




Welcome to **E-XFL.COM** 

## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

## **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Details                        |                                                           |
|--------------------------------|-----------------------------------------------------------|
| Product Status                 | Obsolete                                                  |
| Number of LABs/CLBs            | 216                                                       |
| Number of Logic Elements/Cells | 1728                                                      |
| Total RAM Bits                 | 24576                                                     |
| Number of I/O                  | 102                                                       |
| Number of Gates                | 119000                                                    |
| Voltage - Supply               | 2.375V ~ 2.625V                                           |
| Mounting Type                  | Surface Mount                                             |
| Operating Temperature          | -40°C ~ 85°C (TA)                                         |
| Package / Case                 | 144-LQFP                                                  |
| Supplier Device Package        | 144-TQFP (20x20)                                          |
| Purchase URL                   | https://www.e-xfl.com/product-detail/intel/ep1k30ti144-2n |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## ...and More Features

- -1 speed grade devices are compliant with *PCI Local Bus Specification, Revision 2.2* for 5.0-V operation
- Built-in Joint Test Action Group (JTAG) boundary-scan test (BST) circuitry compliant with IEEE Std. 1149.1-1990, available without consuming additional device logic.
- Operate with a 2.5-V internal supply voltage
- In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port
- ClockLock™ and ClockBoost™ options for reduced clock delay, clock skew, and clock multiplication
- Built-in, low-skew clock distribution trees
- 100% functional testing of all devices; test vectors or scan chains are not required
- Pull-up on I/O pins before and during configuration

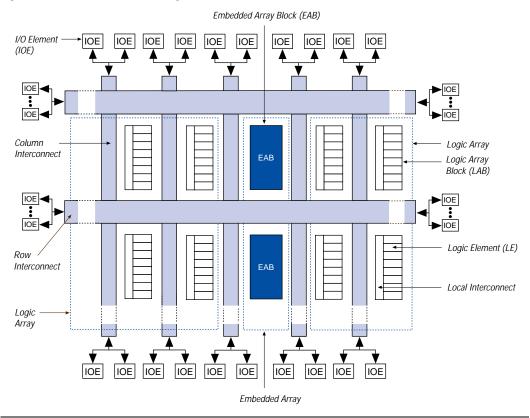
#### ■ Flexible interconnect

- FastTrack® Interconnect continuous routing structure for fast, predictable interconnect delays
- Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
- Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
- Tri-state emulation that implements internal tri-state buses
- Up to six global clock signals and four global clear signals

#### Powerful I/O pins

- Individual tri-state output enable control for each pin
- Open-drain option on each I/O pin
- Programmable output slew-rate control to reduce switching noise
- Clamp to V<sub>CCIO</sub> user-selectable on a pin-by-pin basis
- Supports hot-socketing

Table 5 shows ACEX 1K device performance for more complex designs. These designs are available as Altera MegaCore $^{\rm TM}$  functions.


| Table 5. ACEX 1K Device Performance for Complex Designs     |       |                 |          |       |      |  |  |  |
|-------------------------------------------------------------|-------|-----------------|----------|-------|------|--|--|--|
| Application                                                 | LEs   | LEs Performance |          |       |      |  |  |  |
|                                                             | Used  |                 | <b>!</b> | Units |      |  |  |  |
|                                                             |       | -1              | -2       | -3    |      |  |  |  |
| 16-bit, 8-tap parallel finite impulse response (FIR) filter | 597   | 192             | 156      | 116   | MSPS |  |  |  |
| 8-bit, 512-point Fast Fourier transform (FFT)               | 1,854 | 23.4            | 28.7     | 38.9  | μs   |  |  |  |
| function                                                    |       | 113             | 92       | 68    | MHz  |  |  |  |
| a16450 universal asynchronous receiver/transmitter (UART)   | 342   | 36              | 28       | 20.5  | MHz  |  |  |  |

Each ACEX 1K device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and data-transformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device.

