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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
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adaptability, such as smart TVs and gaming consoles.
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without power and enabling faster start-up times. Antifuse-
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programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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General 
Description

Altera® ACEX 1K devices provide a die-efficient, low-cost architecture by 
combining look-up table (LUT) architecture with EABs. LUT-based logic 
provides optimized performance and efficiency for data-path, register 
intensive, mathematical, or digital signal processing (DSP) designs, while 
EABs implement RAM, ROM, dual-port RAM, or first-in first-out (FIFO) 
functions. These elements make ACEX 1K suitable for complex logic 
functions and memory functions such as digital signal processing, wide 
data-path manipulation, data transformation and microcontrollers, as 
required in high-performance communications applications. Based on 
reconfigurable CMOS SRAM elements, the ACEX 1K architecture 
incorporates all features necessary to implement common gate array 
megafunctions, along with a high pin count to enable an effective interface 
with system components. The advanced process and the low voltage 
requirement of the 2.5-V core allow ACEX 1K devices to meet the 
requirements of low-cost, high-volume applications ranging from DSL 
modems to low-cost switches.

The ability to reconfigure ACEX 1K devices enables complete testing prior 
to shipment and allows the designer to focus on simulation and design 
verification. ACEX 1K device reconfigurability eliminates inventory 
management for gate array designs and test vector generation for fault 
coverage.

Table 4 shows ACEX 1K device performance for some common designs. 
All performance results were obtained with Synopsys DesignWare or 
LPM functions. Special design techniques are not required to implement 
the applications; the designer simply infers or instantiates a function in a 
Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or 
schematic design file.

Notes:
(1) This application uses combinatorial inputs and outputs.
(2) This application uses registered inputs and outputs.

Table 4. ACEX 1K Device Performance

Application Resources 
Used

Performance

LEs EABs Speed Grade Units

-1 -2 -3

16-bit loadable counter 16 0 285 232 185 MHz

16-bit accumulator 16 0 285 232 185 MHz

16-to-1 multiplexer (1) 10 0 3.5 4.5 6.6 ns

16-bit multiplier with 3-stage pipeline(2) 592 0 156 131 93 MHz

256 × 16 RAM read cycle speed (2) 0 1 278 196 143 MHz

256 × 16 RAM write cycle speed (2) 0 1 185 143 111 MHz
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Figure 2. ACEX 1K Device in Dual-Port RAM Mode Note (1)

Notes:
(1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
(2) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB 

local interconnect channels. 

The EAB can use Altera megafunctions to implement dual-port RAM 
applications where both ports can read or write, as shown in Figure 3. The 
ACEX 1K EAB can also be used in a single-port mode (see Figure 4).
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Figure 8. ACEX 1K Logic Element

The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock, clear, and preset control signals on the flipflop can 
be driven by global signals, general-purpose I/O pins, or any internal 
logic. For combinatorial functions, the flipflop is bypassed and the LUT’s 
output drives the LE’s output. 

The LE has two outputs that drive the interconnect: one drives the local 
interconnect, and the other drives either the row or column FastTrack 
Interconnect routing structure. The two outputs can be controlled 
independently. For example, the LUT can drive one output while the 
register drives the other output. This feature, called register packing, can 
improve LE utilization because the register and the LUT can be used for 
unrelated functions.

The ACEX 1K architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. The carry chain supports high-
speed counters and adders, and the cascade chain implements wide-input 
functions with minimum delay. Carry and cascade chains connect all LEs 
in a LAB and all LABs in the same row. Intensive use of carry and cascade 
chains can reduce routing flexibility. Therefore, the use of these chains 
should be limited to speed-critical portions of a design.
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Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
ACEX 1K architecture to efficiently implement high-speed counters, 
adders, and comparators of arbitrary width. Carry chain logic can be 
created automatically by the compiler during design processing, or 
manually by the designer during design entry. Parameterized functions, 
such as LPM and DesignWare functions, automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EP1K50 device, the carry chain stops at the eighteenth LAB, and a 
new carry chain begins at the nineteenth LAB.

