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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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ACEX 1K Programmable Logic Device Family Data Sheet
f For more information on the configuration of ACEX 1K devices, see the 
following documents:

■ Configuration Devices for ACEX, APEX, FLEX, & Mercury Devices Data 
Sheet

■ MasterBlaster Serial/USB Communications Cable Data Sheet
■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ BitBlaster Serial Download Cable Data Sheet

ACEX 1K devices are supported by Altera development systems, which 
are integrated packages that offer schematic, text (including AHDL), and 
waveform design entry, compilation and logic synthesis, full simulation 
and worst-case timing analysis, and device configuration. The software 
provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other 
interfaces for additional design entry and simulation support from other 
industry-standard PC- and UNIX workstation-based EDA tools. 

The Altera software works easily with common gate array EDA tools for 
synthesis and simulation. For example, the Altera software can generate 
Verilog HDL files for simulation with tools such as Cadence Verilog-XL. 
Additionally, the Altera software contains EDA libraries that use device-
specific features such as carry chains, which are used for fast counter and 
arithmetic functions. For instance, the Synopsys Design Compiler library 
supplied with the Altera development system includes DesignWare 
functions that are optimized for the ACEX 1K device architecture. 

The Altera development systems run on Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800 workstations.

f For more information, see the MAX+PLUS II Programmable Logic 
Development System & Software Data Sheet and the Quartus Programmable 
Logic Development System & Software Data Sheet.

Functional 
Description

Each ACEX 1K device contains an enhanced embedded array that 
implements memory and specialized logic functions, and a logic array 
that implements general logic.

The embedded array consists of a series of EABs. When implementing 
memory functions, each EAB provides 4,096 bits, which can be used to 
create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. 
When implementing logic, each EAB can contribute 100 to 600 gates 
towards complex logic functions such as multipliers, microcontrollers, 
state machines, and DSP functions. EABs can be used independently, or 
multiple EABs can be combined to implement larger functions.
6 Altera Corporation
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Each LAB provides four control signals with programmable inversion 
that can be used in all eight LEs. Two of these signals can be used as clocks, 
the other two can be used for clear/preset control. The LAB clocks can be 
driven by the dedicated clock input pins, global signals, I/O signals, or 
internal signals via the LAB local interconnect. The LAB preset and clear 
control signals can be driven by the global signals, I/O signals, or internal 
signals via the LAB local interconnect. The global control signals are 
typically used for global clock, clear, or preset signals because they 
provide asynchronous control with very low skew across the device. If 
logic is required on a control signal, it can be generated in one or more LEs 
in any LAB and driven into the local interconnect of the target LAB. In 
addition, the global control signals can be generated from LE outputs.

Logic Element

The LE, the smallest unit of logic in the ACEX 1K architecture, has a 
compact size that provides efficient logic utilization. Each LE contains a 
4-input LUT, which is a function generator that can quickly compute any 
function of four variables. In addition, each LE contains a programmable 
flipflop with a synchronous clock enable, a carry chain, and a cascade 
chain. Each LE drives both the local and the FastTrack Interconnect 
routing structure. Figure 8 shows the ACEX 1K LE.
Altera Corporation  15
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Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
ACEX 1K architecture to efficiently implement high-speed counters, 
adders, and comparators of arbitrary width. Carry chain logic can be 
created automatically by the compiler during design processing, or 
manually by the designer during design entry. Parameterized functions, 
such as LPM and DesignWare functions, automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EP1K50 device, the carry chain stops at the eighteenth LAB, and a 
new carry chain begins at the nineteenth LAB.

Figure 9 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for an accumulator function. Another portion of the LUT and the carry 
chain logic generates the carry-out signal, which is routed directly to the 
carry-in signal of the next-higher-order bit. The final carry-out signal is 
routed to an LE, where it can be used as a general-purpose signal. 
Altera Corporation  17
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Figure 11. ACEX 1K LE Operating Modes
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a 4-input LUT. The compiler automatically selects the carry-
in or the DATA3 signal as one of the inputs to the LUT. The LUT output 
can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect routing 
structure at the same time. 