ACEX 1K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers EPC16, EPC2, EPC1, and EPC1441 configuration devices, which configure ACEX 1K devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera MasterBlaster $^{\text{TM}}$ , ByteBlasterMV $^{\text{TM}}$ , or BitBlaster $^{\text{TM}}$  download cables. After an ACEX 1K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 40 ms, real-time changes can be made during system operation.

ACEX 1K devices contain an interface that permits microprocessors to configure ACEX 1K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat an ACEX 1K device as memory and configure it by writing to a virtual memory location, simplifying device reconfiguration.

Figure 1. ACEX 1K Device Block Diagram



ACEX 1K devices provide six dedicated inputs that drive the flipflops' control inputs and ensure the efficient distribution of high-speed, low-skew (less than 1.0 ns) control signals. These signals use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect routing structure. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device.

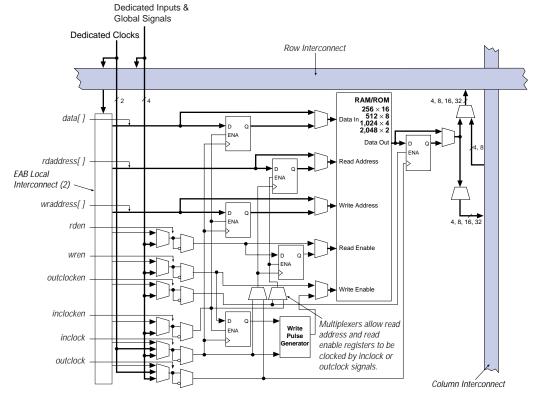



Figure 2. ACEX 1K Device in Dual-Port RAM Mode Note (1)

#### Notes:

- (1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
- (2) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB local interconnect channels.

The EAB can use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3. The ACEX 1K EAB can also be used in a single-port mode (see Figure 4).

If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. Altera software automatically combines EABs to meet a designer's RAM specifications.

EABs provide flexible options for driving and controlling clock signals. Different clocks and clock enables can be used for reading and writing to the EAB. Registers can be independently inserted on the data input, EAB output, write address, write enable signals, read address, and read enable signals. The global signals and the EAB local interconnect can drive write-enable, read-enable, and clock-enable signals. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control write-enable, read-enable, clear, clock, and clock-enable signals.

An EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs (see Figures 2 and 4). The column interconnect, which is adjacent to the EAB, has twice as many channels as other columns in the device.

### Logic Array Block

An LAB consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to the ACEX 1K architecture, facilitating efficient routing with optimum device utilization and high performance. Figure 7 shows the ACEX 1K LAB.

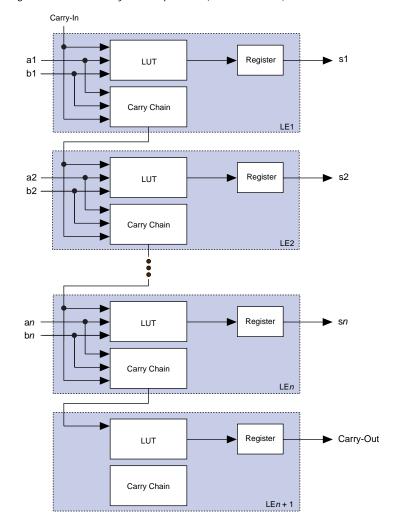
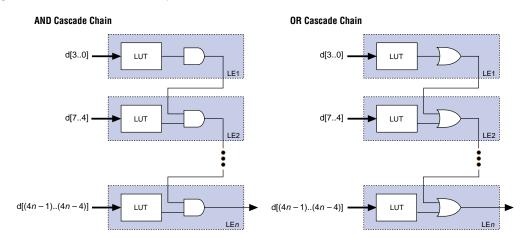



Figure 9. ACEX 1K Carry Chain Operation (n-Bit Full Adder)


#### Cascade Chain

With the cascade chain, the ACEX 1K architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. With a delay as low as 0.6 ns per LE, each additional LE provides four more inputs to the effective width of a function. Cascade chain logic can be created automatically by the compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EP1K50 device, the cascade chain stops at the eighteenth LAB, and a new one begins at the nineteenth LAB). This break is due to the EAB's placement in the middle of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. The LE delay is 1.3 ns; the cascade chain delay is 0.6 ns. With the cascade chain, decoding a 16-bit address requires 3.1 ns.

