Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 216 | | Number of Logic Elements/Cells | 1728 | | Total RAM Bits | 24576 | | Number of I/O | 147 | | Number of Gates | 119000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 208-BFQFP | | Supplier Device Package | 208-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1k30qc208-2n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the write enable signal. In contrast, the EAB's synchronous RAM generates its own write enable signal and is self-timed with respect to the input or write clock. A circuit using the EAB's self-timed RAM must only meet the setup and hold time specifications of the global clock. When used as RAM, each EAB can be configured in any of the following sizes: 256×16 ; 512×8 ; $1,024 \times 4$; or $2,048 \times 2$. Figure 5 shows the ACEX 1K EAB memory configurations. Figure 5. ACEX 1K EAB Memory Configurations Larger blocks of RAM are created by combining multiple EABs. For example, two 256×16 RAM blocks can be combined to form a 256×32 block, and two 512×8 RAM blocks can be combined to form a 512×16 block. Figure 6 shows examples of multiple EAB combination. Figure 6. Examples of Combining ACEX 1K EABs Figure 9. ACEX 1K Carry Chain Operation (n-Bit Full Adder) ## LE Operating Modes The ACEX 1K LE can operate in the following four modes: - Normal mode - Arithmetic mode - Up/down counter mode - Clearable counter mode Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance. The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs. Figure 11 shows the ACEX 1K LE operating modes. #### **Clearable Counter Mode** The clearable counter mode is similar to the up/down counter mode, but it supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Two 3-input LUTs are used; one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is AND ed with a synchronous clear signal. #### Internal Tri-State Emulation Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer. #### Clear & Preset Logic Control Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register. During compilation, the compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset. The clear and preset logic is implemented in one of the following six modes chosen during design entry: - Asynchronous clear - Asynchronous preset - Asynchronous clear and preset - Asynchronous load with clear - Asynchronous load with preset - Asynchronous load without clear or preset #### **Asynchronous Clear** The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this mode, the preset signal is tied to VCC to deactivate it. #### **Asynchronous Preset** An asynchronous preset is implemented as an asynchronous load, or with an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the Altera software can provide preset control by using the clear and inverting the register's input and output. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes. #### **Asynchronous Preset & Clear** When implementing asynchronous clear and preset, LABCTRL1 controls the preset, and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register. #### **Asynchronous Load with Clear** When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits. #### **Asynchronous Load with Preset** When implementing an asynchronous load in conjunction with preset, the Altera software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The Altera software inverts the signal that drives DATA3 to account for the inversion of the register's output. #### Asynchronous Load without Preset or Clear When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. Figure 13. ACEX 1K LAB Connections to Row & Column Interconnect For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row. Table 6 summarizes the FastTrack Interconnect routing structure resources available in each ACEX 1K device. | Table 6. ACEX 1K FastTrack Interconnect Resources | | | | | | |---|------|---------------------|---------|------------------------|--| | Device | Rows | Channels per
Row | Columns | Channels per
