

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	360
Number of Logic Elements/Cells	2880
Total RAM Bits	40960
Number of I/O	102
Number of Gates	199000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep1k50tc144-1n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

Altera® ACEX 1K devices provide a die-efficient, low-cost architecture by combining look-up table (LUT) architecture with EABs. LUT-based logic provides optimized performance and efficiency for data-path, register intensive, mathematical, or digital signal processing (DSP) designs, while EABs implement RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. These elements make ACEX 1K suitable for complex logic functions and memory functions such as digital signal processing, wide data-path manipulation, data transformation and microcontrollers, as required in high-performance communications applications. Based on reconfigurable CMOS SRAM elements, the ACEX 1K architecture incorporates all features necessary to implement common gate array megafunctions, along with a high pin count to enable an effective interface with system components. The advanced process and the low voltage requirement of the 2.5-V core allow ACEX 1K devices to meet the requirements of low-cost, high-volume applications ranging from DSL modems to low-cost switches.

The ability to reconfigure ACEX 1K devices enables complete testing prior to shipment and allows the designer to focus on simulation and design verification. ACEX 1K device reconfigurability eliminates inventory management for gate array designs and test vector generation for fault coverage.

Table 4 shows ACEX 1K device performance for some common designs. All performance results were obtained with Synopsys DesignWare or LPM functions. Special design techniques are not required to implement the applications; the designer simply infers or instantiates a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file.

Application	Resources Used		Performance			
	LEs	EABs	Speed Grade		Units	
			-1	-2	-3	
16-bit loadable counter	16	0	285	232	185	MHz
16-bit accumulator	16	0	285	232	185	MHz
16-to-1 multiplexer (1)	10	0	3.5	4.5	6.6	ns
16-bit multiplier with 3-stage pipeline(2)	592	0	156	131	93	MHz
256 × 16 RAM read cycle speed (2)	0	1	278	196	143	MHz
256 × 16 RAM write cycle speed (2)	0	1	185	143	111	MHz

Notes:

- This application uses combinatorial inputs and outputs.
- (2) This application uses registered inputs and outputs.

For more information on the configuration of ACEX 1K devices, see the following documents:

- Configuration Devices for ACEX, APEX, FLEX, & Mercury Devices Data Sheet
- MasterBlaster Serial/USB Communications Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- BitBlaster Serial Download Cable Data Sheet

ACEX 1K devices are supported by Altera development systems, which are integrated packages that offer schematic, text (including AHDL), and waveform design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, and device configuration. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX workstation-based EDA tools.

The Altera software works easily with common gate array EDA tools for synthesis and simulation. For example, the Altera software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the Altera software contains EDA libraries that use device-specific features such as carry chains, which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the Altera development system includes DesignWare functions that are optimized for the ACEX 1K device architecture.

The Altera development systems run on Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations.

For more information, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

Functional Description

Each ACEX 1K device contains an enhanced embedded array that implements memory and specialized logic functions, and a logic array that implements general logic.

The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 4,096 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions such as multipliers, microcontrollers, state machines, and DSP functions. EABs can be used independently, or multiple EABs can be combined to implement larger functions.

Figure 3. ACEX 1K EAB in Dual-Port RAM Mode

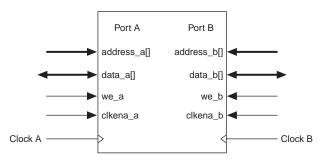
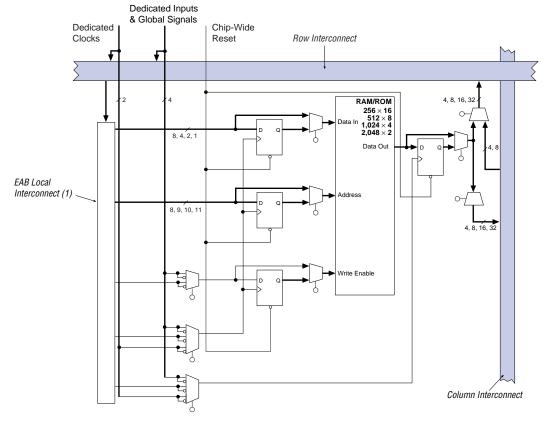
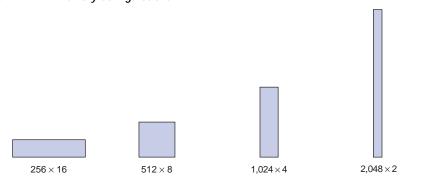



Figure 4. ACEX 1K Device in Single-Port RAM Mode


Note

(1) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB local interconnect channels.

EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the write enable signal. In contrast, the EAB's synchronous RAM generates its own write enable signal and is self-timed with respect to the input or write clock. A circuit using the EAB's self-timed RAM must only meet the setup and hold time specifications of the global clock.

When used as RAM, each EAB can be configured in any of the following sizes: 256×16 ; 512×8 ; $1,024 \times 4$; or $2,048 \times 2$. Figure 5 shows the ACEX 1K EAB memory configurations.

Figure 5. ACEX 1K EAB Memory Configurations

Larger blocks of RAM are created by combining multiple EABs. For example, two 256×16 RAM blocks can be combined to form a 256×32 block, and two 512×8 RAM blocks can be combined to form a 512×16 block. Figure 6 shows examples of multiple EAB combination.

Figure 6. Examples of Combining ACEX 1K EABs

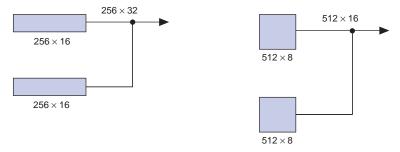
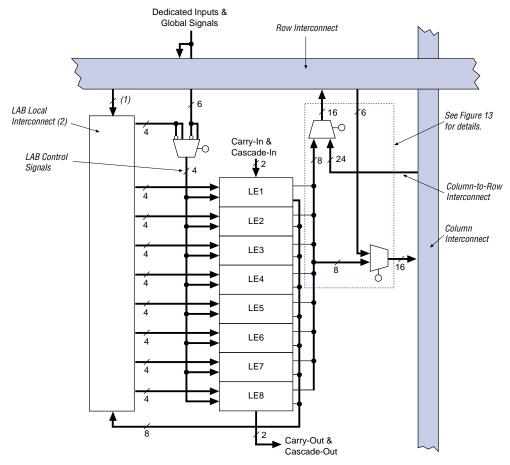



Figure 7. ACEX 1K LAB

Notes:

- (1) EP1K10, EP1K30, and EP1K50 devices have 22 inputs to the LAB local interconnect channel from the row; EP1K100 devices have 26.
- (2) EP1K10, EP1K30, and EP1K50 devices have 30 LAB local interconnect channels; EP1K100 devices have 34.

Normal Mode

The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a 4-input LUT. The compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time.

The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a 3-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a 4-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers two 3-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a 3-input function; the other generates a carry output. As shown in Figure 11, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Two 3-input LUTs are used; one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources.

Clearable Counter Mode

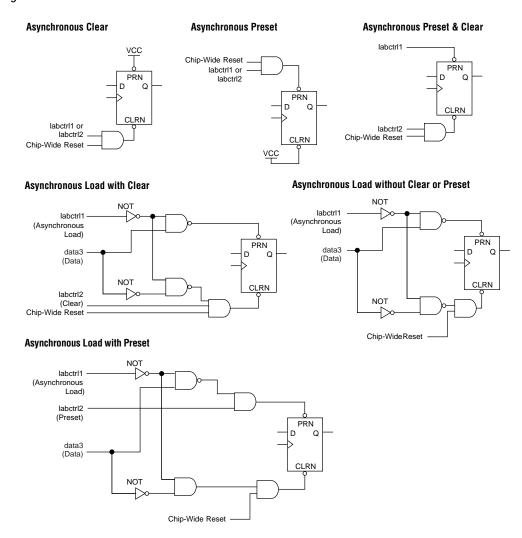
The clearable counter mode is similar to the up/down counter mode, but it supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Two 3-input LUTs are used; one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is AND ed with a synchronous clear signal.

Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer.

Clear & Preset Logic Control

Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register.


During compilation, the compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

The clear and preset logic is implemented in one of the following six modes chosen during design entry:

- Asynchronous clear
- Asynchronous preset
- Asynchronous clear and preset
- Asynchronous load with clear
- Asynchronous load with preset
- Asynchronous load without clear or preset

In addition to the six clear and preset modes, ACEX 1K devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality.

Figure 12. ACEX 1K LE Clear & Preset Modes

For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row.

Table 6 summarizes the FastTrack Interconnect routing structure resources available in each ACEX 1K device.