Figure 10. ACEX 1K Cascade Chain Operation



#### LE Operating Modes

The ACEX 1K LE can operate in the following four modes:

- Normal mode
- Arithmetic mode
- Up/down counter mode
- Clearable counter mode

Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs.

Figure 11 shows the ACEX 1K LE operating modes.

#### **Clearable Counter Mode**

The clearable counter mode is similar to the up/down counter mode, but it supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Two 3-input LUTs are used; one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is AND ed with a synchronous clear signal.

#### Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer.

#### Clear & Preset Logic Control

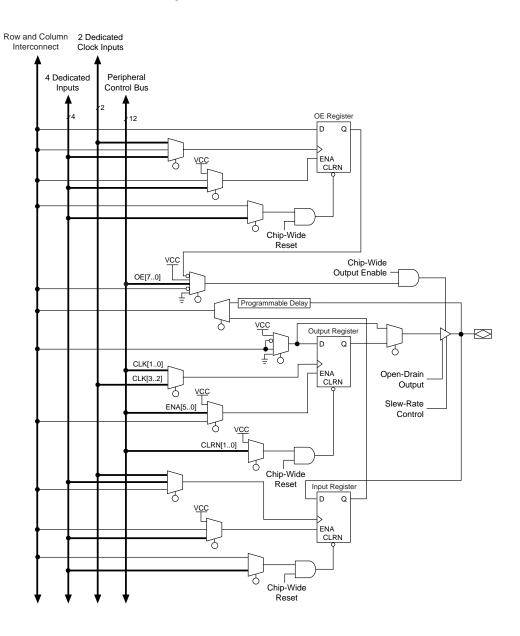
Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register.

During compilation, the compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

The clear and preset logic is implemented in one of the following six modes chosen during design entry:

- Asynchronous clear
- Asynchronous preset
- Asynchronous clear and preset
- Asynchronous load with clear
- Asynchronous load with preset
- Asynchronous load without clear or preset

For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row.


Table 6 summarizes the FastTrack Interconnect routing structure resources available in each ACEX 1K device.

| Table 6. ACEX 1K FastTrack Interconnect Resources |      |                     |         |                        |  |  |  |  |
|---------------------------------------------------|------|---------------------|---------|------------------------|--|--|--|--|
| Device                                            | Rows | Channels per<br>Row | Columns | Channels per<br>Column |  |  |  |  |
| EP1K10                                            | 3    | 144                 | 24      | 24                     |  |  |  |  |
| EP1K30                                            | 6    | 216                 | 36      | 24                     |  |  |  |  |
| EP1K50                                            | 10   | 216                 | 36      | 24                     |  |  |  |  |
| EP1K100                                           | 12   | 312                 | 52      | 24                     |  |  |  |  |

In addition to general-purpose I/O pins, ACEX 1K devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output-enable and clock-enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device.

Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3.

Figure 15. ACEX 1K Bidirectional I/O Registers



Tables 11 and 12 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively.

