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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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EABs can be used to implement synchronous RAM, which is easier to use 
than asynchronous RAM. A circuit using asynchronous RAM must 
generate the RAM write enable signal, while ensuring that its data and 
address signals meet setup and hold time specifications relative to the 
write enable signal. In contrast, the EAB’s synchronous RAM generates its 
own write enable signal and is self-timed with respect to the input or write 
clock. A circuit using the EAB’s self-timed RAM must only meet the setup 
and hold time specifications of the global clock.

When used as RAM, each EAB can be configured in any of the following 
sizes: 256 × 16; 512 × 8; 1,024 × 4; or 2,048 × 2. Figure 5 shows the ACEX 1K 
EAB memory configurations.

Figure 5. ACEX 1K EAB Memory Configurations

Larger blocks of RAM are created by combining multiple EABs. For 
example, two 256 × 16 RAM blocks can be combined to form a 256 × 32 
block, and two 512 × 8 RAM blocks can be combined to form a 
512 × 16 block. Figure 6 shows examples of multiple EAB combination.

Figure 6. Examples of Combining ACEX 1K EABs
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Figure 9. ACEX 1K Carry Chain Operation (n-Bit Full Adder)
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LE Operating Modes

The ACEX 1K LE can operate in the following four modes:

■ Normal mode
■ Arithmetic mode
■ Up/down counter mode
■ Clearable counter mode

Each of these modes uses LE resources differently. In each mode, seven 
available inputs to the LE—the four data inputs from the LAB local 
interconnect, the feedback from the programmable register, and the 
carry-in and cascade-in from the previous LE—are directed to different 
destinations to implement the desired logic function. Three inputs to the 
LE provide clock, clear, and preset control for the register. The Altera 
software, in conjunction with parameterized functions such as LPM and 
DesignWare functions, automatically chooses the appropriate mode for 
common functions such as counters, adders, and multipliers. If required, 
the designer can also create special-purpose functions that use a specific 
LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all 
four modes. The Altera software can set DATA1 to enable the register 
synchronously, providing easy implementation of fully synchronous 
designs.

Figure 11 shows the ACEX 1K LE operating modes.
20 Altera Corporation
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Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but 
it supports a synchronous clear instead of the up/down control. The clear 
function is substituted for the cascade-in signal in the up/down counter 
mode. Two 3-input LUTs are used; one generates the counter data, and the 
other generates the fast carry bit. Synchronous loading is provided by a 
2-to-1 multiplexer. The output of this multiplexer is AND ed with a 
synchronous clear signal. 

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer. 

Clear & Preset Logic Control

Logic for the programmable register’s clear and preset functions is 
controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The 
clear and preset control structure of the LE asynchronously loads signals 
into a register. Either LABCTRL1 or LABCTRL2 can control the 
asynchronous clear. Alternatively, the register can be set up so that 
LABCTRL1 implements an asynchronous load. The data to be loaded is 
driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the 
register.

During compilation, the compiler automatically selects the best control 
signal implementation. Because the clear and preset functions are active-
low, the Compiler automatically assigns a logic high to an unused clear or 
preset. 

The clear and preset logic is implemented in one of the following six 
modes chosen during design entry: 

■ Asynchronous clear
■ Asynchronous preset
■ Asynchronous clear and preset
■ Asynchronous load with clear
■ Asynchronous load with preset
■ Asynchronous load without clear or preset
Altera Corporation  23
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Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this 
mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with 
an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 
asynchronously loads a one into the register. Alternatively, the Altera 
software can provide preset control by using the clear and inverting the 
register’s input and output. Inversion control is available for the inputs to 
both LEs and IOEs. Therefore, if a register is preset by only one of the two 
LABCTRL signals, the DATA3 input is not needed and can be used for one 
of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls 
the preset, and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that 
asserting LABCTRL1 asynchronously loads a one into the register, 
effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear. LABCTRL2 implements the clear by 
controlling the register clear; LABCTRL2 does not have to feed the preset 
circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the 
Altera software provides preset control by using the clear and inverting 
the input and output of the register. Asserting LABCTRL2 presets the 
register, while asserting LABCTRL1 loads the register. The Altera software 
inverts the signal that drives DATA3 to account for the inversion of the 
register’s output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear.
Altera Corporation  25
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Figure 13. ACEX 1K LAB Connections to Row & Column Interconnect
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For improved routing, the row interconnect consists of a combination of 
full-length and half-length channels. The full-length channels connect to 
all LABs in a row; the half-length channels connect to the LABs in half of 
the row. The EAB can be driven by the half-length channels in the left half 
of the row and by the full-length channels. The EAB drives out to the full-
length channels. In addition to providing a predictable, row-wide 
interconnect, this architecture provides increased routing resources. Two 
neighboring LABs can be connected using a half-row channel, thereby 
saving the other half of the channel for the other half of the row.