Table 6. ACEX 1K FastTrack Interconnect Resources							
Device	Rows	Channels per Row	Columns	Channels per Column			
EP1K10	3	144	24	24			
EP1K30	6	216	36	24			
EP1K50	10	216	36	24			
EP1K100	12	312	52	24			

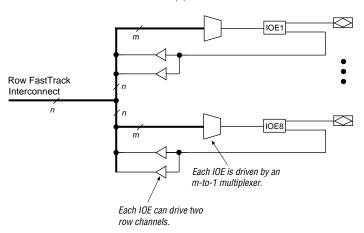

In addition to general-purpose I/O pins, ACEX 1K devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output-enable and clock-enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device.

Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3.

Row-to-IOE Connections

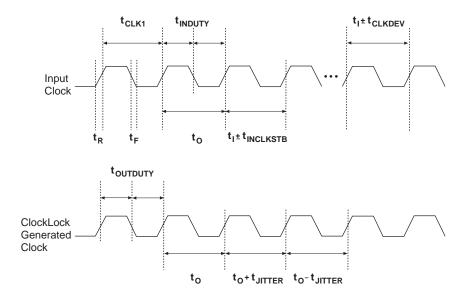
When an IOE is used as an input signal, it can drive two separate row channels. The signal is accessible by all LEs within that row. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the row channels. Up to eight IOEs connect to each side of each row channel (see Figure 16).

Figure 16. ACEX 1K Row-to-IOE Connections Note (1)

Note:

(1) The values for m and n are shown in Table 8.

Table 8 lists the ACEX 1K row-to-IOE interconnect resources.


Table 8. ACEX 1K Row-to-IOE Interconnect Resources						
Device Channels per Row (n) Row Channels per Pin (m						
EP1K10	144	18				
EP1K30	216	27				
EP1K50	216	27				
EP1K100	312	39				

For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to the GCLK1 pin. In the Altera software, the GCLK1 pin can feed both the ClockLock and ClockBoost circuitry in the ACEX 1K device. However, when both circuits are used, the other clock pin cannot be used.

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. Figure 19 shows the incoming and generated clock specifications.

Figure 19. Specifications for the Incoming & Generated Clocks Note (1)

Note:

(1) The $\mathbf{t_I}$ parameter refers to the nominal input clock period; the $\mathbf{t_O}$ parameter refers to the nominal output clock period.

Table 16. 32-Bit IDCODE for ACEX 1K Devices Note (1)							
Device	vice IDCODE (32 Bits)						
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)			
EP1K10	0001	0001 0000 0001 0000	00001101110	1			
EP1K30	0001	0001 0000 0011 0000	00001101110	1			
EP1K50	0001	0001 0000 0101 0000	00001101110	1			
EP1K100	0010	0000 0001 0000 0000	00001101110	1			

Notes to tables:

- (1) The most significant bit (MSB) is on the left.
- (2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

ACEX 1K devices include weak pull-up resistors on the JTAG pins.

For more information, see the following documents:

- Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- BitBlaster Serial Download Cable Data Sheet
- Jam Programming & Test Language Specification

Figure 20 shows the timing requirements for the JTAG signals.

Figure 20. ACEX 1K JTAG Waveforms

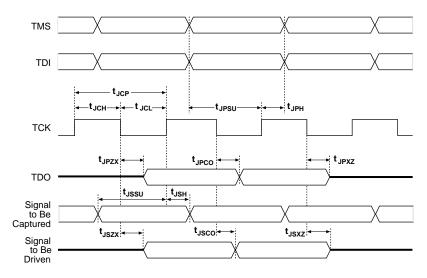


Table 17 shows the timing parameters and values for ACEX 1K devices.

Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		35	ns
t _{JSZX}	Update register high impedance to valid output		35	ns
t _{JSXZ}	Update register valid output to high impedance		35	ns

Table 19. ACEX 1K Device Recommended Operating Conditions							
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	2.375 (2.375)	2.625 (2.625)	V		
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V		
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.375 (2.375)	2.625 (2.625)	V		
V _I	Input voltage	(2), (5)	-0.5	5.75	V		
Vo	Output voltage		0	V _{CCIO}	V		
T _A	Ambient temperature	Commercial range	0	70	° C		
		Industrial range	-40	85	۰C		
T _J	Junction temperature	Commercial range	0	85	۰C		
		Industrial range	-40	100	۰C		
		Extended range	-40	125	° C		
t _R	Input rise time			40	ns		
t _F	Input fall time			40	ns		