| Table 11.             | ClockLock & ClockBoost Parameters for -1                                | Speed-Grade De             | vices |     |                               |      |
|-----------------------|-------------------------------------------------------------------------|----------------------------|-------|-----|-------------------------------|------|
| Symbol                | Parameter                                                               | Condition                  | Min   | Тур | Max                           | Unit |
| $t_R$                 | Input rise time                                                         |                            |       |     | 5                             | ns   |
| $t_{F}$               | Input fall time                                                         |                            |       |     | 5                             | ns   |
| $t_{INDUTY}$          | Input duty cycle                                                        |                            | 40    |     | 60                            | %    |
| f <sub>CLK1</sub>     | Input clock frequency (ClockBoost clock multiplication factor equals 1) |                            | 25    |     | 180                           | MHz  |
| f <sub>CLK2</sub>     | Input clock frequency (ClockBoost clock multiplication factor equals 2) |                            | 16    |     | 90                            | MHz  |
| f <sub>CLKDEV</sub>   | Input deviation from user specification in the Altera software $(1)$    |                            |       |     | 25,000<br><i>(</i> 2 <i>)</i> | PPM  |
| t <sub>INCLKSTB</sub> | Input clock stability (measured between adjacent clocks)                |                            |       |     | 100                           | ps   |
| t <sub>LOCK</sub>     | Time required for ClockLock or ClockBoost to acquire lock (3)           |                            |       |     | 10                            | μs   |
| t <sub>JITTER</sub>   | Jitter on ClockLock or ClockBoost-                                      | t <sub>INCLKSTB</sub> <100 |       |     | 250 (4)                       | ps   |
|                       | generated clock (4)                                                     | t <sub>INCLKSTB</sub> < 50 |       |     | 200 (4)                       | ps   |
| t <sub>OUTDUTY</sub>  | Duty cycle for ClockLock or ClockBoost-<br>generated clock              |                            | 40    | 50  | 60                            | %    |

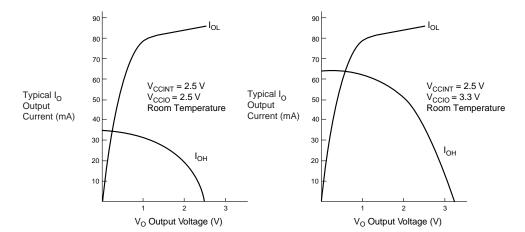
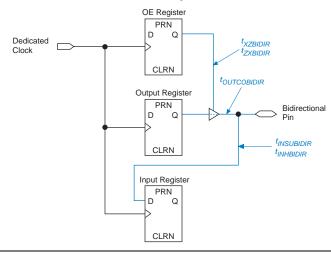



Figure 23. Output Drive Characteristics of ACEX 1K Devices

## **Timing Model**

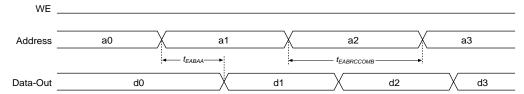
The continuous, high-performance FastTrack Interconnect routing resources ensure accurate simulation and timing analysis as well as predictable performance. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and, therefore, have an unpredictable performance.


Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:

- LE register clock-to-output delay  $(t_{CO})$
- Interconnect delay (*t<sub>SAMEROW</sub>*)
- LE look-up table delay ( $t_{LUT}$ )
- LE register setup time  $(t_{SI})$

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

Timing simulation and delay prediction are available with the simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis.


Figure 28. Synchronous Bidirectional Pin External Timing Model



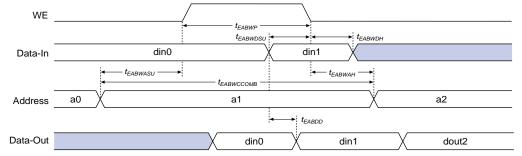

Tables 29 and 30 show the asynchronous and synchronous timing waveforms, respectively, for the EAB macroparameters in Table 24.