Column | | | EP1K10 | 3 | 144 | 24 | 24 | | | EP1K30 | 6 | 216 | 36 | 24 | | | EP1K50 | 10 | 216 | 36 | 24 | | | EP1K100 | 12 | 312 | 52 | 24 | | In addition to general-purpose I/O pins, ACEX 1K devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output-enable and clock-enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device. Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3. On all ACEX 1K devices, the input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold time or turn it off to minimize setup time. This feature is used to reduce setup time for complex pin-to-register paths (e.g., PCI designs). Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across devices and provides up to 12 peripheral control signals that can be allocated as follows: - Up to eight output enable signals - Up to six clock enable signals - Up to two clock signals - Up to two clear signals If more than six clock-enable or eight output-enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, a LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chipwide reset signal resets all IOE registers, overriding any other control signals. When a dedicated clock pin drives IOE registers, it can be inverted for all IOEs in the device. All IOEs must use the same sense of the clock. For example, if any IOE uses the inverted clock, all IOEs must use the inverted clock, and no IOE can use the non-inverted clock. However, LEs can still use the true or complement of the clock on an LAB-by-LAB basis. The incoming signal may be inverted at the dedicated clock pin and will drive all IOEs. For the true and complement of a clock to be used to drive IOEs, drive it into both global clock pins. One global clock pin will supply the true, and the other will supply the complement. When the true and complement of a dedicated input drives IOE clocks, two signals on the peripheral control bus are consumed, one for each sense of the clock. When dedicated inputs drive non-inverted and inverted peripheral clears, clock enables, and output enables, two signals on the peripheral control bus will be used. Table 7 lists the sources for each peripheral control signal and shows how the output enable, clock enable, clock, and clear signals share 12 peripheral control signals. Table 7 also shows the rows that can drive global signals. | Table 7. Peripheral Bus Sources for ACEX Devices | | | | | |--------------------------------------------------|--------|--------|--------|---------| | Peripheral Control Signal | EP1K10 | EP1K30 | EP1K50 | EP1K100 | | OE0 | Row A | Row A | Row A | Row A | | OE1 | Row A | Row B | Row B | Row C | | OE2 | Row B | Row C | Row D | Row E | | OE3 | Row B | Row D | Row F | Row L | | OE4 | Row C | Row E | Row H | Row I | | OE5 | Row C | Row F | Row J | Row K | | CLKENAO/CLKO/GLOBALO | Row A | Row A | Row A | Row F | | CLKENA1/OE6/GLOBAL1 | Row A | Row B | Row C | Row D | | CLKENA2/CLR0 | Row B | Row C | Row E | Row B | | CLKENA3/OE7/GLOBAL2 | Row B | Row D | Row G | Row H | | CLKENA4/CLR1 | Row C | Row E | Row I | Row J | | CLKENA5/CLK1/GLOBAL3 | Row C | Row F | Row J | Row G | Signals on the peripheral control bus can also drive the four global signals, referred to as <code>GLOBALO</code> through <code>GLOBALO</code>. An internally generated signal can drive a global signal, providing the same low-skew, low-delay characteristics as a signal driven by an input pin. An LE drives the global signal by driving a row line that drives the peripheral bus which then drives the global signal. This feature is ideal for internally generated clear or clock signals with high fan-out. However, internally driven global signals offer no advantage over the general-purpose interconnect for routing data signals. The chip-wide output enable pin is an active-high pin that can be used to tri-state all pins on the device. This option can be set in the Altera software. The built-in I/O pin pull-up resistors (which are active during configuration) are active when the chip-wide output enable pin is asserted. The registers in the IOE can also be reset by the chip-wide reset pin. #### Column-to-IOE Connections When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels is different for each IOE (see Figure 17). Each IOE is driven by a m-to-1 multiplexer Column Interconnect Figure 17. ACEX 1K Column-to-IOE Connections Note (1) ## Note: The values for m and n are shown in Table 9. Table 9 lists the ACEX 1K column-to-IOE interconnect resources. Each IOE can drive two column