp | Input Signal (V) Output Signal (V) | | | | | | | | | | 2.5 | 3.3 | 5.0 | 2.5 | 3.3 | 5.0 | | | | | 2.5 | ✓ | √ (1) | √ (1) | ✓ | | | | | | | 3.3 | ✓ | ✓ | √ (1) | √ (2) | ✓ | ✓ | | | | #### Notes: - (1) The PCI clamping diode must be disabled on an input which is driven with a voltage higher than $V_{\rm CCIO}$. - (2) When $V_{\rm CCIO}$ = 3.3 V, an ACEX 1K device can drive a 2.5-V device that has 3.3-V tolerant inputs. Open-drain output pins on ACEX 1K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a higher V_{IH} than LVTTL. When the open-drain pin is active, it will drive low. When the pin is inactive, the resistor will pull up the trace to 5.0 V, thereby meeting the CMOS V_{OH} requirement. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor. # Power Sequencing & Hot-Socketing Because ACEX 1K devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order. Signals can be driven into ACEX 1K devices before and during power up without damaging the device. Additionally, ACEX 1K devices do not drive out during power up. Once operating conditions are reached, ACEX 1K devices operate as specified by the user. Figure 26. ACEX 1K Device IOE Timing Model Figure 27. ACEX 1K Device EAB Timing Model Figure 28. Synchronous Bidirectional Pin External Timing Model Tables 29 and 30 show the asynchronous and synchronous timing waveforms, respectively, for the EAB macroparameters in Table 24. Figure 29. EAB Asynchronous Timing Waveforms #### **EAB Asynchronous Write** | Table 25. EAL | B Timing Macroparameters Notes (1), (6) | | |------------------------|---|------------| | Symbol | Parameter | Conditions | | t _{EABAA} | EAB address access delay | | | t _{EABRCCOMB} | EAB asynchronous read cycle time | | | t _{EABRCREG} | EAB synchronous read cycle time | | | t _{EABWP} | EAB write pulse width | | | t _{EABWCCOMB} | EAB asynchronous write cycle time | | | t _{EABWCREG} | EAB synchronous write cycle time | | | t_{EABDD} | EAB data-in to data-out valid delay | | | t _{EABDATACO} | EAB clock-to-output delay when using output registers | | | t _{EABDATASU} | EAB data/address setup time before clock when using input register | | | t _{EABDATAH} | EAB data/address hold time after clock when using input register | | | t _{EABWESU} | EAB WE setup time before clock when using input register | | | t _{EABWEH} | EAB WE hold time after clock when using input register | | | t _{EABWDSU} | EAB data setup time before falling edge of write pulse when not using input registers | | | t _{EABWDH} | EAB data hold time after falling edge of write pulse when not using input registers | | | t _{EABWASU} | EAB address setup time before rising edge of write pulse when not using input registers | | | t _{EABWAH} | EAB address hold time after falling edge of write pulse when not using input registers | | | t _{EABWO} | EAB write enable to data output valid delay | | Tables 27 through 29 