Figure 29. EAB Asynchronous Timing Waveforms





#### **EAB Asynchronous Write**



| Symbol              |     | Speed Grade |     |     |     |      |    |  |
|---------------------|-----|-------------|-----|-----|-----|------|----|--|
|                     | -   | 1           | -   | -2  |     | 3    |    |  |
|                     | Min | Max         | Min | Max | Min | Max  |    |  |
| $t_{IOD}$           |     | 2.6         |     | 3.1 |     | 4.0  | ns |  |
| t <sub>IOC</sub>    |     | 0.3         |     | 0.4 |     | 0.5  | ns |  |
| t <sub>IOCO</sub>   |     | 0.9         |     | 1.0 |     | 1.4  | ns |  |
| t <sub>IOCOMB</sub> |     | 0.0         |     | 0.0 |     | 0.0  | ns |  |
| t <sub>IOSU</sub>   | 1.3 |             | 1.5 |     | 2.0 |      | ns |  |
| t <sub>IOH</sub>    | 0.9 |             | 1.0 |     | 1.4 |      | ns |  |
| t <sub>IOCLR</sub>  |     | 1.1         |     | 1.3 |     | 1.7  | ns |  |
| t <sub>OD1</sub>    |     | 3.1         |     | 3.7 |     | 4.1  | ns |  |
| t <sub>OD2</sub>    |     | 2.6         |     | 3.3 |     | 3.9  | ns |  |
| t <sub>OD3</sub>    |     | 5.8         |     | 6.9 |     | 8.3  | ns |  |
| $t_{XZ}$            |     | 3.8         |     | 4.5 |     | 5.9  | ns |  |
| $t_{ZX1}$           |     | 3.8         |     | 4.5 |     | 5.9  | ns |  |
| $t_{ZX2}$           |     | 3.3         |     | 4.1 |     | 5.7  | ns |  |
| $t_{ZX3}$           |     | 6.5         |     | 7.7 |     | 10.1 | ns |  |
| t <sub>INREG</sub>  |     | 3.7         |     | 4.3 |     | 5.7  | ns |  |
| t <sub>IOFD</sub>   |     | 0.9         |     | 1.0 |     | 1.4  | ns |  |
| t <sub>INCOMB</sub> |     | 1.9         |     | 2.3 |     | 3.0  | ns |  |

| Symbol                 | Speed Grade |     |     |     |     |     |    |  |
|------------------------|-------------|-----|-----|-----|-----|-----|----|--|
|                        | -           | -1  |     | -2  |     | 3   |    |  |
|                        | Min         | Max | Min | Max | Min | Max |    |  |
| t <sub>EABDATA1</sub>  |             | 1.8 |     | 1.9 |     | 1.9 | ns |  |
| t <sub>EABDATA2</sub>  |             | 0.6 |     | 0.7 |     | 0.7 | ns |  |
| t <sub>EABWE1</sub>    |             | 1.2 |     | 1.2 |     | 1.2 | ns |  |
| t <sub>EABWE2</sub>    |             | 0.4 |     | 0.4 |     | 0.4 | ns |  |
| t <sub>EABRE1</sub>    |             | 0.9 |     | 0.9 |     | 0.9 | ns |  |
| t <sub>EABRE2</sub>    |             | 0.4 |     | 0.4 |     | 0.4 | ns |  |
| t <sub>EABCLK</sub>    |             | 0.0 |     | 0.0 |     | 0.0 | ns |  |
| t <sub>EABCO</sub>     |             | 0.3 |     | 0.3 |     | 0.3 | ns |  |
| t <sub>EABBYPASS</sub> |             | 0.5 |     | 0.6 |     | 0.6 | ns |  |
| t <sub>EABSU</sub>     | 1.0         |     | 1.0 |     | 1.0 |     | ns |  |
| t <sub>EABH</sub>      | 0.5         |     | 0.4 |     | 0.4 |     | ns |  |
| t <sub>EABCLR</sub>    | 0.3         |     | 0.3 |     | 0.3 |     | ns |  |
| $t_{AA}$               |             | 3.4 |     | 3.6 |     | 3.6 | ns |  |
| $t_{WP}$               | 2.7         |     | 2.8 |     | 2.8 |     | ns |  |
| $t_{RP}$               | 1.0         |     | 1.0 |     | 1.0 |     | ns |  |
| t <sub>WDSU</sub>      | 1.0         |     | 1.0 |     | 1.0 |     | ns |  |
| t <sub>WDH</sub>       | 0.1         |     | 0.1 |     | 0.1 |     | ns |  |
| t <sub>WASU</sub>      | 1.8         |     | 1.9 |     | 1.9 |     | ns |  |
| t <sub>WAH</sub>       | 1.9         |     | 2.0 |     | 2.0 |     | ns |  |
| t <sub>RASU</sub>      | 3.1         |     | 3.5 |     | 3.5 |     | ns |  |
| t <sub>RAH</sub>       | 0.2         |     | 0.2 |     | 0.2 |     | ns |  |
| $t_{WO}$               |             | 2.7 |     | 2.8 |     | 2.8 | ns |  |
| $t_{DD}$               |             | 2.7 |     | 2.8 |     | 2.8 | ns |  |
| t <sub>EABOUT</sub>    |             | 0.5 |     | 0.6 |     | 0.6 | ns |  |
| t <sub>EABCH</sub>     | 1.5         |     | 2.0 |     | 2.0 |     | ns |  |
| t <sub>EABCL</sub>     | 2.7         |     | 2.8 |     | 2.8 |     | ns |  |