Table 6 summarizes the FastTrack Interconnect routing structure 
resources available in each ACEX 1K device.

In addition to general-purpose I/O pins, ACEX 1K devices have six 
dedicated input pins that provide low-skew signal distribution across the 
device. These six inputs can be used for global clock, clear, preset, and 
peripheral output-enable and clock-enable control signals. These signals 
are available as control signals for all LABs and IOEs in the device. The 
dedicated inputs can also be used as general-purpose data inputs because 
they can feed the local interconnect of each LAB in the device. 

Figure 14 shows the interconnection of adjacent LABs and EABs, with 
row, column, and local interconnects, as well as the associated cascade 
and carry chains. Each LAB is labeled according to its location: a letter 
represents the row and a number represents the column. For example, 
LAB B3 is in row B, column 3.

Table 6. ACEX 1K FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per
Column

EP1K10 3 144 24 24

EP1K30 6 216 36 24

EP1K50 10 216 36 24

EP1K100 12 312 52 24
28 Altera Corporation
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On all ACEX 1K devices, the input path from the I/O pad to the FastTrack 
Interconnect has a programmable delay element that can be used to 
guarantee a zero hold time. Depending on the placement of the IOE 
relative to what it is driving, the designer may choose to turn on the 
programmable delay to ensure a zero hold time or turn it off to minimize 
setup time. This feature is used to reduce setup time for complex pin-to-
register paths (e.g., PCI designs).

Each IOE selects the clock, clear, clock enable, and output enable controls 
from a network of I/O control signals called the peripheral control bus. 
The peripheral control bus uses high-speed drivers to minimize signal 
skew across devices and provides up to 12 peripheral control signals that 
can be allocated as follows:

■ Up to eight output enable signals
■ Up to six clock enable signals
■ Up to two clock signals
■ Up to two clear signals

If more than six clock-enable or eight output-enable signals are required, 
each IOE on the device can be controlled by clock enable and output 
enable signals driven by specific LEs. In addition to the two clock signals 
available on the peripheral control bus, each IOE can use one of two 
dedicated clock pins. Each peripheral control signal can be driven by any 
of the dedicated input pins or the first LE of each LAB in a particular row. 
In addition, a LE in a different row can drive a column interconnect, which 
causes a row interconnect to drive the peripheral control signal. The chip-
wide reset signal resets all IOE registers, overriding any other control 
signals.

When a dedicated clock pin drives IOE registers, it can be inverted for all 
IOEs in the device. All IOEs must use the same sense of the clock. For 
example, if any IOE uses the inverted clock, all IOEs must use the inverted 
clock, and no IOE can use the non-inverted clock. However, LEs can still 
use the true or complement of the clock on an LAB-by-LAB basis. 

The incoming signal may be inverted at the dedicated clock pin and will 
drive all IOEs. For the true and complement of a clock to be used to drive 
IOEs, drive it into both global clock pins. One global clock pin will supply 
the true, and the other will supply the complement. 

When the true and complement of a dedicated input drives IOE clocks, 
two signals on the peripheral control bus are consumed, one for each 
sense of the clock.
Altera Corporation  31
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When dedicated inputs drive non-inverted and inverted peripheral clears, 
clock enables, and output enables, two signals on the peripheral control 
bus will be used.

Table 7 lists the sources for each peripheral control signal and shows how 
the output enable, clock enable, clock, and clear signals share 
12 peripheral control signals. Table 7 also shows the rows that can drive 
global signals.

Signals on the peripheral control bus can also drive the four global signals, 
referred to as GLOBAL0 through GLOBAL3. An internally generated signal 
can drive a global signal, providing the same low-skew, low-delay 
characteristics as a signal driven by an input pin. An LE drives the global 
signal by driving a row line that drives the peripheral bus which then 
drives the global signal. This feature is ideal for internally generated clear 
or clock signals with high fan-out. However, internally driven global 
signals offer no advantage over the general-purpose interconnect for 
routing data signals.

The chip-wide output enable pin is an active-high pin that can be used to 
tri-state all pins on the device. This option can be set in the Altera 
software. The built-in I/O pin pull-up resistors (which are active during 
configuration) are active when the chip-wide output enable pin is 
asserted. The registers in the IOE can also be reset by the chip-wide reset 
pin.