describe the ACEX 1K external timing parameters and their symbols. | Table 27. External Reference Timing Parameters Note (1) | | | | | | |---|--|------------|--|--|--| | Symbol | Parameter | Conditions | | | | | t _{DRR} | Register-to-register delay via four LEs, three row interconnects, and four local interconnects | (2) | | | | | Table 28. External Timing Parameters | | | | | | | |--------------------------------------|---|------------|--|--|--|--| | Symbol | Parameter | Conditions | | | | | | t _{INSU} | Setup time with global clock at IOE register | (3) | | | | | | t _{INH} | Hold time with global clock at IOE register | (3) | | | | | | tоитсо | Clock-to-output delay with global clock at IOE register | (3) | | | | | | t _{PCISU} | Setup time with global clock for registers used in PCI designs | (3), (4) | | | | | | t _{PCIH} | Hold time with global clock for registers used in PCI designs | (3), (4) | | | | | | t _{PCICO} | Clock-to-output delay with global clock for registers used in PCI designs | (3), (4) | | | | | | Table 29. External Bidirectional Timing Parameters Note (3) | | | | | | | |---|--|------------|--|--|--|--| | Symbol | Parameter | Conditions | | | | | | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | | t _{OUTCOBIDIR} | Clock-to-output delay for bidirectional pins with global clock at IOE register | CI = 35 pF | | | | | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | CI = 35 pF | | | | | | t _{ZXBIDIR} | Synchronous IOE output buffer enable delay, slow slew rate = off | CI = 35 pF | | | | | ### Notes to tables: - (1) External reference timing parameters are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications. - (2) Contact Altera Applications for test circuit specifications and test conditions. - (3) These timing parameters are sample-tested only. - (4) This parameter is measured with the measurement and test conditions, including load, specified in the *PCI Local Bus Specification, Revision 2.2.* | Symbol | Speed Grade | | | | | | | | |------------------------|-------------|-----|-----|-----|-----|-----|----|--| | | - | 1 | - | 2 | - | 3 | | | | | Min | Max | Min | Max | Min | Max | | | | t _{EABDATA1} | | 1.8 | | 1.9 | | 1.9 | ns | | | t _{EABDATA2} | | 0.6 | | 0.7 | | 0.7 | ns | | | t _{EABWE1} | | 1.2 | | 1.2 | | 1.2 | ns | | | t _{EABWE2} | | 0.4 | | 0.4 | | 0.4 | ns | | | t _{EABRE1} | | 0.9 | | 0.9 | | 0.9 | ns | | | t _{EABRE2} | | 0.4 | | 0.4 | | 0.4 | ns | | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | | t _{EABCO} | | 0.3 | | 0.3 | | 0.3 | ns | | | t _{EABBYPASS} | | 0.5 | | 0.6 | | 0.6 | ns | | | t _{EABSU} | 1.0 | | 1.0 | | 1.0 | | ns | | | t _{EABH} | 0.5 | | 0.4 | | 0.4 | | ns | | | t _{EABCLR} | 0.3 | | 0.3 | | 0.3 | | ns | | | t_{AA} | | 3.4 | | 3.6 | | 3.6 | ns | | | t_{WP} | 2.7 | | 2.8 | | 2.8 | | ns | | | t_{RP} | 1.0 | | 1.0 | | 1.0 | | ns | | | t _{WDSU} | 1.0 | | 1.0 | | 1.0 | | ns | | | t _{WDH} | 0.1 | | 0.1 | | 0.1 | | ns | | | t _{WASU} | 1.8 | | 1.9 | | 1.9 | | ns | | | t _{WAH} | 1.9 | | 2.0 | | 2.0 | | ns | | | t _{RASU} | 3.1 | | 3.5 | | 3.5 | | ns | | | t _{RAH} | 0.2 | | 0.2 | | 0.2 | | ns | | | t_{WO} | | 2.7 | | 2.8 | | 2.8 | ns | | | t_{DD} | | 2.7 | | 2.8 | | 2.8 | ns | | | t _{EABOUT} | | 0.5 | | 0.6 | | 0.6 | ns | | | t _{EABCH} | 1.5 | | 2.0 | | 2.0 | | ns | | | t _{EABCL} | 2.7 | | 2.8 | | 2.8 | | ns | | | Symbol | Speed Grade | | | | | | | | |------------------------|-------------|-----|-----|-----|-----|-----|----|--| | | _ | 1 | _ | 2 | _ | 3 | | | | | Min | Max | Min | Max | Min | Max | | | | t _{EABDATA1} | | 1.7 | | 2.0 | | 2.3 | ns | | | t _{EABDATA1} | | 0.6 | | 0.7 | | 0.8 | ns | | | t _{EABWE1} | | 1.1 | | 1.3 | | 1.4 | ns | | | t _{EABWE2} | | 0.4 | | 0.4 | | 0.5 | ns | | | t _{EABRE1} | | 0.8 | | 0.9 | | 1.0 | ns | | | t _{EABRE2} | | 0.4 | | 0.4 | | 0.5 | ns | | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | | t _{EABCO} | | 0.3 | | 0.3 | | 0.4 | ns | | | t _{EABBYPASS} | | 0.5 | | 0.6 | | 0.7 | ns | | | t _{EABSU} | 0.9 | | 1.0 | | 1.2 | | ns | | | t _{EABH} | 0.4 | | 0.4 | | 0.5 | | ns | | | t _{EABCLR} | 0.3 | | 0.3 | | 0.3 | | ns | | | t_{AA} | | 3.2 | | 3.8 | | 4.4 | ns | | | t_{WP} | 2.5 | | 2.9 | | 3.3 | | ns | | | t_{RP} | 0.9 | | 1.1 | | 1.2 | | ns | | | t _{WDSU} | 0.9 | | 1.0 | | 1.1 | | ns | | | t_{WDH} | 0.1 | | 0.1 | | 0.1 | | ns | | | t _{WASU} | 1.7 | | 2.0 | | 2.3 | | ns | | | t _{WAH} | 1.8 | | 2.1 | | 2.4 | | ns | | | t _{RASU} | 3.1 | | 3.7 | | 4.2 | | ns | | | t _{RAH} | 0.2 | | 0.2 | | 0.2 | | ns | | | t_{WO} | | 2.5 | | 2.9 | | 3.3 | ns | | | t_{DD} | | 2.5 | | 2.9 | | 3.3 | ns | | | t _{EABOUT} | | 0.5 | | 0.6 | | 0.7 | ns | | | t _{EABCH} | 1.5 | | 2.0 | | 2.3 | | ns | | | t _{EABCL} | 2.5 | | 2.9 | | 3.3 | | ns | | | Symbol | | | Speed | Grade | | | Unit | |--------------------------|-----|-----|-------|-------|-----|-----|------| | | - | 1 | -2 | | -3 | | | | | Min | Max | Min | Max | Min | Max | | | DIN2IOE | | 1.8 | | 2.4 | | 2.9 | ns | | t _{DIN2LE} | | 1.5 | | 1.8 | | 2.4 | ns | | t _{DIN2DATA} | | 1.5 | | 1.8 | | 2.2 | ns | | t _{DCLK2IOE} | | 2.2 | | 2.6 | | 3.0 | ns | | t _{DCLK2LE} | | 1.5 | | 1.8 | | 2.4 | ns | | t _{SAMELAB} | | 0.1 | | 0.2 | | 0.3 | ns | | t _{SAMEROW} | | 2.0 | | 2.4 | | 2.7 | ns | | t _{SAME} COLUMN | | 0.7 | | 1.0 | | 0.8 | ns | | t _{DIFFROW} | | 2.7 | | 3.4 | | 3.5 | ns | | t _{TWOROWS} | | 4.7 | | 5.8 | | 6.2 | ns | | LEPERIPH | | 2.7 | | 3.4 | | 3.8 | ns | | LABCARRY | | 0.3 | | 0.4 | | 0.5 | ns | | t _{LABCASC} | | 0.8 | | 0.8 | | 1.1 | ns | | Table 42. EP1K3 | 0 External Ti | ming Param | eters Not | es (1), (2) | | | | | | |------------------------|---------------|-------------|------------------|-------------|-----|------|----|--|--| | Symbol | | Speed Grade | | | | | | | | | | | -1 | - | -2 | | 3 | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{DRR} | | 