The LUT and the register in the LE can be used independently (register 
packing). To support register packing, the LE has two outputs; one drives 
the local interconnect, and the other drives the FastTrack Interconnect 
routing structure. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a 3-input function can be computed in the LUT, and a 
fourth independent signal can be registered. Alternatively, a 4-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect routing structure while the LUT drives 
the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers two 3-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a 3-input function; the other generates a carry output. As shown 
in Figure 11, the first LUT uses the carry-in signal and two data inputs 
from the LAB local interconnect to generate a combinatorial or registered 
output. For example, in an adder, this output is the sum of three signals: 
a, b, and carry-in. The second LUT uses the same three signals to generate 
a carry-out signal, thereby creating a carry chain. The arithmetic mode 
also supports simultaneous use of the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, 
synchronous up/down control, and data loading options. These control 
signals are generated by the data inputs from the LAB local interconnect, 
the carry-in signal, and output feedback from the programmable register. 
Two 3-input LUTs are used; one generates the counter data, and the other 
generates the fast carry bit. A 2-to-1 multiplexer provides synchronous 
loading. Data can also be loaded asynchronously with the clear and preset 
register control signals without using the LUT resources.
22 Altera Corporation
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Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this 
mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with 
an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 
asynchronously loads a one into the register. Alternatively, the Altera 
software can provide preset control by using the clear and inverting the 
register’s input and output. Inversion control is available for the inputs to 
both LEs and IOEs. Therefore, if a register is preset by only one of the two 
LABCTRL signals, the DATA3 input is not needed and can be used for one 
of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls 
the preset, and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that 
asserting LABCTRL1 asynchronously loads a one into the register, 
effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear. LABCTRL2 implements the clear by 
controlling the register clear; LABCTRL2 does not have to feed the preset 
circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the 
Altera software provides preset control by using the clear and inverting 
the input and output of the register. Asserting LABCTRL2 presets the 
register, while asserting LABCTRL1 loads the register. The Altera software 
inverts the signal that drives DATA3 to account for the inversion of the 
register’s output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear.
Altera Corporation  25
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For improved routing, the row interconnect consists of a combination of 
full-length and half-length channels. The full-length channels connect to 
all LABs in a row; the half-length channels connect to the LABs in half of 
the row. The EAB can be driven by the half-length channels in the left half 
of the row and by the full-length channels. The EAB drives out to the full-
length channels. In addition to providing a predictable, row-wide 
interconnect, this architecture provides increased routing resources. Two 
neighboring LABs can be connected using a half-row channel, thereby 
saving the other half of the channel for the other half of the row.

Table 6 summarizes the FastTrack Interconnect routing structure 
resources available in each ACEX 1K device.

In addition to general-purpose I/O pins, ACEX 1K devices have six 
dedicated input pins that provide low-skew signal distribution across the 
device. These six inputs can be used for global clock, clear, preset, and 
peripheral output-enable and clock-enable control signals. These signals 
are available as control signals for all LABs and IOEs in the device. The 
dedicated inputs can also be used as general-purpose data inputs because 
they can feed the local interconnect of each LAB in the device. 

Figure 14 shows the interconnection of adjacent LABs and EABs, with 
row, column, and local interconnects, as well as the associated cascade 
and carry chains. Each LAB is labeled according to its location: a letter 
represents the row and a number represents the column. For example, 
LAB B3 is in row B, column 3.

Table 6. ACEX 1K FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per
Column

EP1K10 3 144 24 24

EP1K30 6 216 36 24

EP1K50 10 216 36 24

EP1K100 12 312 52 24
28 Altera Corporation
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Figure 15. ACEX 1K Bidirectional I/O Registers 
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When dedicated inputs drive non-inverted and inverted peripheral clears, 
clock enables, and output enables, two signals on the peripheral control 
bus will be used.

Table 7 lists the sources for each peripheral control signal and shows how 
the output enable, clock enable, clock, and clear signals share 
12 peripheral control signals. Table 7 also shows the rows that can drive 
global signals.

Signals on the peripheral control bus can also drive the four global signals, 
referred to as GLOBAL0 through GLOBAL3. An internally generated signal 
can drive a global signal, providing the same low-skew, low-delay 
characteristics as a signal driven by an input pin. An LE drives the global 
signal by driving a row line that drives the peripheral bus which then 
drives the global signal. This feature is ideal for internally generated clear 
or clock signals with high fan-out. However, internally driven global 
signals offer no advantage over the general-purpose interconnect for 
routing data signals.