Table 7. Peripheral Bus Sources for ACEX Devices

Peripheral Control Signal EP1K10 EP1K30 EP1K50 EP1K100

OE0 Row A Row A Row A Row A

OE1 Row A Row B Row B Row C

OE2 Row B Row C Row D Row E

OE3 Row B Row D Row F Row L

OE4 Row C Row E Row H Row I

OE5 Row C Row F Row J Row K

CLKENA0/CLK0/GLOBAL0 Row A Row A Row A Row F

CLKENA1/OE6/GLOBAL1 Row A Row B Row C Row D

CLKENA2/CLR0 Row B Row C Row E Row B

CLKENA3/OE7/GLOBAL2 Row B Row D Row G Row H

CLKENA4/CLR1 Row C Row E Row I Row J

CLKENA5/CLK1/GLOBAL3 Row C Row F Row J Row G
32 Altera Corporation
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Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column 
channels. When an IOE is used as an output, the signal is driven by a 
multiplexer that selects a signal from the column channels. Two IOEs 
connect to each side of the column channels. Each IOE can be driven by 
column channels via a multiplexer. The set of column channels is different 
for each IOE (see Figure 17).

Figure 17. ACEX 1K Column-to-IOE Connections Note (1)

Note:
(1) The values for m and n are shown in Table 9.

Table 9 lists the ACEX 1K column-to-IOE interconnect resources.

Table 9.  ACEX 1K Column-to-IOE Interconnect Resources

Device Channels per Column (n) Column Channels per Pin (m)

EP1K10 24 16

EP1K30 24 16

EP1K50 24 16

EP1K100 24 16

Each IOE is driven by
a m-to-1 multiplexer

Each IOE can drive two
column channels.
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The VCCINT pins must always be connected to a 2.5-V power supply. 
With a 2.5-V VCCINT level, input voltages are compatible with 2.5-V, 3.3-
V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 
3.3-V power supply, depending on the output requirements. When the 
VCCIO pins are connected to a 2.5-V power supply, the output levels are 
compatible with 2.5-V systems. When the VCCIO pins are connected to a 
3.3-V power supply, the output high is at 3.3 V and is therefore compatible 
with 3.3-V or 5.0-V systems. Devices operating with VCCIO levels higher 
than 3.0 V achieve a faster timing delay of tOD2 instead of tOD1.

Table 13 summarizes ACEX 1K MultiVolt I/O support.

Notes:
(1) The PCI clamping diode must be disabled on an input which is driven with a 

voltage higher than VCCIO.
(2) When VCCIO = 3.3 V, an ACEX 1K device can drive a 2.5-V device that has 3.3-V 

tolerant inputs.

Open-drain output pins on ACEX 1K devices (with a pull-up resistor to 
the 5.0-V supply) can drive 5.0-V CMOS input pins that require a higher 
VIH than LVTTL. When the open-drain pin is active, it will drive low. 
When the pin is inactive, the resistor will pull up the trace to 5.0 V, thereby 
meeting the CMOS VOH requirement. The open-drain pin will only drive 
low or tri-state; it will never drive high. The rise time is dependent on the 
value of the pull-up resistor and load impedance. The IOL current 
specification should be considered when selecting a pull-up resistor.

Power 
Sequencing & 
Hot-Socketing

Because ACEX 1K devices can be used in a mixed-voltage environment, 
they have been designed specifically to tolerate any possible power-up 
sequence. The VCCIO and VCCINT power planes can be powered in any 
order.

Signals can be driven into ACEX 1K devices before and during power up 
without damaging the device. Additionally, ACEX 1K devices do not 
drive out during power up. Once operating conditions are reached, 
ACEX 1K devices operate as specified by the user.

Table 13. ACEX 1K MultiVolt I/O Support

VCCIO (V) Input Signal (V) Output Signal (V)

2.5 3.3 5.0 2.5 3.3 5.0

2.5 v v (1) v (1) v

3.3 v v v (1) v (2) v v
Altera Corporation  41



ACEX 1K Programmable Logic Device Family Data Sheet
Figure 23. Output Drive Characteristics of ACEX 1K Devices

Timing Model The continuous, high-performance FastTrack Interconnect routing 
resources ensure accurate simulation and timing analysis as well as 
predictable performance. This predictable performance contrasts with 
that of FPGAs, which use a segmented connection scheme and, therefore, 
have an unpredictable performance. 

