Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 360 | | Number of Logic Elements/Cells | 2880 | | Total RAM Bits | 40960 | | Number of I/O | 147 | | Number of Gates | 199000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 208-BFQFP | | Supplier Device Package | 208-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1k50qc208-3n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## ...and More Features - -1 speed grade devices are compliant with *PCI Local Bus Specification, Revision 2.2* for 5.0-V operation - Built-in Joint Test Action Group (JTAG) boundary-scan test (BST) circuitry compliant with IEEE Std. 1149.1-1990, available without consuming additional device logic. - Operate with a 2.5-V internal supply voltage - In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port - ClockLock™ and ClockBoost™ options for reduced clock delay, clock skew, and clock multiplication - Built-in, low-skew clock distribution trees - 100% functional testing of all devices; test vectors or scan chains are not required - Pull-up on I/O pins before and during configuration #### ■ Flexible interconnect - FastTrack® Interconnect continuous routing structure for fast, predictable interconnect delays - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions) - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions) - Tri-state emulation that implements internal tri-state buses - Up to six global clock signals and four global clear signals #### Powerful I/O pins - Individual tri-state output enable control for each pin - Open-drain option on each I/O pin - Programmable output slew-rate control to reduce switching noise - Clamp to V_{CCIO} user-selectable on a pin-by-pin basis - Supports hot-socketing Figure 3. ACEX 1K EAB in Dual-Port RAM Mode Figure 4. ACEX 1K Device in Single-Port RAM Mode #### Note (1) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB local interconnect channels. #### Carry Chain The carry chain provides a very fast (as low as 0.2 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the ACEX 1K architecture to efficiently implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the compiler during design processing, or manually by the designer during design entry. Parameterized functions, such as LPM and DesignWare functions, automatically take advantage of carry chains. Carry chains longer than eight LEs are automatically implemented by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the first LE of the third LAB in the row. The carry chain does not cross the EAB at the middle of the row. For instance, in the EP1K50 device, the carry chain stops at the eighteenth LAB, and a new carry chain begins at the nineteenth LAB. Figure 9 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal. #### LE Operating Modes The ACEX 1K LE can operate in the following four modes: - Normal mode - Arithmetic mode - Up/down counter mode - Clearable counter mode Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance. The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs. Figure 11 shows the ACEX 1K LE operating modes. #### **Clearable Counter Mode** The clearable counter mode is similar to the up/down counter mode, but it supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Two 3-input LUTs are used; one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is AND ed with a synchronous clear signal. #### Internal Tri-State Emulation Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer. #### Clear & Preset Logic Control Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register. During compilation, the compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset. The clear and preset logic is implemented in one of the following six modes chosen during design entry: - Asynchronous clear - Asynchronous preset - Asynchronous clear and preset - Asynchronous load with clear - Asynchronous load with preset - Asynchronous load without clear or preset Figure 13. ACEX 1K LAB Connections to Row & Column Interconnect For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row. Table 6 summarizes the FastTrack Interconnect routing structure resources available in each ACEX 1K device. | Table 6. ACEX 1 | Table 6. ACEX 1K FastTrack Interconnect Resources | | | | | | | | |-----------------|---|---------------------|---------|------------------------|--|--|--|--| | Device | Rows | Channels per