Table 20. ACEX 1K Device DC Operating Conditions (Part 1 of 2) Notes (6), (7)							
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{IH}	High-level input voltage		1.7, 0.5 × V _{CCIO} (8)		5.75	V	
V _{IL}	Low-level input voltage		-0.5		0.8, 0.3 × V _{CCIO} (8)	V	
V _{OH}	3.3-V high-level TTL output voltage	$I_{OH} = -8 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V } (9)$	2.4			V	
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V } (9)$	V _{CCIO} - 0.2			V	
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (9)	0.9 ׆V _{CCIO}			V	
	2.5-V high-level output voltage	$I_{OH} = -0.1 \text{ mA DC},$ $V_{CCIO} = 2.375 \text{ V } (9)$	2.1			V	
		$I_{OH} = -1 \text{ mA DC},$ $V_{CCIO} = 2.375 \text{ V } (9)$	2.0			V	
		$I_{OH} = -2 \text{ mA DC},$ $V_{CCIO} = 2.375 \text{ V } (9)$	1.7			V	

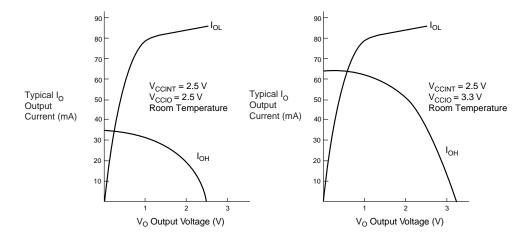


Figure 23. Output Drive Characteristics of ACEX 1K Devices

Timing Model

The continuous, high-performance FastTrack Interconnect routing resources ensure accurate simulation and timing analysis as well as predictable performance. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and, therefore, have an unpredictable performance.

Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:

- LE register clock-to-output delay (t_{CO})
- Interconnect delay ($t_{SAMEROW}$)
- LE look-up table delay (t_{LUT})
- LE register setup time (t_{SI})

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

Timing simulation and delay prediction are available with the simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis.

Symbol	Parameter	Conditions
t _{EABAA}	EAB address access delay	
t _{EABRCCOMB}	EAB asynchronous read cycle time	
t _{EABRCREG}	EAB synchronous read cycle time	
t _{EABWP}	EAB write pulse width	
t _{EABWCCOMB}	EAB asynchronous write cycle time	
t _{EABWCREG}	EAB synchronous write cycle time	
t _{EABDD}	EAB data-in to data-out valid delay	
t _{EABDATACO}	EAB clock-to-output delay when using output registers	
t _{EABDATASU}	EAB data/address setup time before clock when using input register	
t _{EABDATAH}	EAB data/address hold time after clock when using input register	
t _{EABWESU}	EAB WE setup time before clock when using input register	
t _{EABWEH}	EAB WE hold time after clock when using input register	
t _{EABWDSU}	EAB data setup time before falling edge of write pulse when not using input registers	
t _{EABWDH}	EAB data hold time after falling edge of write pulse when not using input	
	registers	
t _{EABWASU}	EAB address setup time before rising edge of write pulse when not using	
	input registers	
t _{EABWAH}	EAB address hold time after falling edge of write pulse when not using input registers	
t_{EABWO}	EAB write enable to data output valid delay	

Tables 27 through 29 describe the ACEX 1K external timing parameters and their symbols.

Table 27. External Reference Timing Parameters Note (1)				
Symbol	Parameter	Conditions		
t _{DRR}	Register-to-register delay via four LEs, three row interconnects, and four local interconnects	(2)		

Table 28. External Timing Parameters					
Symbol	Parameter	Conditions			
t _{INSU}	Setup time with global clock at IOE register	(3)			
t _{INH}	Hold time with global clock at IOE register	(3)			
tоитсо	Clock-to-output delay with global clock at IOE register	(3)			
t _{PCISU}	Setup time with global clock for registers used in PCI designs	(3), (4)			
t _{PCIH}	Hold time with global clock for registers used in PCI designs	(3), (4)			
t _{PCICO}	Clock-to-output delay with global clock for registers used in PCI designs	(3), (4)			

Table 29. External Bidirectional Timing Parameters Note (3)					
Symbol	Parameter	Conditions			
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at same-row or same-column LE register				
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at same-row or same-column LE register				
toutcobidir	Clock-to-output delay for bidirectional pins with global clock at IOE register	CI = 35 pF			
t _{XZBIDIR}	Synchronous IOE output buffer disable delay	CI = 35 pF			
tzxbidir	Synchronous IOE output buffer enable delay, slow slew rate = off	CI = 35 pF			

Notes to tables:

- (1) External reference timing parameters are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications.
- (2) Contact Altera Applications for test circuit specifications and test conditions.
- (3) These timing parameters are sample-tested only.
- (4) This parameter is measured with the measurement and test conditions, including load, specified in the *PCI Local Bus Specification, Revision 2.2.*

Tables 30 through 36 show EP1K10 device internal and external timing parameters.