channels. | Table 9. ACEX 1K Column-to-IOE Interconnect Resources | | | | | | |-------------------------------------------------------|-------------------------|-----------------------------|--|--|--| | Device | Channels per Column (n) | Column Channels per Pin (m) | | | | | EP1K10 | 24 | 16 | | | | | EP1K30 | 24 | 16 | | | | | EP1K50 | 24 | 16 | | | | | EP1K100 | 24 | 16 | | | | The VCCINT pins must always be connected to a 2.5-V power supply. With a 2.5-V $V_{\rm CCINT}$ level, input voltages are compatible with 2.5-V, 3.3-V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels higher than 3.0 V achieve a faster timing delay of t_{OD2} instead of t_{OD1} . Table 13 summarizes ACEX 1K MultiVolt I/O support. | Table 13. ACEX 1K MultiVolt I/O Support | | | | | | | |----------------------------------------------------------|----------|--------------|--------------|--------------|----------|----------| | V _{CCIO} (V) Input Signal (V) Output Signal (V) | | | | | | (V) | | | 2.5 | 3.3 | 5.0 | 2.5 | 3.3 | 5.0 | | 2.5 | ✓ | √ (1) | √ (1) | ✓ | | | | 3.3 | ✓ | ✓ | √ (1) | √ (2) | ✓ | ✓ | #### Notes: - (1) The PCI clamping diode must be disabled on an input which is driven with a voltage higher than $V_{\rm CCIO}$. - (2) When $V_{\rm CCIO}$ = 3.3 V, an ACEX 1K device can drive a 2.5-V device that has 3.3-V tolerant inputs. Open-drain output pins on ACEX 1K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a higher V_{IH} than LVTTL. When the open-drain pin is active, it will drive low. When the pin is inactive, the resistor will pull up the trace to 5.0 V, thereby meeting the CMOS V_{OH} requirement. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor. # Power Sequencing & Hot-Socketing Because ACEX 1K devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order. Signals can be driven into ACEX 1K devices before and during power up without damaging the device. Additionally, ACEX 1K devices do not drive out during power up. Once operating conditions are reached, ACEX 1K devices operate as specified by the user. Figure 23. Output Drive Characteristics of ACEX 1K Devices # **Timing Model** The continuous, high-performance FastTrack Interconnect routing resources ensure accurate simulation and timing analysis as well as predictable performance. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and, therefore, have an unpredictable performance. Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters: - LE register clock-to-output delay (t_{CO}) - Interconnect delay ($t_{SAMEROW}$) - LE look-up table delay (t_{LUT}) - LE register setup time (t_{SI}) The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs. Timing simulation and delay prediction are available with the simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis. Figure 30. EAB Synchronous Timing Waveforms ## **EAB Synchronous Read** ## EAB Synchronous Write (EAB Output Registers Used) Tables 22 through 26 describe the ACEX 1K device internal timing parameters. | Table 22. LE | Timing Microparameters (Part 1 of 2) Note (1) | | |---------------------|-----------------------------------------------|------------| | Symbol | Parameter | Conditions | | t_{LUT} | LUT delay for data-in | | | t _{CLUT} | LUT delay for carry-in | | | t _{RLUT} | LUT delay for LE register feedback | | | t _{PACKED} | Data-in to packed register delay | | | t _{EN} | LE register enable delay | | | t _{CICO} | Carry-in to carry-out delay | | | t _{CGEN} | Data-in to carry-out delay | | | t _{CGENR} | LE register feedback to carry-out delay | | | Table 22. LE | Timing Microparameters (Part 2 of 2) Note (1) | | |-------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------| | Symbol | Parameter | Conditions | | t _{CASC} | Cascade-in to cascade-out delay | | | t_{C} | LE register control signal delay | | | t_{CO} | LE register clock-to-output delay | | | t _{COMB} | Combinatorial delay | | | t _{SU} | LE register setup time for data and enable signals before clock; LE register recovery time after asynchronous clear, preset, or load | | | t_H | LE register hold time for data and enable signals after clock | | | t _{PRE} | LE register preset delay | | | t _{CLR} | LE register clear delay | | | t _{CH} | Minimum clock high time from clock pin | | | t_{CL} | Minimum