

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	360
Number of Logic Elements/Cells	2880
Total RAM Bits	40960
Number of I/O	147
Number of Gates	199000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep1k50qc208-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

...and More Features

- -1 speed grade devices are compliant with *PCI Local Bus Specification, Revision 2.2* for 5.0-V operation
- Built-in Joint Test Action Group (JTAG) boundary-scan test (BST) circuitry compliant with IEEE Std. 1149.1-1990, available without consuming additional device logic.
- Operate with a 2.5-V internal supply voltage
- In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port
- ClockLock™ and ClockBoost™ options for reduced clock delay, clock skew, and clock multiplication
- Built-in, low-skew clock distribution trees
- 100% functional testing of all devices; test vectors or scan chains are not required
- Pull-up on I/O pins before and during configuration

■ Flexible interconnect

- FastTrack® Interconnect continuous routing structure for fast, predictable interconnect delays
- Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
- Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
- Tri-state emulation that implements internal tri-state buses
- Up to six global clock signals and four global clear signals

Powerful I/O pins

- Individual tri-state output enable control for each pin
- Open-drain option on each I/O pin
- Programmable output slew-rate control to reduce switching noise
- Clamp to V_{CCIO} user-selectable on a pin-by-pin basis
- Supports hot-socketing

- Software design support and automatic place-and-route provided by Altera development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations
- Flexible package options are available in 100 to 484 pins, including the innovative FineLine BGATM packages (see Tables 2 and 3)
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), DesignWare components, Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic

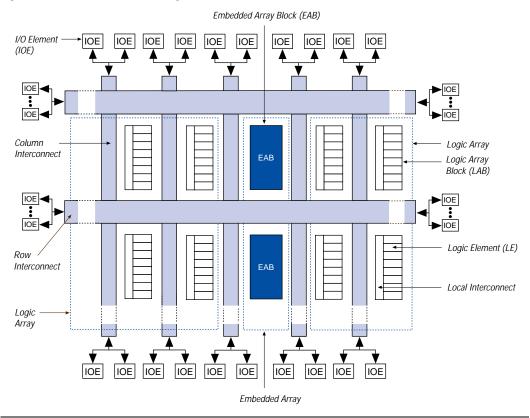
Table 2. ACEX	1K Package Option	ns & I/O Pin Count	Notes (1), (2)		
Device	100-Pin TQFP	144-Pin TQFP	208-Pin PQFP	256-Pin FineLine BGA	484-Pin FineLine BGA
EP1K10	66	92	120	136	136 (3)
EP1K30		102	147	171	171 (3)
EP1K50		102	147	186	249
EP1K100			147	186	333

Notes:

- ACEX 1K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), and FineLine BGA packages.
- (2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When planning device migration, use the I/O pins that are common to all devices.
- (3) This option is supported with a 256-pin FineLine BGA package. By using SameFrameTM pin migration, all FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin and 484-pin FineLine BGA packages.

Table 3. ACEX 1K F	Package Sizes				
Device	100-Pin TQFP	144-Pin TQFP	208-Pin PQFP	256-Pin FineLine BGA	484-Pin FineLine BGA
Pitch (mm)	0.50	0.50	0.50	1.0	1.0
Area (mm²)	256	484	936	289	529
$\begin{array}{c} \text{Length} \times \text{width} \\ \text{(mm} \times \text{mm)} \end{array}$	16×16	22 × 22	30.6 × 30.6	17 × 17	23 × 23

Table 5 shows ACEX 1K device performance for more complex designs. These designs are available as Altera MegaCore $^{\rm TM}$ functions.


Table 5. ACEX 1K Device Performance for Compl	ex Design	s			
Application	LEs		Perform	ance	
	Used		Speed Grade	!	Units
	·	-1	-2	-3	
16-bit, 8-tap parallel finite impulse response (FIR) filter	597	192	156	116	MSPS
8-bit, 512-point Fast Fourier transform (FFT)	1,854	23.4	28.7	38.9	μs
function		113	92	68	MHz
a16450 universal asynchronous receiver/transmitter (UART)	342	36	28	20.5	MHz

Each ACEX 1K device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and data-transformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device.