The chip-wide output enable pin is an active-high pin that can be used to 
tri-state all pins on the device. This option can be set in the Altera 
software. The built-in I/O pin pull-up resistors (which are active during 
configuration) are active when the chip-wide output enable pin is 
asserted. The registers in the IOE can also be reset by the chip-wide reset 
pin.

Table 7. Peripheral Bus Sources for ACEX Devices

Peripheral Control Signal EP1K10 EP1K30 EP1K50 EP1K100

OE0 Row A Row A Row A Row A

OE1 Row A Row B Row B Row C

OE2 Row B Row C Row D Row E

OE3 Row B Row D Row F Row L

OE4 Row C Row E Row H Row I

OE5 Row C Row F Row J Row K

CLKENA0/CLK0/GLOBAL0 Row A Row A Row A Row F

CLKENA1/OE6/GLOBAL1 Row A Row B Row C Row D

CLKENA2/CLR0 Row B Row C Row E Row B

CLKENA3/OE7/GLOBAL2 Row B Row D Row G Row H

CLKENA4/CLR1 Row C Row E Row I Row J

CLKENA5/CLK1/GLOBAL3 Row C Row F Row J Row G
32 Altera Corporation
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Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row 
channels. The signal is accessible by all LEs within that row. When an IOE 
is used as an output, the signal is driven by a multiplexer that selects a 
signal from the row channels. Up to eight IOEs connect to each side of 
each row channel (see Figure 16).

Figure 16. ACEX 1K Row-to-IOE Connections  Note (1)

Note:
(1) The values for m and n are shown in Table 8.

Table 8 lists the ACEX 1K row-to-IOE interconnect resources.

n

n

Each IOE is driven by an
m-to-1 multiplexer.

Each IOE can drive two
row channels.
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n

Table 8. ACEX 1K Row-to-IOE Interconnect Resources

Device Channels per Row (n) Row Channels per Pin (m)

EP1K10 144 18

EP1K30 216 27

EP1K50 216 27

EP1K100 312 39
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SameFrame 
Pin-Outs

ACEX 1K devices support the SameFrame pin-out feature for 
FineLine BGA packages. The SameFrame pin-out feature is the 
arrangement of balls on FineLine BGA packages such that the lower-ball-
count packages form a subset of the higher-ball-count packages. 
SameFrame pin-outs provide the flexibility to migrate not only from 
device to device within the same package, but also from one package to 
another. A given printed circuit board (PCB) layout can support multiple 
device density/package combinations. For example, a single board layout 
can support a range of devices from an EP1K10 device in a 256-pin 
FineLine BGA package to an EP1K100 device in a 484-pin FineLine BGA 
package.

The Altera software provides support to design PCBs with SameFrame 
pin-out devices. Devices can be defined for present and future use. The 
Altera software generates pin-outs describing how to lay out a board that 
takes advantage of this migration. Figure 18 shows an example of 
SameFrame pin-out.

Figure 18. SameFrame Pin-Out Example

Table 10 shows the ACEX 1K device/package combinations that support 
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PCI Pull-Up Clamping Diode Option

ACEX 1K devices have a pull-up clamping diode on every I/O, dedicated 
input, and dedicated clock pin. PCI clamping diodes clamp the signal to 
the VCCIO value and are required for 3.3-V PCI compliance. Clamping 
diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When VCCIO is 
3.3 V, a pin that has the clamping diode option turned on can be driven by 
a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When VCCIO is 2.5 V, a pin 
that has the clamping diode option turned on can be driven by a 2.5-V 
signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can 
be activated for a subset of pins, which allows a device to bridge between 
a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can 
be configured for low-noise or high-speed performance. A slower slew 
rate reduces system noise and adds a maximum delay of 4.3 ns. The fast 
slew rate should be used for speed-critical outputs in systems that are 
adequately protected against noise. Designers can specify the slew rate 
pin-by-pin or assign a default slew rate to all pins on a device-wide basis. 
The slow slew rate setting affects only the falling edge of the output.

Open-Drain Output Option

ACEX 1K devices provide an optional open-drain output (electrically 
equivalent to open-collector output) for each I/O pin. This open-drain 
output enables the device to provide system-level control signals (e.g., 
interrupt and write enable signals) that can be asserted by any of several 
devices. It can also provide an additional wired-OR plane. 