8.0 | | 9.5 | | 12.5 | ns | | | | t _{INSU} (3) | 2.1 | | 2.5 | | 3.9 | | ns | | | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{оитсо} (3) | 2.0 | 4.9 | 2.0 | 5.9 | 2.0 | 7.6 | ns | | | | t _{INSU} (4) | 1.1 | | 1.5 | | - | | ns | | | | t _{INH} (4) | 0.0 | | 0.0 | | - | | ns | | | | t _{оитсо} (4) | 0.5 | 3.9 | 0.5 | 4.9 | - | - | ns | | | | t _{PCISU} | 3.0 | | 4.2 | | - | | ns | | | | t _{PCIH} | 0.0 | | 0.0 | | - | | ns | | | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 7.5 | - | _ | ns | | | | Symbol | Speed Grade | | | | | | | | |--------------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{DIN2IOE} | | 3.1 | | 3.7 | | 4.6 | ns | | | t _{DIN2LE} | | 1.7 | | 2.1 | | 2.7 | ns | | | t _{DIN2DATA} | | 2.7 | | 3.1 | | 5.1 | ns | | | t _{DCLK2IOE} | | 1.6 | | 1.9 | | 2.6 | ns | | | t _{DCLK2LE} | | 1.7 | | 2.1 | | 2.7 | ns | | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.2 | ns | | | t _{SAMEROW} | | 1.5 | | 1.7 | | 2.4 | ns | | | t _{SAME} COLUMN | | 1.0 | | 1.3 | | 2.1 | ns | | | t _{DIFFROW} | | 2.5 | | 3.0 | | 4.5 | ns | | | t _{TWOROWS} | | 4.0 | | 4.7 | | 6.9 | ns | | | t _{LEPERIPH} | | 2.6 | | 2.9 | | 3.4 | ns | | | t _{LABCARRY} | | 0.1 | | 0.2 | | 0.2 | ns | | | LABCASC | | 0.8 | | 1.0 | | 1.3 | ns | | | Table 49. EP1K50 | External Tin | ming Paramo | eters No | te (1) | | | | |------------------------|--------------|-------------|----------|--------|-----|------|------| | Symbol | | | Speed | Grade | | | Unit | | | -1 | | -2 | | -3 | | | | | Min | Max | Min | Max | Min | Max | | | t _{DRR} | | 8.0 | | 9.5 | | 12.5 | ns | | t _{INSU} (2) | 2.4 | | 2.9 | | 3.9 | | ns | | t _{INH} (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{оитсо} (2) | 2.0 | 4.3 | 2.0 | 5.2 | 2.0 | 7.3 | ns | | t _{INSU} (3) | 2.4 | | 2.9 | | - | | ns | | t _{INH} (3) | 0.0 | | 0.0 | | - | | ns | | t _{оитсо} (3) | 0.5 | 3.3 | 0.5 | 4.1 | - | - | ns | | t _{PCISU} | 2.4 | | 2.9 | | - | | ns | | t _{PCIH} | 0.0 | | 0.0 | | - | | ns | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 7.7 | - | - | ns | | Symbol | Speed Grade | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t_{IOD} | | 1.7 | | 2.0 | | 2.6 | ns | | | t _{IOC} | | 0.0 | | 0.0 | | 0.0 | ns | | | t _{IOCO} | | 1.4 | | 1.6 | | 2.1 | ns | | | t _{IOCOMB} | | 0.5 | | 0.7 | | 0.9 | ns | | | t _{IOSU} | 0.8 | | 1.0 | | 1.3 | | ns | | | t _{IOH} | 0.7 | | 0.9 | | 1.2 | | ns | | | t _{IOCLR} | | 0.5 | | 0.7 | | 0.9 | ns | | | t _{OD1} | | 3.0 | | 4.2 | | 5.6 | ns | | | t _{OD2} | | 3.0 | | 4.2 | | 5.6 | ns | | | t _{OD3} | | 4.0 | | 5.5 | | 7.3 | ns | | | t_{XZ} | | 3.5 | | 4.6 | | 6.1 | ns | | | t_{ZX1} | | 3.5 | | 4.6 | | 6.1 | ns | | | t_{ZX2} | | 3.5 | | 4.6 | | 6.1 | ns | | | t_{ZX3} | | 4.5 | | 5.9 | | 7.8 | ns | | | t _{INREG} | | 2.0 | | 2.6 | | 3.5 | ns | | | t _{IOFD} | | 0.5 | | 0.8 | | 1.2 | ns | | | t _{INCOMB} | | 0.5 | | 0.8 | | 1.2 | ns | |