ACEX 1K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers EPC16, EPC2, EPC1, and EPC1441 configuration devices, which configure ACEX 1K devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera MasterBlaster $^{\text{TM}}$, ByteBlasterMV $^{\text{TM}}$, or BitBlaster $^{\text{TM}}$ download cables. After an ACEX 1K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 40 ms, real-time changes can be made during system operation.

ACEX 1K devices contain an interface that permits microprocessors to configure ACEX 1K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat an ACEX 1K device as memory and configure it by writing to a virtual memory location, simplifying device reconfiguration.

Figure 1. ACEX 1K Device Block Diagram

ACEX 1K devices provide six dedicated inputs that drive the flipflops' control inputs and ensure the efficient distribution of high-speed, low-skew (less than 1.0 ns) control signals. These signals use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect routing structure. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device.

Embedded Array Block

The EAB is a flexible block of RAM, with registers on the input and output ports, that is used to implement common gate array megafunctions. Because it is large and flexible, the EAB is suitable for functions such as multipliers, vector scalars, and error correction circuits. These functions can be combined in applications such as digital filters and microcontrollers.

Logic functions are implemented by programming the EAB with a read-only pattern during configuration, thereby creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of EABs. The large capacity of EABs enables designers to implement complex functions in a single logic level without the routing delays associated with linked LEs or field-programmable gate array (FPGA) RAM blocks. For example, a single EAB can implement any function with 8 inputs and 16 outputs. Parameterized functions, such as LPM functions, can take advantage of the EAB automatically.

The ACEX 1K enhanced EAB supports dual-port RAM. The dual-port structure is ideal for FIFO buffers with one or two clocks. The ACEX 1K EAB can also support up to 16-bit-wide RAM blocks. The ACEX 1K EAB can act in dual-port or single-port mode. When in dual-port mode, separate clocks may be used for EAB read and write sections, allowing the EAB to be written and read at different rates. It also has separate synchronous clock enable signals for the EAB read and write sections, which allow independent control of these sections.

The EAB can also be used for bidirectional, dual-port memory applications where two ports read or write simultaneously. To implement this type of dual-port memory, two EABs are used to support two simultaneous reads or writes.

Alternatively, one clock and clock enable can be used to control the input registers of the EAB, while a different clock and clock enable control the output registers (see Figure 2).

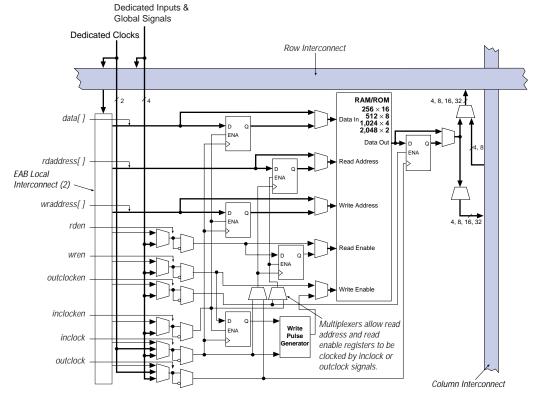
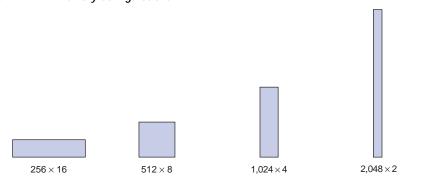


Figure 2. ACEX 1K Device in Dual-Port RAM Mode Note (1)

Notes:


- (1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
- (2) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB local interconnect channels.

The EAB can use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3. The ACEX 1K EAB can also be used in a single-port mode (see Figure 4).

EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the write enable signal. In contrast, the EAB's synchronous RAM generates its own write enable signal and is self-timed with respect to the input or write clock. A circuit using the EAB's self-timed RAM must only meet the setup and hold time specifications of the global clock.