Device performance can be estimated by following the signal path from a 
source, through the interconnect, to the destination. For example, the 
registered performance between two LEs on the same row can be 
calculated by adding the following parameters: 

■ LE register clock-to-output delay (tCO)
■ Interconnect delay (tSAMEROW)
■ LE look-up table delay (tLUT)
■ LE register setup time (tSU)

The routing delay depends on the placement of the source and destination 
LEs. A more complex registered path may involve multiple combinatorial 
LEs between the source and destination LEs. 

Timing simulation and delay prediction are available with the simulator 
and Timing Analyzer, or with industry-standard EDA tools. The 
Simulator offers both pre-synthesis functional simulation to evaluate logic 
design accuracy and post-synthesis timing simulation with 0.1-ns 
resolution. The Timing Analyzer provides point-to-point timing delay 
information, setup and hold time analysis, and device-wide performance 
analysis.
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Figure 30. EAB Synchronous Timing Waveforms

Tables 22 through 26 describe the ACEX 1K device internal timing 
parameters. 
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Table 22. LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol Parameter Conditions

tLUT LUT delay for data-in

tCLUT LUT delay for carry-in

tRLUT LUT delay for LE register feedback

tPACKED Data-in to packed register delay

tEN LE register enable delay

tCICO Carry-in to carry-out delay

tCGEN Data-in to carry-out delay

tCGENR LE register feedback to carry-out delay
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tCASC Cascade-in to cascade-out delay

tC LE register control signal delay

tCO LE register clock-to-output delay

tCOMB Combinatorial delay

tSU LE register setup time for data and enable signals before clock; LE register 
recovery time after asynchronous clear, preset, or load

tH LE register hold time for data and enable signals after clock

tPRE LE register preset delay

tCLR LE register clear delay

tCH Minimum clock high time from clock pin

tCL Minimum clock low time from clock pin

Table 23. IOE Timing Microparameters Note (1)

Symbol Parameter Conditions

tIOD IOE data delay

tIOC IOE register control signal delay

tIOCO IOE register clock-to-output delay

tIOCOMB IOE combinatorial delay

tIOSU IOE register setup time for data and enable signals before clock; IOE register 
recovery time after asynchronous clear

tIOH IOE register hold time for data and enable signals after clock

tIOCLR IOE register clear time

tOD1 Output buffer and pad delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tOD2 Output buffer and pad delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tOD3 Output buffer and pad delay, slow slew rate = on C1 = 35 pF (4)

tXZ IOE output buffer disable delay

tZX1 IOE output buffer enable delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tZX2 IOE output buffer enable delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tZX3 IOE output buffer enable delay, slow slew rate = on C1 = 35 pF (4)

tINREG IOE input pad and buffer to IOE register delay

tIOFD IOE register feedback delay

tINCOMB IOE input pad and buffer to FastTrack Interconnect delay

Table 22. LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Parameter Conditions
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Tables 27 through 29 describe the ACEX 1K external timing parameters 
and their symbols. 

Notes to tables:
(1) External reference timing parameters are factory-tested, worst-case values specified by Altera. A representative 

subset of signal paths is tested to approximate typical device applications.
(2) Contact Altera Applications for test circuit specifications and test conditions.
(3) These timing parameters are sample-tested only.
(4) This parameter is measured with the measurement and test conditions, including load, specified in the PCI Local 

Bus Specification, Revision 2.2.

Table 27. External Reference Timing Parameters Note (1)

Symbol Parameter Conditions

tDRR Register-to-register delay via four LEs, three row interconnects, and four local 
interconnects

(2)

Table 28. External Timing Parameters

Symbol Parameter Conditions

tINSU Setup time with global clock at IOE register (3)

tINH Hold time with global clock at IOE register (3)

tOUTCO Clock-to-output delay with global clock at IOE register (3)

tPCISU Setup time with global clock for registers used in PCI designs (3), (4)

tPCIH Hold time with global clock for registers used in PCI designs (3), (4)

tPCICO Clock-to-output delay with global clock for registers used in PCI designs (3), (4)

Table 29. External Bidirectional Timing Parameters Note (3)