Row | Columns | Channels per
Column | | | | | | EP1K10 | 3 | 144 | 24 | 24 | | | | | | EP1K30 | 6 | 216 | 36 | 24 | | | | | | EP1K50 | 10 | 216 | 36 | 24 | | | | | | EP1K100 | 12 | 312 | 52 | 24 | | | | | In addition to general-purpose I/O pins, ACEX 1K devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output-enable and clock-enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device. Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3. Figure 15. ACEX 1K Bidirectional I/O Registers Figure 20. ACEX 1K JTAG Waveforms Table 17 shows the timing parameters and values for ACEX 1K devices. | Symbol | Parameter | Min | Max | Unit | |-------------------|--|-----|-----|------| | t _{JCP} | TCK clock period | 100 | | ns | | t _{JCH} | TCK clock high time | 50 | | ns | | t _{JCL} | TCK clock low time | 50 | | ns | | t _{JPSU} | JTAG port setup time | 20 | | ns | | t _{JPH} | JTAG port hold time | 45 | | ns | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | t _{JSSU} | Capture register setup time | 20 | | ns | | t _{JSH} | Capture register hold time | 45 | | ns | | t _{JSCO} | Update register clock to output | | 35 | ns | | t _{JSZX} | Update register high impedance to valid output | | 35 | ns | | t _{JSXZ} | Update register valid output to high impedance | | 35 | ns | ### **Generic Testing** Each ACEX 1K device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for ACEX 1K devices are made under conditions equivalent to those shown in Figure 21. Multiple test patterns can be used to configure devices during all stages of the production flow. Figure 21. ACEX 1K AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices or outputs. Numbers without brackets are for 3.3-V devices or outputs. ## Operating Conditions Tables 18 through 21 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V ACEX 1K devices. | Table 1 | 8. ACEX 1K Device Absolute I | Maximum Ratings Note (1) | | | | |--------------------|------------------------------|--|------|------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CCINT} | Supply voltage | With respect to ground (2) | -0.5 | 3.6 | V | | V _{CCIO} | | | -0.5 | 4.6 | V | | V _I | DC input voltage | | -2.0 | 5.75 | V | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | TJ | Junction temperature | PQFP, TQFP, and BGA packages, under bias | | 135 | ° C | | Table 2 | 1. ACEX 1K Device Capacitan | ce Note (14) | | | | |--------------------|--|-------------------------------------|-----|-----|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial- and extended-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V. - (7) These values are specified under the ACEX 1K Recommended Operating Conditions shown in Table 19 on page 46. - (8) The ACEX 1K input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22. - The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current. - (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (11) This value is specified for normal device operation. The value may vary during power-up. - (12) This parameter applies to -1 speed grade commercial temperature devices and -2 speed grade industrial and extended temperature devices. - (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source. - (14) Capacitance is sample-tested only. Figure 24 shows the overall timing model, which maps the possible paths to and from the various elements of the ACEX 1K device. Figure 24. ACEX 1K Device Timing Model Figures 25 through 28 show the delays that correspond to various paths and functions within the LE, IOE, EAB, and bidirectional timing models. Figure 25. ACEX 1K Device LE Timing Model Figure 28. Synchronous Bidirectional Pin External Timing Model Tables 29 and 30 show the asynchronous and synchronous timing waveforms, respectively, for the EAB macroparameters in Table 24. Figure 29. EAB Asynchronous Timing Waveforms #### **EAB Asynchronous Write** | Table 24. EA | B Timing Microparameters Note (1) | | |------------------------|--|------------| | Symbol | Parameter | Conditions | | t _{EABDATA1} | Data or address delay to EAB for combinatorial input | | | t _{EABDATA2} | Data or address delay to EAB for registered input | | | t _{EABWE1} | Write enable delay to EAB for combinatorial input | | | t _{EABWE2} | Write enable delay to EAB for registered input | | | t _{EABRE1} | Read enable delay to EAB for combinatorial input | | | t _{EABRE2} | Read enable delay to EAB for registered input | | | t _{EABCLK} | EAB register clock delay | | | t _{EABCO} | EAB register clock-to-output delay | | | t _{EABBYPASS} | Bypass register delay | | | t _{EABSU} | EAB register setup time before clock | | | t _{EABH} | EAB register hold time after clock | | | t _{EABCLR} | EAB register asynchronous clear time to output delay | | | t_{AA} | Address access delay (including the read enable to output delay) | | | t _{WP} | Write pulse width | | | t _{RP} | Read pulse width | | | t _{WDSU} | Data setup time before falling edge of write pulse | (5) | | t _{WDH} | Data hold time after falling edge of write pulse | (5) | | t _{WASU} | Address setup time before rising edge of write pulse | (5) | | t _{WAH} | Address hold time after falling edge of write pulse | (5) | | t _{RASU} | Address setup time before rising edge of read pulse | | | t _{RAH} | Address hold time after falling edge of read pulse | | | t_{WO} | Write enable to data output valid delay | | | t_{DD} | Data-in to data-out valid delay | | | t _{EABOUT} | Data-out delay | | | t _{EABCH} | Clock high time | | | t _{EABCL} | Clock low time | | | Symbol | | | Speed | Grade | | | Unit | |--------------------------|-----|-----|-------|-------|-----|-----|------| | | - | -1 | | -2 | | 3 | | | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 2.3 | | 2.7 | | 3.6 | ns | | t _{DIN2LE} | | 0.8 | | 1.1 | | 1.4 | ns | | t _{DIN2DATA} | | 1.1 | | 1.4 | | 1.8 | ns | | t _{DCLK2IOE} | | 2.3 | | 2.7 | | 3.6 | ns | | t _{DCLK2LE} | | 0.8 | | 1.1 | | 1.4 | ns | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{SAMEROW} | | 1.8 | | 2.1 | | 2.9 | ns | | t _{SAME} COLUMN | | 0.3 | | 0.4 | | 0.7 | ns | | t _{DIFFROW} | | 2.1 | | 2.5 | | 3.6 | ns | | t _{TWOROWS} | | 3.9 | | 4.6 | | 6.5 | ns | | t _{LEPERIPH} | | 3.3 | | 3.7 | | 4.8 | ns | | t _{LABCARRY} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{LABCASC} | | 0.9 | | 1.0 | | 1.4 | ns | | Table 35. EP1K10 | External Til | ming Param | eters No | te (1) | | | | |-----------------------------|--------------|------------|----------|--------|-----|------|----| | Symbol | | Unit | | | | | | | | - | -1 | | -2 | | 3 | | | | Min | Max | Min | Max | Min | Max | | | t _{DRR} | | 7.5 | | 9.5 | | 12.5 | ns | | t _{INSU} (2), (3) | 2.4 | | 2.7 | | 3.6 | | ns | | t _{INH} (2), (3) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{оитсо} (2), (3) | 2.0 | 6.6 | 2.0 | 7.8 | 2.0 | 9.6 | ns | | t _{INSU} (4), (3) | 1.4 | | 1.7 | | _ | | ns | | t _{INH} (4), (3) | 0.5 | 5.1 | 0.5 | 6.4 | _ | _ | ns | | t _{оитсо} (4), (3) | 0.0 | | 0.0 | | _ | | ns | | t _{PCISU} (3) | 3.0 | | 4.2 | | 6.4 | | ns | | t _{PCIH} (3) | 0.0 | | 0.0 | | _ | | ns | | t _{PCICO} (3) | 2.0 | 6.0 | 2.0 | 7.5 | 2.0 | 10.2 | ns | **ACEX 1K Programmable Logic Device Family Data Sheet** | Symbol | Speed Grade | | | | | | | | |-------------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{EABAA} | | 6.4 | | 7.6 | | 8.8 | ns | | | t _{EABRCOMB} | 6.4 | | 7.6 | | 8.8 | | ns | | | t _{EABRCREG} | 4.4 | | 5.1 | | 6.0 | | ns | | | t _{EABWP} | 2.5 | | 2.9 | | 3.3 | | ns | | | t _{EABWCOMB} | 6.0 | | 7.0 | | 8.0 | | ns | | | t _{EABWCREG} | 6.8 | | 7.8 | | 9.0 | | ns | | | t _{EABDD} | | 5.7 | | 6.7 | | 7.7 | ns | | | t _{EABDATA} CO | | 0.8 | | 0.9 | | 1.1 | ns | | | t _{EABDATASU} | 1.5 | | 1.7 | | 2.0 | | ns | | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWESU} | 1.3 | | 1.4 | | 1.7 | | ns | | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWDSU} | 1.5 | | 1.7 | | 2.0 | | ns | | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWASU} | 3.0 | | 3.6 | | 4.3 | | ns | | | t _{EABWAH} | 0.5 | | 0.5 | | 0.4 | | ns | | | t _{EABWO} | | 5.1 | | 6.0 | | 6.8 | ns | | | Symbol | Speed Grade | | | | | | | | |-------------------------|-------------|-----|-----|-----|------|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{EABAA} | | 3.7 | | 5.2 | | 7.0 | ns | | | t _{EABRCCOMB} | 3.7 | | 5.2 | | 7.0 | | ns | | | t _{EABRCREG} | 3.5 | | 4.9 | | 6.6 | | ns | | | t _{EABWP} | 2.0 | | 2.8 | | 3.8 | | ns | | | t _{EABWCCOMB} | 4.5 | | 6.3 | | 8.6 | | ns | | | t _{EABWCREG} | 5.6 | | 7.8 | | 10.6 | | ns | | | t _{EABDD} | | 3.8 | | 5.3 | | 7.2 | ns | | | t _{EABDATA} CO | | 0.8 | | 1.1 | | 1.5 | ns | | | t _{EABDATASU} | 1.1 | | 1.6 | | 2.1 | | ns | | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWESU} | 0.7 | | 1.0 | | 1.3 | | ns | | | t _{EABWEH} | 0.4 | | 0.6 | | 0.8 | | ns | | | t _{EABWDSU} | 1.2 | | 1.7 | | 2.2 | | ns | | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWASU} | 1.6 | | 2.3 | | 3.0 | | ns | | | t _{EABWAH} | 0.9 | | 1.2 | | 1.8 | | ns | | | t _{EABWO} | | 3.1 | | 4.3 | | 5.9 | ns | | Tables 51 through 57 show EP1K100 device internal and external timing parameters. | Symbol | Speed Grade | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t_{LUT} | | 0.7 | | 1.0 | | 1.5 | ns | | | t _{CLUT} | | 0.5 | | 0.7 | | 0.9 | ns | | | t _{RLUT} | | 0.6 | | 0.8 | | 1.1 | ns | | | t _{PACKED} | | 0.3 | | 0.4 | | 0.5 | ns | | | t _{EN} | | 0.2 | | 0.3 | | 0.3 | ns | | | t _{CICO} | | 0.1 | | 0.1 | | 0.2 | ns | | | t _{CGEN} | | 0.4 | | 0.5 | | 0.7 | ns | | | t _{CGENR} | | 0.1 | | 0.1 | | 0.2 | ns | | | t _{CASC} | | 0.6 | | 0.9 | | 1.2 | ns | | | t_C | | 0.8 | | 1.0 | | 1.4 | ns | | | t_{CO} | | 0.6 | | 0.8 | | 1.1 | ns | | | t _{COMB} | | 0.4 | | 0.5 | | 0.7 | ns | | | t _{SU} | 0.4 | | 0.6 | | 0.7 | | ns | | | t _H | 0.5 | | 0.7 | | 0.9 | | ns | | | t _{PRE} | | 0.8 | | 1.0 | | 1.4 | ns | | | t _{CLR} | | 0.8 | | 1.0 | | 1.4 | ns | | | t _{CH} | 1.5 | | 2.0 | | 2.5 | | ns | | | t_{CL} | 1.5 | | 2.0 | | 2.5 | | ns | | | Symbol | Speed Grade | | | | | | | | |-------------------------|-------------|-----|-----|-----|------|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{EABAA} | | 5.9 | | 7.6 | | 9.9 | ns | | | t _{EABRCOMB} | 5.9 | | 7.6 | | 9.9 | | ns | | | t _{EABRCREG} | 5.1 | | 6.5 | | 8.5 | | ns | | | t _{EABWP} | 2.7 | | 3.5 | | 4.7 | | ns | | | t _{EABWCOMB} | 5.9 | | 7.7 | | 10.3 | | ns | | | t _{EABWCREG} | 5.4 | | 7.0 | | 9.4 | | ns | | | t _{EABDD} | | 3.4 | | 4.5 | | 5.9 | ns | | | t _{EABDATA} CO | | 0.5 | | 0.7 | | 0.8 | ns | | | t _{EABDATASU} | 0.8 | | 1.0 | | 1.4 | | ns | | | t _{EABDATAH} | 0.1 | | 0.1 | | 0.2 | | ns | | | t _{EABWESU} | 1.1 | | 1.4 | | 1.9 | | ns | | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWDSU} | 1.0 | | 1.3 | | 1.7 | | ns | | | t _{EABWDH} | 0.2 | | 0.2 | | 0.3 | | ns | | | t _{EABWASU} | 4.1 | | 5.2 | | 6.8 | | ns | | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWO} | | 3.4 | | 4.5 | | 5.9 | ns | | | Symbol | Speed Grade | | | | | | Unit | |----------------------------|-------------|-----|-----|-----|-----|------|------| | | -1 | | -2 | | -3 | | | | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (3) | 1.7 | | 2.5 | | 3.3 | | ns | | t _{INHBIDIR} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{INSUBIDIR} (4) | 2.0 | | 2.8 | | - | | ns | | t _{INHBIDIR} (4) | 0.0 | | 0.0 | | - | | ns | | toutcobidir (3) | 2.0 | 5.2 | 2.0 | 6.9 | 2.0 | 9.1 | ns | | t _{XZBIDIR} (3) | | 5.6 | | 7.5 | | 10.1 | ns | | t _{ZXBIDIR} (3) | | 5.6 | | 7.5 | | 10.1 | ns | | toutcobidir (4) | 0.5 | 3.0 | 0.5 | 4.6 | - | - | ns | | t _{XZBIDIR} (4) | | 4.6 | | 6.5 | | - | ns | | t _{ZXBIDIR} (4) | | 4.6 | | 6.5 | | _ | ns | #### Notes to tables: - (1) All timing parameters are described in Tables 22 through 29 in this data sheet. - (2) These parameters are specified by characterization. - (3) This parameter is measured without the use of the ClockLock or ClockBoost circuits. - (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits. # Power Consumption The supply power (P) for ACEX 1K devices can be calculated with the following equation: $$P = P_{INT} + P_{IO} = (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO}$$ The $I_{CCACTIVE}$ value depends on the switching frequency and the application logic. This value is calculated based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*. Compared to the rest of the device, the embedded array consumes a negligible amount of power. Therefore, the embedded array can be ignored when calculating supply current.