When used as RAM, each EAB can be configured in any of the following sizes: 256×16 ; 512×8 ; $1,024 \times 4$; or $2,048 \times 2$. Figure 5 shows the ACEX 1K EAB memory configurations.

Figure 5. ACEX 1K EAB Memory Configurations

Larger blocks of RAM are created by combining multiple EABs. For example, two 256×16 RAM blocks can be combined to form a 256×32 block, and two 512×8 RAM blocks can be combined to form a 512×16 block. Figure 6 shows examples of multiple EAB combination.

Figure 6. Examples of Combining ACEX 1K EABs

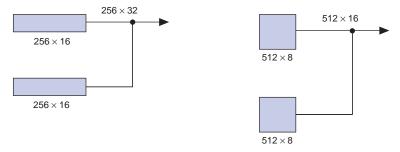
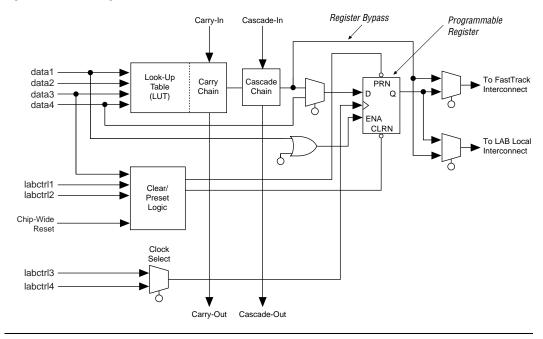



Figure 8. ACEX 1K Logic Element

The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock, clear, and preset control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the LUT's output drives the LE's output.

The LE has two outputs that drive the interconnect: one drives the local interconnect, and the other drives either the row or column FastTrack Interconnect routing structure. The two outputs can be controlled independently. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, can improve LE utilization because the register and the LUT can be used for unrelated functions.

The ACEX 1K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. The carry chain supports high-speed counters and adders, and the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in a LAB and all LABs in the same row. Intensive use of carry and cascade chains can reduce routing flexibility. Therefore, the use of these chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the ACEX 1K architecture to efficiently implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the compiler during design processing, or manually by the designer during design entry. Parameterized functions, such as LPM and DesignWare functions, automatically take advantage of carry chains.

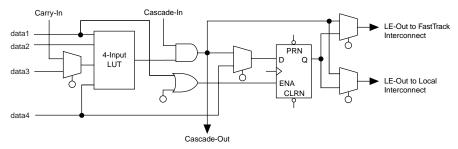
Carry chains longer than eight LEs are automatically implemented by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the first LE of the third LAB in the row. The carry chain does not cross the EAB at the middle of the row. For instance, in the EP1K50 device, the carry chain stops at the eighteenth LAB, and a new carry chain begins at the nineteenth LAB.

Figure 9 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal.

LE Operating Modes

The ACEX 1K LE can operate in the following four modes:

- Normal mode
- Arithmetic mode
- Up/down counter mode
- Clearable counter mode


Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs.

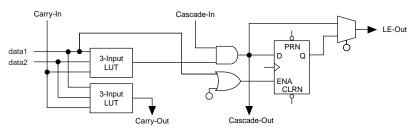
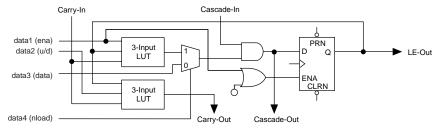

Figure 11 shows the ACEX 1K LE operating modes.