Symbol Parameter Conditions

tINSUBIDIR Setup time for bidirectional pins with global clock at same-row or same-
column LE register

tINHBIDIR Hold time for bidirectional pins with global clock at same-row or same-column 
LE register

tOUTCOBIDIR Clock-to-output delay for bidirectional pins with global clock at IOE register CI = 35 pF

tXZBIDIR Synchronous IOE output buffer disable delay CI = 35 pF

tZXBIDIR Synchronous IOE output buffer enable delay, slow slew rate = off CI = 35 pF
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Table 33. EP1K10 Device EAB Internal Timing Macroparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABAA 6.7 7.3 7.3 ns

tEABRCCOMB 6.7 7.3 7.3 ns

tEABRCREG 4.7 4.9 4.9 ns

tEABWP 2.7 2.8 2.8 ns

tEABWCCOMB 6.4 6.7 6.7 ns

tEABWCREG 7.4 7.6 7.6 ns

tEABDD 6.0 6.5 6.5 ns

tEABDATACO 0.8 0.9 0.9 ns

tEABDATASU 1.6 1.7 1.7 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 1.4 1.4 1.4 ns

tEABWEH 0.1 0.0 0.0 ns

tEABWDSU 1.6 1.7 1.7 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.1 3.4 3.4 ns

tEABWAH 0.6 0.5 0.5 ns

tEABWO 5.4 5.8 5.8 ns
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Table 41. EP1K30 Device Interconnect Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDIN2IOE 1.8 2.4 2.9 ns

tDIN2LE 1.5 1.8 2.4 ns

tDIN2DATA 1.5 1.8 2.2 ns

tDCLK2IOE 2.2 2.6 3.0 ns

tDCLK2LE 1.5 1.8 2.4 ns

tSAMELAB 0.1 0.2 0.3 ns

tSAMEROW 2.0 2.4 2.7 ns

tSAMECOLUMN 0.7 1.0 0.8 ns

tDIFFROW 2.7 3.4 3.5 ns

tTWOROWS 4.7 5.8 6.2 ns

tLEPERIPH 2.7 3.4 3.8 ns

tLABCARRY 0.3 0.4 0.5 ns

tLABCASC 0.8 0.8 1.1 ns

Table 42. EP1K30 External Timing Parameters Notes (1), (2)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDRR 8.0 9.5 12.5 ns

tINSU (3) 2.1 2.5 3.9 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0  4.9 2.0 5.9 2.0 7.6 ns

tINSU (4) 1.1 1.5 – ns

tINH (4) 0.0 0.0 – ns

tOUTCO (4) 0.5 3.9 0.5 4.9 – – ns

tPCISU 3.0 4.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 7.5 – – ns
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tCO 0.6 0.6 0.7 ns

tCOMB 0.3 0.4 0.5 ns

tSU 0.5 0.6 0.7 ns

tH 0.5 0.6 0.8 ns

tPRE 0.4 0.5 0.7 ns

tCLR 0.8 1.0 1.2 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

Table 45. EP1K50 Device IOE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tIOD 1.3 1.3 1.9 ns

tIOC 0.3 0.4 0.4 ns

tIOCO 1.7 2.1 2.6 ns

tIOCOMB 0.5 0.6 0.8 ns

tIOSU 0.8 1.0 1.3 ns

tIOH 0.4 0.5 0.6 ns

tIOCLR 0.2 0.2 0.4 ns

tOD1 1.2 1.2 1.9 ns

tOD2 0.7 0.8 1.7 ns

tOD3 2.7 3.0 4.3 ns

tXZ 4.7 5.7 7.5 ns

tZX1 4.7 5.7 7.5 ns

tZX2 4.2 5.3 7.3 ns

tZX3 6.2 7.5 9.9 ns

tINREG 3.5 4.2 5.6 ns

tIOFD 1.1 1.3 1.8 ns

tINCOMB 1.1 1.3 1.8 ns

Table 44. EP1K50 Device LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max
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Figure 31. ACEX 1K ICCACTIVE vs. Operating Frequency

Configuration & 
Operation

The ACEX 1K architecture supports several configuration schemes. This 
section summarizes the device operating modes and available device 
configuration schemes. 

Operating Modes

The ACEX 1K architecture uses SRAM configuration elements that 
require configuration data to be loaded every time the circuit powers up. 
The process of physically loading the SRAM data into the device is called 
configuration. Before configuration, as VCC rises, the device initiates a 
Power-On Reset (POR). This POR event clears the device and prepares it 
for configuration. The ACEX 1K POR time does not exceed 50 µs.

1 When configuring with a configuration device, refer to the 
relevant configuration device data sheet for POR timing 
information.
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Revision 
History

The information contained in the ACEX 1K Programmable Logic Device 
Family Data Sheet version 3.4 supersedes information published in 
previous versions. 

The following changes were made to the ACEX 1K Programmable Logic 
Device Family Data Sheet version 3.4: added extended temperature 
support.
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