Figure 9 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for an accumulator function. Another portion of the LUT and the carry 
chain logic generates the carry-out signal, which is routed directly to the 
carry-in signal of the next-higher-order bit. The final carry-out signal is 
routed to an LE, where it can be used as a general-purpose signal. 
Altera Corporation  17
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Figure 11. ACEX 1K LE Operating Modes
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a 4-input LUT. The compiler automatically selects the carry-
in or the DATA3 signal as one of the inputs to the LUT. The LUT output 
can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect routing 
structure at the same time. 

The LUT and the register in the LE can be used independently (register 
packing). To support register packing, the LE has two outputs; one drives 
the local interconnect, and the other drives the FastTrack Interconnect 
routing structure. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a 3-input function can be computed in the LUT, and a 
fourth independent signal can be registered. Alternatively, a 4-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect routing structure while the LUT drives 
the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers two 3-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a 3-input function; the other generates a carry output. As shown 
in Figure 11, the first LUT uses the carry-in signal and two data inputs 
from the LAB local interconnect to generate a combinatorial or registered 
output. For example, in an adder, this output is the sum of three signals: 
a, b, and carry-in. The second LUT uses the same three signals to generate 
a carry-out signal, thereby creating a carry chain. The arithmetic mode 
also supports simultaneous use of the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, 
synchronous up/down control, and data loading options. These control 
signals are generated by the data inputs from the LAB local interconnect, 
the carry-in signal, and output feedback from the programmable register. 
Two 3-input LUTs are used; one generates the counter data, and the other 
generates the fast carry bit. A 2-to-1 multiplexer provides synchronous 
loading. Data can also be loaded asynchronously with the clear and preset 
register control signals without using the LUT resources.
22 Altera Corporation
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Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but 
it supports a synchronous clear instead of the up/down control. The clear 
function is substituted for the cascade-in signal in the up/down counter 
mode. Two 3-input LUTs are used; one generates the counter data, and the 
other generates the fast carry bit. Synchronous loading is provided by a 
2-to-1 multiplexer. The output of this multiplexer is AND ed with a 
synchronous clear signal. 

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer. 

Clear & Preset Logic Control

Logic for the programmable register’s clear and preset functions is 
controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The 
clear and preset control structure of the LE asynchronously loads signals 
into a register. Either LABCTRL1 or LABCTRL2 can control the 
asynchronous clear. Alternatively, the register can be set up so that 
LABCTRL1 implements an asynchronous load. The data to be loaded is 
driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the 
register.

During compilation, the compiler automatically selects the best control 
signal implementation. Because the clear and preset functions are active-
low, the Compiler automatically assigns a logic high to an unused clear or 
preset. 

The clear and preset logic is implemented in one of the following six 
modes chosen during design entry: 

■ Asynchronous clear
■ Asynchronous preset
■ Asynchronous clear and preset
■ Asynchronous load with clear
■ Asynchronous load with preset
■ Asynchronous load without clear or preset
Altera Corporation  23
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Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this 
mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with 
an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 
asynchronously loads a one into the register. Alternatively, the Altera 
software can provide preset control by using the clear and inverting the 
register’s input and output. Inversion control is available for the inputs to 
both LEs and IOEs. Therefore, if a register is preset by only one of the two 
LABCTRL signals, the DATA3 input is not needed and can be used for one 
of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls 
the preset, and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that 
asserting LABCTRL1 asynchronously loads a one into the register, 
effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear. LABCTRL2 implements the clear by 
controlling the register clear; LABCTRL2 does not have to feed the preset 
circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the 
Altera software provides preset control by using the clear and inverting 
the input and output of the register. Asserting LABCTRL2 presets the 
register, while asserting LABCTRL1 loads the register. The Altera software 
inverts the signal that drives DATA3 to account for the inversion of the 
register’s output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear.
Altera Corporation  25
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For improved routing, the row interconnect consists of a combination of 
full-length and half-length channels. The full-length channels connect to 
all LABs in a row; the half-length channels connect to the LABs in half of 
the row. The EAB can be driven by the half-length channels in the left half 
of the row and by the full-length channels. The EAB drives out to the full-
length channels. In addition to providing a predictable, row-wide 
interconnect, this architecture provides increased routing resources. Two 
neighboring LABs can be connected using a half-row channel, thereby 
saving the other half of the channel for the other half of the row.