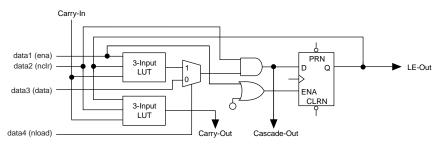
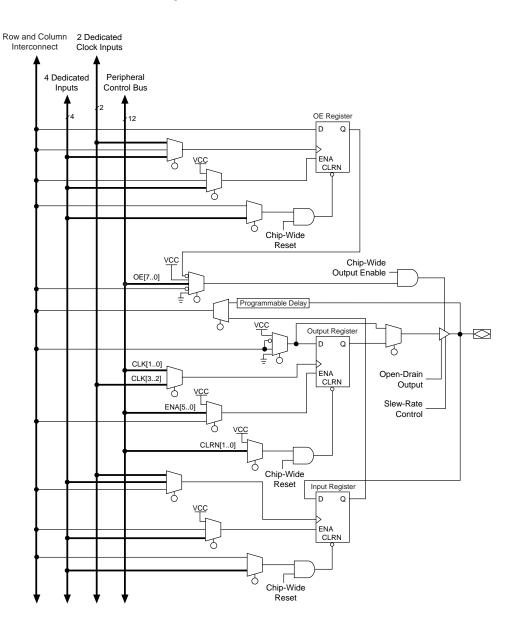
Figure 11. ACEX 1K LE Operating Modes

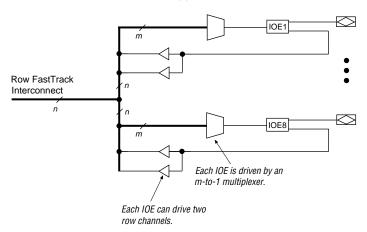

Normal Mode

Arithmetic Mode

Up/Down Counter Mode

Clearable Counter Mode


Figure 15. ACEX 1K Bidirectional I/O Registers

Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row channels. The signal is accessible by all LEs within that row. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the row channels. Up to eight IOEs connect to each side of each row channel (see Figure 16).

Figure 16. ACEX 1K Row-to-IOE Connections Note (1)

Note:

(1) The values for m and n are shown in Table 8.

Table 8 lists the ACEX 1K row-to-IOE interconnect resources.

Table 8. ACEX 1K Ro	Table 8. ACEX 1K Row-to-IOE Interconnect Resources							
Device	Channels per Row (n)	Row Channels per Pin (m)						
EP1K10	144	18						
EP1K30	216	27						
EP1K50	216	27						
EP1K100	312	39						

Figure 26. ACEX 1K Device IOE Timing Model

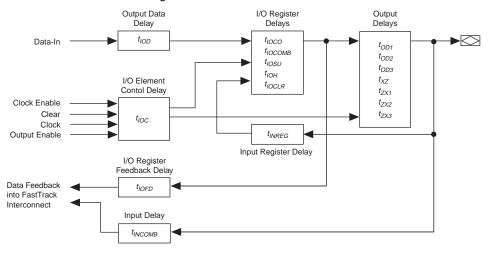
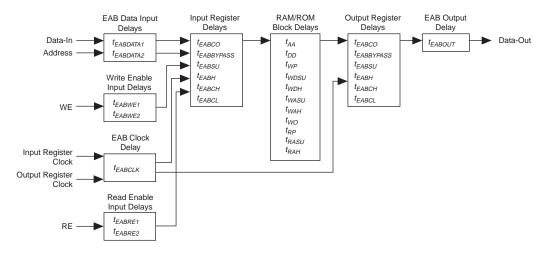



Figure 27. ACEX 1K Device EAB Timing Model

Symbol	Parameter	Conditions
t _{DIN2IOE}	Delay from dedicated input pin to IOE control input	(7)
t _{DIN2LE}	Delay from dedicated input pin to LE or EAB control input	(7)
t _{DIN2DATA}	Delay from dedicated input or clock to LE or EAB data	(7)
t _{DCLK2IOE}	Delay from dedicated clock pin to IOE clock	(7)
t _{DCLK2LE}	Delay from dedicated clock pin to LE or EAB clock	(7)
t _{SAMELAB}	Routing delay for an LE driving another LE in the same LAB	(7)
t _{SAMEROW}	Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the same row	(7)
t _{SAME} COLUMN	Routing delay for an LE driving an IOE in the same column	(7)
t _{DIFFROW}	Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different row	(7)
t _{TWOROWS}	Routing delay for a row IOE or EAB driving an LE or EAB in a different row	(7)
t _{LEPERIPH}	Routing delay for an LE driving a control signal of an IOE via the peripheral control bus	(7)
t _{LABCARRY}	Routing delay for the carry-out signal of an LE driving the carry-in signal of a different LE in a different LAB	
t _{LABCASC}	Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB	