Symbol	Speed Grade							
	-1		-2		-3			
	Min	Max	Min	Max	Min	Max		
t_{LUT}		0.7		0.8		1.1	ns	
t _{CLUT}		0.5		0.6		0.8	ns	
t _{RLUT}		0.6		0.7		1.0	ns	
t _{PACKED}		0.4		0.4		0.5	ns	
t _{EN}		0.9		1.0		1.3	ns	
t _{CICO}		0.1		0.1		0.2	ns	
t _{CGEN}		0.4		0.5	_	0.7	ns	
t _{CGENR}		0.1		0.1		0.2	ns	
t _{CASC}		0.7		0.9		1.1	ns	
t_C		1.1		1.3		1.7	ns	
t_{CO}		0.5		0.7		0.9	ns	
t _{COMB}		0.4		0.5		0.7	ns	
t _{SU}	0.7		0.8		1.0		ns	
t _H	0.9		1.0		1.1		ns	
t _{PRE}		0.8		1.0		1.4	ns	
t _{CLR}		0.9		1.0		1.4	ns	
t _{CH}	2.0		2.5		2.5		ns	
t_{CL}	2.0		2.5		2.5		ns	

Symbol	Speed Grade							
	-1		-2		-3			
	Min	Max	Min	Max	Min	Max		
t _{EABAA}		3.7		5.2		7.0	ns	
t _{EABRCCOMB}	3.7		5.2		7.0		ns	
t _{EABRCREG}	3.5		4.9		6.6		ns	
t _{EABWP}	2.0		2.8		3.8		ns	
t _{EABWCCOMB}	4.5		6.3		8.6		ns	
t _{EABWCREG}	5.6		7.8		10.6		ns	
t _{EABDD}		3.8		5.3		7.2	ns	
t _{EABDATA} CO		0.8		1.1		1.5	ns	
t _{EABDATASU}	1.1		1.6		2.1		ns	
t _{EABDATAH}	0.0		0.0		0.0		ns	
t _{EABWESU}	0.7		1.0		1.3		ns	
t _{EABWEH}	0.4		0.6		0.8		ns	
t _{EABWDSU}	1.2		1.7		2.2		ns	
t _{EABWDH}	0.0		0.0		0.0		ns	
t _{EABWASU}	1.6		2.3		3.0		ns	
t _{EABWAH}	0.9		1.2		1.8		ns	
t _{EABWO}		3.1		4.3		5.9	ns	

Symbol	Speed Grade						
	-1		-2		-3		
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.5		2.0		2.6	ns
t _{EABDATA1}		0.0		0.0		0.0	ns
t _{EABWE1}		1.5		2.0		2.6	ns
t _{EABWE2}		0.3		0.4		0.5	ns
t _{EABRE1}		0.3		0.4		0.5	ns
t _{EABRE2}		0.0		0.0		0.0	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.4		0.5	ns
t _{EABBYPASS}		0.1		0.1		0.2	ns
t _{EABSU}	0.8		1.0		1.4		ns
t _{EABH}	0.1		0.1		0.2		ns
t _{EABCLR}	0.3		0.4		0.5		ns
t_{AA}		4.0		5.1		6.6	ns
t_{WP}	2.7		3.5		4.7		ns
t _{RP}	1.0		1.3		1.7		ns
t _{WDSU}	1.0		1.3		1.7		ns
t_{WDH}	0.2		0.2		0.3		ns
t _{WASU}	1.6		2.1		2.8		ns
t _{WAH}	1.6		2.1		2.8		ns
t _{RASU}	3.0		3.9		5.2		ns
t _{RAH}	0.1		0.1		0.2		ns
t_{WO}		1.5		2.0		2.6	ns
t_{DD}		1.5		2.0		2.6	ns
t _{EABOUT}		0.2		0.3		0.3	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.7		3.5		4.7		ns