Table 6 summarizes the FastTrack Interconnect routing structure 
resources available in each ACEX 1K device.

In addition to general-purpose I/O pins, ACEX 1K devices have six 
dedicated input pins that provide low-skew signal distribution across the 
device. These six inputs can be used for global clock, clear, preset, and 
peripheral output-enable and clock-enable control signals. These signals 
are available as control signals for all LABs and IOEs in the device. The 
dedicated inputs can also be used as general-purpose data inputs because 
they can feed the local interconnect of each LAB in the device. 

Figure 14 shows the interconnection of adjacent LABs and EABs, with 
row, column, and local interconnects, as well as the associated cascade 
and carry chains. Each LAB is labeled according to its location: a letter 
represents the row and a number represents the column. For example, 
LAB B3 is in row B, column 3.

Table 6. ACEX 1K FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per
Column

EP1K10 3 144 24 24

EP1K30 6 216 36 24

EP1K50 10 216 36 24

EP1K100 12 312 52 24
28 Altera Corporation
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Figure 15. ACEX 1K Bidirectional I/O Registers 
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Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row 
channels. The signal is accessible by all LEs within that row. When an IOE 
is used as an output, the signal is driven by a multiplexer that selects a 
signal from the row channels. Up to eight IOEs connect to each side of 
each row channel (see Figure 16).

Figure 16. ACEX 1K Row-to-IOE Connections  Note (1)

Note:
(1) The values for m and n are shown in Table 8.

Table 8 lists the ACEX 1K row-to-IOE interconnect resources.
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Table 8. ACEX 1K Row-to-IOE Interconnect Resources

Device Channels per Row (n) Row Channels per Pin (m)

EP1K10 144 18

EP1K30 216 27

EP1K50 216 27

EP1K100 312 39
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Figure 23. Output Drive Characteristics of ACEX 1K Devices

Timing Model The continuous, high-performance FastTrack Interconnect routing 
resources ensure accurate simulation and timing analysis as well as 
predictable performance. This predictable performance contrasts with 
that of FPGAs, which use a segmented connection scheme and, therefore, 
have an unpredictable performance. 

Device performance can be estimated by following the signal path from a 
source, through the interconnect, to the destination. For example, the 
registered performance between two LEs on the same row can be 
calculated by adding the following parameters: 

■ LE register clock-to-output delay (tCO)
■ Interconnect delay (tSAMEROW)
■ LE look-up table delay (tLUT)
■ LE register setup time (tSU)

The routing delay depends on the placement of the source and destination 
LEs. A more complex registered path may involve multiple combinatorial 
LEs between the source and destination LEs. 

Timing simulation and delay prediction are available with the simulator 
and Timing Analyzer, or with industry-standard EDA tools. The 
Simulator offers both pre-synthesis functional simulation to evaluate logic 
design accuracy and post-synthesis timing simulation with 0.1-ns 
resolution. The Timing Analyzer provides point-to-point timing delay 
information, setup and hold time analysis, and device-wide performance 
analysis.
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Figure 28. Synchronous Bidirectional Pin External Timing Model

Tables 29 and 30 show the asynchronous and synchronous timing 
waveforms, respectively, for the EAB macroparameters in Table 24.

Figure 29. EAB Asynchronous Timing Waveforms

PRN

CLRN

D Q

PRN

CLRN

D Q

PRN

CLRN

D Q

Dedicated
Clock

Bidirectional
Pin

Output Register

tINSUBIDIR

tOUTCOBIDIR

tXZBIDIR
tZXBIDIR

tINHBIDIR

OE Register

Input Register

EAB Asynchronous Write

EAB Asynchronous Read

WE

a0

d0 d3

 tEABRCCOMB

a1 a2 a3

d2

 tEABAA

d1

Address

Data-Out

WE

a0

din1 dout2

 tEABDD

a1 a2

din1

din0

 tEABWCCOMB

 tEABWASU  tEABWAH

 tEABWDH tEABWDSU

 tEABWP

din0Data-In

Address

Data-Out



ACEX 1K Programmable Logic Device Family Data Sheet
Tables 30 through 36 show EP1K10 device internal and external timing 
parameters. 