Notes to tables:

- Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be measured explicitly.
- Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial and extended use in ACEX 1K devices
- Operating conditions: $V_{CCIO} = 2.5 \text{ V} \pm 5\%$ for commercial or industrial and extended use in ACEX 1K devices. Operating conditions: $V_{CCIO} = 2.5 \text{ V} \text{ or } 3.3 \text{ V}$. (3)
- (4)
- Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered.
- EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; these parameters are calculated by summing selected microparameters.
- These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance.

Symbol			Speed	l Grade			Unit
	-1		-	-2		3	
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (2)	2.2		2.3		3.2		ns
t _{INHBIDIR} (2)	0.0		0.0		0.0		ns
t _{OUTCOBIDIR} (2)	2.0	6.6	2.0	7.8	2.0	9.6	ns
t _{XZBIDIR} (2)		8.8		11.2		14.0	ns
t _{ZXBIDIR} (2)		8.8		11.2		14.0	ns
t _{INSUBIDIR} (4)	3.1		3.3		-	-	
t _{INHBIDIR} (4)	0.0		0.0		-		
toutcobidir (4)	0.5	5.1	0.5	6.4	-	-	ns
t _{XZBIDIR} (4)		7.3		9.2		-	ns
t _{ZXBIDIR} (4)		7.3		9.2		-	ns

Notes to tables:

- (1) All timing parameters are described in Tables 22 through 29 in this data sheet.
- (2) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
- (3) These parameters are specified by characterization.
- (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 37 through 43 show EP1K30 device internal and external timing parameters.

Symbol			Speed	Grade			Unit
	-	-1		-2		3	
	Min	Max	Min	Max	Min	Max	
t_{LUT}		0.7		0.8		1.1	ns
t _{CLUT}		0.5		0.6		0.8	ns
t _{RLUT}		0.6		0.7		1.0	ns
t _{PACKED}		0.3		0.4		0.5	ns
t_{EN}		0.6		0.8		1.0	ns
t _{CICO}		0.1		0.1		0.2	ns
t _{CGEN}		0.4		0.5		0.7	ns
t _{CGENR}		0.1		0.1		0.2	ns
t _{CASC}		0.6		0.8		1.0	ns
t _C		0.0		0.0		0.0	ns
t _{co}		0.3		0.4		0.5	ns

Table 37. EP1K3	0 Device LE 1	Timing Micr	oparameters	(Part 2 of .	2) Note	(1)	
Symbol		Unit					
	_	1	-	2	-	-3	
	Min	Max	Min	Max	Min	Max	
t _{COMB}		0.4		0.4		0.6	ns
t_{SU}	0.4		0.6		0.6		ns
t _H	0.7		1.0		1.3		ns
t _{PRE}		0.8		0.9		1.2	ns
t_{CLR}		0.8		0.9		1.2	ns
t _{CH}	2.0		2.5		2.5		ns
t_{CL}	2.0		2.5		2.5		ns

Symbol	Speed Grade								
	-1		-2		-3				
	Min	Max	Min	Max	Min	Max			
t _{IOD}		2.4		2.8		3.8	ns		
t _{ioc}		0.3		0.4		0.5	ns		
t _{IOCO}		1.0		1.1		1.6	ns		
t _{IOCOMB}		0.0		0.0		0.0	ns		
t _{iosu}	1.2		1.4		1.9		ns		
t _{IOH}	0.3		0.4		0.5		ns		
t _{IOCLR}		1.0		1.1		1.6	ns		
t _{OD1}		1.9		2.3		3.0	ns		
OD2		1.4		1.8		2.5	ns		
t _{OD3}		4.4		5.2		7.0	ns		
t _{XZ}		2.7		3.1	•	4.3	ns		
t _{ZX1}		2.7		3.1	•	4.3	ns		
t _{ZX2}		2.2		2.6	•	3.8	ns		
tzx3		5.2		6.0		8.3	ns		
INREG		3.4		4.1	•	5.5	ns		
IOFD		0.8		1.3		2.4	ns		
t _{INCOMB}		0.8		1.3		2.4	ns		