MultiVolt I/O Interface 

The ACEX 1K device architecture supports the MultiVolt I/O interface 
feature, which allows ACEX 1K devices in all packages to interface with 
systems of differing supply voltages. These devices have one set of VCC 
pins for internal operation and input buffers (VCCINT), and another set for 
I/O output drivers (VCCIO). 
40 Altera Corporation
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents 

less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial- and extended-temperature-range devices.
(4) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are 

powered.
(6) Typical values are for TA = 25° C, VCCINT = 2.5 V, and VCCIO = 2.5 V or 3.3 V.
(7) These values are specified under the ACEX 1K Recommended Operating Conditions shown in Table 19 on page 46.
(8) The ACEX 1K input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS 

signals. Additionally, the input buffers are 3.3-V PCI compliant when VCCIO and VCCINT meet the relationship 
shown in Figure 22.

(9) The IOH parameter refers to high-level TTL, PCI, or CMOS output current.
(10) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(11) This value is specified for normal device operation. The value may vary during power-up.
(12) This parameter applies to -1 speed grade commercial temperature devices and -2 speed grade industrial and 

extended temperature devices.
(13) Pin pull-up resistance values will be lower if the pin is driven higher than VCCIO by an external source.
(14) Capacitance is sample-tested only.

Table 21.  ACEX 1K Device Capacitance Note (14)

Symbol Parameter Conditions Min Max Unit

CIN Input capacitance VIN = 0 V, f = 1.0 MHz 10 pF

CINCLK Input capacitance on 
dedicated clock pin

VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 10 pF
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Figure 30. EAB Synchronous Timing Waveforms

Tables 22 through 26 describe the ACEX 1K device internal timing 
parameters. 
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Table 22. LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol Parameter Conditions

tLUT LUT delay for data-in

tCLUT LUT delay for carry-in

tRLUT LUT delay for LE register feedback

tPACKED Data-in to packed register delay

tEN LE register enable delay

tCICO Carry-in to carry-out delay

tCGEN Data-in to carry-out delay

tCGENR LE register feedback to carry-out delay
54 Altera Corporation



ACEX 1K Programmable Logic Device Family Data Sheet

D
evelopm

ent

13

Tools
Table 39. EP1K30 Device EAB Internal Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABDATA1 1.7 2.0 2.3 ns

tEABDATA1 0.6 0.7 0.8 ns

tEABWE1 1.1 1.3 1.4 ns

tEABWE2 0.4 0.4 0.5 ns

tEABRE1 0.8 0.9 1.0 ns

tEABRE2 0.4 0.4 0.5 ns

tEABCLK 0.0 0.0  0.0 ns

tEABCO 0.3 0.3 0.4 ns

tEABBYPASS 0.5 0.6 0.7 ns

tEABSU 0.9 1.0 1.2 ns

tEABH 0.4 0.4 0.5 ns

tEABCLR 0.3 0.3 0.3 ns

tAA 3.2 3.8 4.4 ns

tWP 2.5 2.9 3.3 ns

tRP 0.9 1.1 1.2 ns

tWDSU 0.9 1.0 1.1 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.7 2.0 2.3 ns

tWAH 1.8 2.1 2.4 ns

tRASU 3.1 3.7 4.2 ns

tRAH 0.2 0.2 0.2 ns

tWO 2.5 2.9 3.3 ns

tDD 2.5 2.9 3.3 ns

tEABOUT 0.5 0.6 0.7 ns

tEABCH 1.5 2.0 2.3 ns

tEABCL 2.5 2.9 3.3 ns
Altera Corporation  67
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Table 40. EP1K30 Device EAB Internal Timing Macroparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABAA 6.4 7.6 8.8 ns

tEABRCOMB 6.4 7.6 8.8 ns

tEABRCREG 4.4 5.1 6.0 ns

tEABWP 2.5 2.9 3.3 ns

tEABWCOMB 6.0 7.0 8.0 ns

tEABWCREG 6.8 7.8 9.0 ns

tEABDD 5.7 6.7 7.7 ns

tEABDATACO 0.8 0.9 1.1 ns

tEABDATASU 1.5 1.7 2.0 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 1.3 1.4 1.7 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.5 1.7 2.0 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.3 ns