clock low time from clock pin | | | Table 23. IOE | Timing Microparameters Note (1) | | |---------------------|-----------------------------------------------------------------------------------------------------------------------|----------------| | Symbol | Parameter | Conditions | | t_{IOD} | IOE data delay | | | t_{IOC} | IOE register control signal delay | | | t_{IOCO} | IOE register clock-to-output delay | | | t_{IOCOMB} | IOE combinatorial delay | | | t _{IOSU} | IOE register setup time for data and enable signals before clock; IOE register recovery time after asynchronous clear | | | t_{IOH} | IOE register hold time for data and enable signals after clock | | | t _{IOCLR} | IOE register clear time | | | t _{OD1} | Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (2) | | t_{OD2} | Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 2.5 V | C1 = 35 pF (3) | | t_{OD3} | Output buffer and pad delay, slow slew rate = on | C1 = 35 pF (4) | | t_{XZ} | IOE output buffer disable delay | | | t_{ZX1} | IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (2) | | t_{ZX2} | IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 2.5 V | C1 = 35 pF (3) | | t_{ZX3} | IOE output buffer enable delay, slow slew rate = on | C1 = 35 pF (4) | | t _{INREG} | IOE input pad and buffer to IOE register delay | - | | t_{IOFD} | IOE register feedback delay | | | t _{INCOMB} | IOE input pad and buffer to FastTrack Interconnect delay | | Tables 27 through 29 describe the ACEX 1K external timing parameters and their symbols. | Table 27. Exte | ernal Reference Timing Parameters Note (1) | | |------------------|------------------------------------------------------------------------------------------------|------------| | Symbol | Parameter | Conditions | | t _{DRR} | Register-to-register delay via four LEs, three row interconnects, and four local interconnects | (2) | | Table 28. Ex | Table 28. External Timing Parameters | | | | |--------------------|---------------------------------------------------------------------------|------------|--|--| | Symbol | Parameter | Conditions | | | | t _{INSU} | Setup time with global clock at IOE register | (3) | | | | t _{INH} | Hold time with global clock at IOE register | (3) | | | | tоитсо | Clock-to-output delay with global clock at IOE register | (3) | | | | t _{PCISU} | Setup time with global clock for registers used in PCI designs | (3), (4) | | | | t _{PCIH} | Hold time with global clock for registers used in PCI designs | (3), (4) | | | | t _{PCICO} | Clock-to-output delay with global clock for registers used in PCI designs | (3), (4) | | | | Table 29. Ext | ernal Bidirectional Timing Parameters Note (3) | | |------------------------|--------------------------------------------------------------------------------------------|------------| | Symbol | Parameter | Conditions | | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at same-row or same-column LE register | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at same-row or same-column LE register | | | toutcobidir | Clock-to-output delay for bidirectional pins with global clock at IOE register | CI = 35 pF | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | CI = 35 pF | | tzxbidir | Synchronous IOE output buffer enable delay, slow slew rate = off | CI = 35 pF | #### Notes to tables: - (1) External reference timing parameters are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications. - (2) Contact Altera Applications for test circuit specifications and test conditions. - (3) These timing parameters are sample-tested only. - (4) This parameter is measured with the measurement and test conditions, including load, specified in the *PCI Local Bus Specification, Revision 2.2.