Symbol			Speed	Grade			Unit
	-1		-2		-	3	
	Min	Max	Min	Max	Min	Max	
t_{IOD}		1.7		2.0		2.6	ns
t _{IOC}		0.0		0.0		0.0	ns
t _{IOCO}		1.4		1.6		2.1	ns
t _{IOCOMB}		0.5		0.7		0.9	ns
t _{IOSU}	0.8		1.0		1.3		ns
t _{IOH}	0.7		0.9		1.2		ns
t _{IOCLR}		0.5		0.7		0.9	ns
t _{OD1}		3.0		4.2		5.6	ns
t _{OD2}		3.0		4.2		5.6	ns
t _{OD3}		4.0		5.5		7.3	ns
t_{XZ}		3.5		4.6		6.1	ns
t_{ZX1}		3.5		4.6		6.1	ns
t_{ZX2}		3.5		4.6		6.1	ns
t_{ZX3}		4.5		5.9		7.8	ns
t _{INREG}		2.0		2.6		3.5	ns
t _{IOFD}		0.5		0.8		1.2	ns
t _{INCOMB}		0.5		0.8		1.2	ns

Symbol	Speed Grade								
	-1		-2		-3				
	Min	Max	Min	Max	Min	Max			
t _{EABDATA1}		1.5		2.0		2.6	ns		
t _{EABDATA1}		0.0		0.0		0.0	ns		
t _{EABWE1}		1.5		2.0		2.6	ns		
t _{EABWE2}		0.3		0.4		0.5	ns		
t _{EABRE1}		0.3		0.4		0.5	ns		
t _{EABRE2}		0.0		0.0		0.0	ns		
t _{EABCLK}		0.0		0.0		0.0	ns		
t _{EABCO}		0.3		0.4		0.5	ns		
t _{EABBYPASS}		0.1		0.1		0.2	ns		
t _{EABSU}	0.8		1.0		1.4		ns		
t _{EABH}	0.1		0.1		0.2		ns		
t _{EABCLR}	0.3		0.4		0.5		ns		
t_{AA}		4.0		5.1		6.6	ns		
t_{WP}	2.7		3.5		4.7		ns		
t _{RP}	1.0		1.3		1.7		ns		
t _{WDSU}	1.0		1.3		1.7		ns		
t_{WDH}	0.2		0.2		0.3		ns		
t _{WASU}	1.6		2.1		2.8		ns		
t _{WAH}	1.6		2.1		2.8		ns		
t _{RASU}	3.0		3.9		5.2		ns		
t _{RAH}	0.1		0.1		0.2		ns		
t_{WO}		1.5		2.0		2.6	ns		
t_{DD}		1.5		2.0		2.6	ns		
t _{EABOUT}		0.2		0.3		0.3	ns		
t _{EABCH}	1.5		2.0		2.5		ns		
t _{EABCL}	2.7		3.5		4.7		ns		

Symbol	Speed Grade						Unit
	-1		-2		-3		
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.9		7.6		9.9	ns
t _{EABRCOMB}	5.9		7.6		9.9		ns
t _{EABRCREG}	5.1		6.5		8.5		ns
t _{EABWP}	2.7		3.5		4.7		ns
t _{EABWCOMB}	5.9		7.7		10.3		ns
t _{EABWCREG}	5.4		7.0		9.4		ns
t _{EABDD}		3.4		4.5		5.9	ns
t _{EABDATA} CO		0.5		0.7		0.8	ns
t _{EABDATASU}	0.8		1.0		1.4		ns
t _{EABDATAH}	0.1		0.1		0.2		ns
t _{EABWESU}	1.1		1.4		1.9		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.0		1.3		1.7		ns
t _{EABWDH}	0.2		0.2		0.3		ns
t _{EABWASU}	4.1		5.2		6.8		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		3.4		4.5		5.9	ns