Table 30. EP1K10 Device LE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tLUT 0.7 0.8 1.1 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.6 0.7 1.0 ns

tPACKED 0.4 0.4 0.5 ns

tEN 0.9 1.0 1.3 ns

tCICO 0.1 0.1 0.2 ns

tCGEN 0.4 0.5 0.7 ns

tCGENR 0.1 0.1 0.2 ns

tCASC 0.7 0.9 1.1 ns

tC 1.1 1.3 1.7 ns

tCO 0.5 0.7 0.9 ns

tCOMB 0.4 0.5 0.7 ns

tSU 0.7 0.8 1.0 ns

tH 0.9 1.0 1.1 ns

tPRE 0.8 1.0 1.4 ns

tCLR 0.9 1.0 1.4 ns

tCH 2.0 2.5 2.5 ns

tCL 2.0 2.5 2.5 ns
60 Altera Corporation
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tCOMB 0.4 0.4 0.6 ns

tSU 0.4 0.6 0.6 ns

tH 0.7 1.0 1.3 ns

tPRE 0.8 0.9 1.2 ns

tCLR 0.8 0.9 1.2 ns

tCH 2.0 2.5 2.5 ns

tCL 2.0 2.5 2.5 ns

Table 38. EP1K30 Device IOE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tIOD 2.4 2.8 3.8 ns

tIOC 0.3 0.4 0.5 ns

tIOCO 1.0 1.1 1.6 ns

tIOCOMB 0.0 0.0 0.0 ns

tIOSU 1.2 1.4 1.9 ns

tIOH 0.3 0.4 0.5 ns

tIOCLR 1.0 1.1 1.6 ns

tOD1 1.9 2.3 3.0 ns

tOD2 1.4 1.8 2.5 ns

tOD3 4.4 5.2 7.0 ns

tXZ 2.7 3.1 4.3 ns

tZX1 2.7 3.1 4.3 ns

tZX2 2.2 2.6 3.8 ns

tZX3 5.2 6.0 8.3 ns

tINREG 3.4 4.1 5.5 ns

tIOFD 0.8 1.3 2.4 ns

tINCOMB 0.8 1.3 2.4 ns

Table 37. EP1K30 Device LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max
66 Altera Corporation
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tCO 0.6 0.6 0.7 ns

tCOMB 0.3 0.4 0.5 ns

tSU 0.5 0.6 0.7 ns

tH 0.5 0.6 0.8 ns

tPRE 0.4 0.5 0.7 ns

tCLR 0.8 1.0 1.2 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

Table 45. EP1K50 Device IOE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tIOD 1.3 1.3 1.9 ns

tIOC 0.3 0.4 0.4 ns

tIOCO 1.7 2.1 2.6 ns

tIOCOMB 0.5 0.6 0.8 ns

tIOSU 0.8 1.0 1.3 ns

tIOH 0.4 0.5 0.6 ns

tIOCLR 0.2 0.2 0.4 ns

tOD1 1.2 1.2 1.9 ns

tOD2 0.7 0.8 1.7 ns

tOD3 2.7 3.0 4.3 ns

tXZ 4.7 5.7 7.5 ns

tZX1 4.7 5.7 7.5 ns

tZX2 4.2 5.3 7.3 ns

tZX3 6.2 7.5 9.9 ns

tINREG 3.5 4.2 5.6 ns

tIOFD 1.1 1.3 1.8 ns

tINCOMB 1.1 1.3 1.8 ns

Table 44. EP1K50 Device LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max
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Table 52. EP1K100 Device IOE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tIOD 1.7 2.0 2.6 ns