| Symbol                 | Speed Grade |     |     |     |     |     |    |
|------------------------|-------------|-----|-----|-----|-----|-----|----|
|                        | -           | -1  |     | -2  |     | 3   |    |
|                        | Min         | Max | Min | Max | Min | Max |    |
| t <sub>EABDATA1</sub>  |             | 1.7 |     | 2.0 |     | 2.3 | ns |
| t <sub>EABDATA1</sub>  |             | 0.6 |     | 0.7 |     | 0.8 | ns |
| t <sub>EABWE1</sub>    |             | 1.1 |     | 1.3 |     | 1.4 | ns |
| t <sub>EABWE2</sub>    |             | 0.4 |     | 0.4 |     | 0.5 | ns |
| t <sub>EABRE1</sub>    |             | 0.8 |     | 0.9 |     | 1.0 | ns |
| t <sub>EABRE2</sub>    |             | 0.4 |     | 0.4 |     | 0.5 | ns |
| t <sub>EABCLK</sub>    |             | 0.0 |     | 0.0 |     | 0.0 | ns |
| t <sub>EABCO</sub>     |             | 0.3 |     | 0.3 |     | 0.4 | ns |
| t <sub>EABBYPASS</sub> |             | 0.5 |     | 0.6 |     | 0.7 | ns |
| t <sub>EABSU</sub>     | 0.9         |     | 1.0 |     | 1.2 |     | ns |
| t <sub>EABH</sub>      | 0.4         |     | 0.4 |     | 0.5 |     | ns |
| t <sub>EABCLR</sub>    | 0.3         |     | 0.3 |     | 0.3 |     | ns |
| $t_{AA}$               |             | 3.2 |     | 3.8 |     | 4.4 | ns |
| $t_{WP}$               | 2.5         |     | 2.9 |     | 3.3 |     | ns |
| $t_{RP}$               | 0.9         |     | 1.1 |     | 1.2 |     | ns |
| t <sub>WDSU</sub>      | 0.9         |     | 1.0 |     | 1.1 |     | ns |
| t <sub>WDH</sub>       | 0.1         |     | 0.1 |     | 0.1 |     | ns |
| t <sub>WASU</sub>      | 1.7         |     | 2.0 |     | 2.3 |     | ns |
| t <sub>WAH</sub>       | 1.8         |     | 2.1 |     | 2.4 |     | ns |
| t <sub>RASU</sub>      | 3.1         |     | 3.7 |     | 4.2 |     | ns |
| t <sub>RAH</sub>       | 0.2         |     | 0.2 |     | 0.2 |     | ns |
| $t_{WO}$               |             | 2.5 |     | 2.9 |     | 3.3 | ns |
| $t_{DD}$               |             | 2.5 |     | 2.9 |     | 3.3 | ns |
| t <sub>EABOUT</sub>    |             | 0.5 |     | 0.6 |     | 0.7 | ns |
| t <sub>EABCH</sub>     | 1.5         |     | 2.0 |     | 2.3 |     | ns |
| t <sub>EABCL</sub>     | 2.5         |     | 2.9 |     | 3.3 |     | ns |