* | Symbol | | | Speed | Grade | | | Unit | |-------------------------|-----|-----|-------|-------|-----|-----|------| | | _ | 1 | - | -2 | | 3 | | | | Min | Max | Min | Max | Min | Max | | | t _{EABAA} | | 6.7 | | 7.3 | | 7.3 | ns | | t _{EABRCCOMB} | 6.7 | | 7.3 | | 7.3 | | ns | | t _{EABRCREG} | 4.7 | | 4.9 | | 4.9 | | ns | | t _{EABWP} | 2.7 | | 2.8 | | 2.8 | | ns | | t _{EABWCCOMB} | 6.4 | | 6.7 | | 6.7 | | ns | | t _{EABWCREG} | 7.4 | | 7.6 | | 7.6 | | ns | | t _{EABDD} | | 6.0 | | 6.5 | | 6.5 | ns | | t _{EABDATA} CO | | 0.8 | | 0.9 | | 0.9 | ns | | t _{EABDATASU} | 1.6 | | 1.7 | | 1.7 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 1.4 | | 1.4 | | 1.4 | | ns | | t _{EABWEH} | 0.1 | | 0.0 | | 0.0 | | ns | | t _{EABWDSU} | 1.6 | | 1.7 | | 1.7 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWASU} | 3.1 | | 3.4 | | 3.4 | | ns | | t _{EABWAH} | 0.6 | | 0.5 | | 0.5 | | ns | | t _{EABWO} | | 5.4 | | 5.8 | | 5.8 | ns | | Symbol | Speed Grade | | | | | | | | |--------------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | DIN2IOE | | 1.8 | | 2.4 | | 2.9 | ns | | | t _{DIN2LE} | | 1.5 | | 1.8 | | 2.4 | ns | | | t _{DIN2DATA} | | 1.5 | | 1.8 | | 2.2 | ns | | | t _{DCLK2IOE} | | 2.2 | | 2.6 | | 3.0 | ns | | | t _{DCLK2LE} | | 1.5 | | 1.8 | | 2.4 | ns | | | t _{SAMELAB} | | 0.1 | | 0.2 | | 0.3 | ns | | | t _{SAMEROW} | | 2.0 | | 2.4 | | 2.7 | ns | | | t _{SAME} COLUMN | | 0.7 | | 1.0 | | 0.8 | ns | | | t _{DIFFROW} | | 2.7 | | 3.4 | | 3.5 | ns | | | t _{TWOROWS} | | 4.7 | | 5.8 | | 6.2 | ns | | | LEPERIPH | | 2.7 | | 3.4 | | 3.8 | ns | | | LABCARRY | | 0.3 | | 0.4 | | 0.5 | ns | | | t _{LABCASC} | | 0.8 | | 0.8 | | 1.1 | ns | | | Table 42. EP1K3 | 0 External Ti | ming Param | eters Not | es (1), (2) | | | | |------------------------|---------------|------------|------------------|-------------|-----|------|----| | Symbol | | Unit | | | | | | | | -1 | | -2 | | -3 | | | | | Min | Max | Min | Max | Min | Max | | | t _{DRR} | | 8.0 | | 9.5 | | 12.5 | ns | | t _{INSU} (3) | 2.1 | | 2.5 | | 3.9 | | ns | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{оитсо} (3) | 2.0 | 4.9 | 2.0 | 5.9 | 2.0 | 7.6 | ns | | t _{INSU} (4) | 1.1 | | 1.5 | | - | | ns | | t _{INH} (4) | 0.0 | | 0.0 | | - | | ns | | t _{оитсо} (4) | 0.5 | 3.9 | 0.5 | 4.9 | - | - | ns | | t _{PCISU} | 3.0 | | 4.2 | | - | | ns | | t _{PCIH} | 0.0 | | 0.0 | | - | | ns | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 7.5 | - | - | ns | | Symbol | Speed Grade | | | | | | | | |-------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t_{CO} | | 0.6 | | 0.6 | | 0.7 | ns | | | t _{COMB} | | 0.3 | | 0.4 | | 0.5 | ns | | | t _{SU} | 0.5 | | 0.6 | | 0.7 | | ns | | | t_H | 0.5 | | 0.6 | | 0.8 | | ns | | | t _{PRE} | | 0.4 | | 0.5 | | 0.7 | ns | | | t _{CLR} | | 0.8 | | 1.0 | | 1.2 | ns | | | t _{CH} | 2.0 | | 2.5 | | 3.0 | | ns | | | t_{CL} | 2.0 | | 2.5 | | 3.0 | | ns | | | Symbol | Speed Grade | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t_{IOD} | | 1.3 | | 1.3 | | 1.9 | ns | | | t _{IOC} | | 0.3 | | 0.4 | | 0.4 | ns | | | t _{IOCO} | | 1.7 | | 2.1 | | 2.6 | ns | | | t _{IOCOMB} | | 0.5 | | 0.6 | | 0.8 | ns | | | t _{IOSU} | 0.8 | | 1.0 | | 1.3 | | ns | | | t _{IOH} | 0.4 | | 0.5 | | 0.6 | | ns | | | t _{IOCLR} | | 0.2 | | 0.2 | | 0.4 | ns | | | t _{OD1} | | 1.2 | | 1.2 | | 1.9 | ns | | | t _{OD2} | | 0.7 | | 0.8 | | 1.7 | ns | | | t _{OD3} | | 2.7 | | 3.0 | | 4.3 | ns | | | t_{XZ} | | 4.7 | | 5.7 | | 7.5 | ns | | | t_{ZX1} | | 4.7 | | 5.7 | | 7.5 | ns | | | t_{ZX2} | | 4.2 | | 5.3 | | 7.3 | ns | | | t_{ZX3} | | 6.2 | | 7.5 | | 9.9 | ns | | | t _{INREG} | | 3.5 | | 4.2 | | 5.6 | ns | | | t _{IOFD} | | 1.1 | | 1.3 | | 1.8 | ns | | | t _{INCOMB} | | 1.1 | | 1.3 | | 1.8 | ns | | Figure 31. ACEX 1K I_{CCACTIVE} vs. Operating Frequency # Configuration & Operation The ACEX 1K architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes. # **Operating Modes** The ACEX 1K architecture uses SRAM configuration elements that require configuration data to be loaded every time the circuit powers up. The process of physically loading the SRAM data into the device is called *configuration*. Before configuration, as $V_{\rm CC}$ rises, the device initiates a Power-On Reset (POR). This POR event clears the device and prepares it for configuration. The ACEX 1K POR time does not exceed 50 μ s. When configuring with a configuration device, refer to the relevant configuration device data sheet for POR timing information. # Revision History The information contained in the *ACEX 1K Programmable Logic Device Family Data Sheet* version 3.4 supersedes information published in previous versions. The following changes were made to the *ACEX 1K Programmable Logic Device Family Data Sheet* version 3.4: added extended temperature support.