tEABWAH 0.5 0.5 0.4 ns

tEABWO 5.1 6.0 6.8 ns
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tCO 0.6 0.6 0.7 ns

tCOMB 0.3 0.4 0.5 ns

tSU 0.5 0.6 0.7 ns

tH 0.5 0.6 0.8 ns

tPRE 0.4 0.5 0.7 ns

tCLR 0.8 1.0 1.2 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

Table 45. EP1K50 Device IOE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tIOD 1.3 1.3 1.9 ns

tIOC 0.3 0.4 0.4 ns

tIOCO 1.7 2.1 2.6 ns

tIOCOMB 0.5 0.6 0.8 ns

tIOSU 0.8 1.0 1.3 ns

tIOH 0.4 0.5 0.6 ns

tIOCLR 0.2 0.2 0.4 ns

tOD1 1.2 1.2 1.9 ns

tOD2 0.7 0.8 1.7 ns

tOD3 2.7 3.0 4.3 ns

tXZ 4.7 5.7 7.5 ns

tZX1 4.7 5.7 7.5 ns

tZX2 4.2 5.3 7.3 ns

tZX3 6.2 7.5 9.9 ns

tINREG 3.5 4.2 5.6 ns

tIOFD 1.1 1.3 1.8 ns

tINCOMB 1.1 1.3 1.8 ns

Table 44. EP1K50 Device LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max
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Table 47. EP1K50 Device EAB Internal Timing Macroparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABAA 3.7 5.2 7.0 ns

tEABRCCOMB 3.7 5.2 7.0 ns

tEABRCREG 3.5 4.9 6.6 ns

tEABWP 2.0 2.8 3.8 ns

tEABWCCOMB 4.5 6.3 8.6 ns

tEABWCREG 5.6 7.8 10.6 ns

tEABDD 3.8 5.3 7.2 ns

tEABDATACO 0.8 1.1 1.5 ns

tEABDATASU 1.1 1.6 2.1 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 0.7 1.0 1.3 ns

tEABWEH 0.4 0.6 0.8 ns

tEABWDSU 1.2 1.7 2.2 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 1.6 2.3 3.0 ns

tEABWAH 0.9 1.2 1.8 ns

tEABWO 3.1 4.3 5.9 ns
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Notes to tables:
(1) All timing parameters are described in Tables 22 through 29.
(2) This parameter is measured without use of the ClockLock or ClockBoost circuits.
(3) This parameter is measured with use of the ClockLock or ClockBoost circuits

Table 50. EP1K50 External Bidirectional Timing Parameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSUBIDIR (2) 2.7 3.2 4.3 ns

tINHBIDIR (2) 0.0 0.0 0.0 ns

tINSUBIDIR (3) 3.7 4.2 – ns

tINHBIDIR (3) 0.0 0.0 – ns

tOUTCOBIDIR (2) 2.0 4.5 2.0 5.2 2.0 7.3 ns

tXZBIDIR (2) 6.8 7.8 10.1 ns

tZXBIDIR (2) 6.8 7.8 10.1 ns

tOUTCOBIDIR (3) 0.5 3.5 0.5 4.2 – –

tXZBIDIR (3) 6.8 8.4 – ns

tZXBIDIR (3) 6.8 8.4 – ns
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Table 52. EP1K100 Device IOE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tIOD 1.7 2.0 2.6 ns

tIOC 0.0 0.0 0.0 ns

tIOCO 1.4 1.6 2.1 ns

tIOCOMB 0.5 0.7 0.9 ns

tIOSU 0.8 1.0 1.3 ns

tIOH 0.7 0.9 1.2 ns

tIOCLR 0.5 0.7 0.9 ns

tOD1 3.0 4.2 5.6 ns

tOD2 3.0 4.2 5.6 ns

tOD3 4.0 5.5 7.3 ns

tXZ 3.5 4.6 6.1 ns

tZX1 3.5 4.6 6.1 ns

tZX2 3.5 4.6 6.1 ns

tZX3 4.5 5.9 7.8 ns

tINREG 2.0 2.6 3.5 ns

tIOFD 0.5 0.8 1.2 ns

tINCOMB 0.5 0.8 1.2 ns
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