| Symbol                     | Speed Grade |     |     |     |     |      |    |
|----------------------------|-------------|-----|-----|-----|-----|------|----|
|                            | -           | 1   | -2  |     | -3  |      |    |
|                            | Min         | Max | Min | Max | Min | Max  |    |
| t <sub>INSUBIDIR</sub> (3) | 1.7         |     | 2.5 |     | 3.3 |      | ns |
| t <sub>INHBIDIR</sub> (3)  | 0.0         |     | 0.0 |     | 0.0 |      | ns |
| t <sub>INSUBIDIR</sub> (4) | 2.0         |     | 2.8 |     | -   |      | ns |
| t <sub>INHBIDIR</sub> (4)  | 0.0         |     | 0.0 |     | -   |      | ns |
| toutcobidir (3)            | 2.0         | 5.2 | 2.0 | 6.9 | 2.0 | 9.1  | ns |
| t <sub>XZBIDIR</sub> (3)   |             | 5.6 |     | 7.5 |     | 10.1 | ns |
| t <sub>ZXBIDIR</sub> (3)   |             | 5.6 |     | 7.5 |     | 10.1 | ns |
| toutcobidir (4)            | 0.5         | 3.0 | 0.5 | 4.6 | -   | -    | ns |
| t <sub>XZBIDIR</sub> (4)   |             | 4.6 |     | 6.5 |     | -    | ns |
| t <sub>ZXBIDIR</sub> (4)   |             | 4.6 |     | 6.5 |     | _    | ns |

#### Notes to tables:

- (1) All timing parameters are described in Tables 22 through 29 in this data sheet.
- (2) These parameters are specified by characterization.
- (3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
- (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

# Power Consumption

The supply power (P) for ACEX 1K devices can be calculated with the following equation:

$$P = P_{INT} + P_{IO} = (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO}$$

The  $I_{CCACTIVE}$  value depends on the switching frequency and the application logic. This value is calculated based on the amount of current that each LE typically consumes. The  $P_{IO}$  value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*.



Compared to the rest of the device, the embedded array consumes a negligible amount of power. Therefore, the embedded array can be ignored when calculating supply current.

During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. Before and during configuration, all I/O pins (except dedicated inputs, clock, or configuration pins) are pulled high by a weak pull-up resistor. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

SRAM configuration elements allow ACEX 1K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, re-initializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 40 ms and can be used to reconfigure an entire system dynamically. In-field upgrades can be performed by distributing new configuration files.

#### **Configuration Schemes**

The configuration data for an ACEX 1K device can be loaded with one of five configuration schemes (see Table 59), chosen on the basis of the target application. An EPC16, EPC2, EPC1, or EPC1441 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of a ACEX 1K device, allowing automatic configuration on system power-up.

Multiple ACEX 1K devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Additional APEX 20K, APEX 20KE, FLEX 10K, FLEX 10KA, FLEX 10KE, ACEX 1K, and FLEX 6000 devices can be configured in the same serial chain.

| Table 59. Data Sources for ACEX 1K Configuration |                                                                                                  |  |  |  |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|
| Configuration Scheme                             | Data Source                                                                                      |  |  |  |
| Configuration device                             | EPC16, EPC2, EPC1, or EPC1441 configuration device                                               |  |  |  |
| Passive serial (PS)                              | BitBlaster or ByteBlasterMV download cables, or serial data source                               |  |  |  |
| Passive parallel asynchronous (PPA)              | Parallel data source                                                                             |  |  |  |
| Passive parallel synchronous (PPS)               | Parallel data source                                                                             |  |  |  |
| JTAG                                             | BitBlaster or ByteBlasterMV download cables, or microprocessor with a Jam STAPL File or JBC File |  |  |  |

## Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Documentation Library* for pin-out information.



101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit\_req@altera.com

Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described

herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

I.S. EN ISO 9001