tIOC 0.0 0.0 0.0 ns

tIOCO 1.4 1.6 2.1 ns

tIOCOMB 0.5 0.7 0.9 ns

tIOSU 0.8 1.0 1.3 ns

tIOH 0.7 0.9 1.2 ns

tIOCLR 0.5 0.7 0.9 ns

tOD1 3.0 4.2 5.6 ns

tOD2 3.0 4.2 5.6 ns

tOD3 4.0 5.5 7.3 ns

tXZ 3.5 4.6 6.1 ns

tZX1 3.5 4.6 6.1 ns

tZX2 3.5 4.6 6.1 ns

tZX3 4.5 5.9 7.8 ns

tINREG 2.0 2.6 3.5 ns

tIOFD 0.5 0.8 1.2 ns

tINCOMB 0.5 0.8 1.2 ns
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Table 53. EP1K100 Device EAB Internal Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABDATA1 1.5 2.0 2.6 ns

tEABDATA1 0.0 0.0 0.0 ns

tEABWE1 1.5 2.0 2.6 ns

tEABWE2 0.3 0.4 0.5 ns

tEABRE1 0.3 0.4 0.5 ns

tEABRE2 0.0 0.0 0.0 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.4 0.5 ns

tEABBYPASS 0.1 0.1 0.2 ns

tEABSU 0.8 1.0 1.4 ns

tEABH 0.1 0.1 0.2 ns

tEABCLR 0.3 0.4 0.5 ns

tAA 4.0 5.1 6.6 ns

tWP 2.7 3.5 4.7 ns

tRP 1.0 1.3 1.7 ns

tWDSU 1.0 1.3 1.7 ns

tWDH 0.2 0.2 0.3 ns

tWASU 1.6 2.1 2.8 ns

tWAH 1.6 2.1 2.8 ns

tRASU 3.0 3.9 5.2 ns

tRAH 0.1 0.1 0.2 ns

tWO 1.5 2.0 2.6 ns

tDD 1.5 2.0 2.6 ns

tEABOUT 0.2 0.3 0.3 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.7 3.5 4.7 ns
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Notes to tables:
(1) All timing parameters are described in Tables 22 through 29 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Power 
Consumption

The supply power (P) for ACEX 1K devices can be calculated with the 
following equation:

P = PINT + PIO = (ICCSTANDBY + ICCACTIVE) × VCC + PIO

The ICCACTIVE value depends on the switching frequency and the 
application logic. This value is calculated based on the amount of current 
that each LE typically consumes. The PIO value, which depends on the 
device output load characteristics and switching frequency, can be 
calculated using the guidelines given in Application Note 74 (Evaluating 
Power for Altera Devices).

1 Compared to the rest of the device, the embedded array 
consumes a negligible amount of power. Therefore, the 
embedded array can be ignored when calculating supply 
current.

Table 57. EP1K100 External Bidirectional Timing Parameters Notes (1), (2)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSUBIDIR (3) 1.7 2.5 3.3 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 2.0 2.8 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 5.2 2.0 6.9 2.0 9.1 ns

tXZBIDIR (3) 5.6 7.5 10.1 ns

tZXBIDIR (3) 5.6 7.5  10.1 ns

tOUTCOBIDIR (4) 0.5 3.0 0.5 4.6 – – ns

tXZBIDIR (4) 4.6 6.5 – ns

tZXBIDIR (4) 4.6  6.5 – ns
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Figure 31. ACEX 1K ICCACTIVE vs. Operating Frequency

Configuration & 
Operation

The ACEX 1K architecture supports several configuration schemes. This 
section summarizes the device operating modes and available device 
configuration schemes. 

Operating Modes

The ACEX 1K architecture uses SRAM configuration elements that 
require configuration data to be loaded every time the circuit powers up. 
The process of physically loading the SRAM data into the device is called 
configuration. Before configuration, as VCC rises, the device initiates a 
Power-On Reset (POR). This POR event clears the device and prepares it 
for configuration. The ACEX 1K POR time does not exceed 50 µs.

1 When configuring with a configuration device, refer to the 
relevant configuration device data sheet for POR timing 
information.
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