Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 360 | | Number of Logic Elements/Cells | 2880 | | Total RAM Bits | 40960 | | Number of I/O | 102 | | Number of Gates | 199000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1k50tc144-2 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## ...and More Features - -1 speed grade devices are compliant with *PCI Local Bus Specification, Revision 2.2* for 5.0-V operation - Built-in Joint Test Action Group (JTAG) boundary-scan test (BST) circuitry compliant with IEEE Std. 1149.1-1990, available without consuming additional device logic. - Operate with a 2.5-V internal supply voltage - In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port - ClockLock™ and ClockBoost™ options for reduced clock delay, clock skew, and clock multiplication - Built-in, low-skew clock distribution trees - 100% functional testing of all devices; test vectors or scan chains are not required - Pull-up on I/O pins before and during configuration #### ■ Flexible interconnect - FastTrack® Interconnect continuous routing structure for fast, predictable interconnect delays - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions) - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions) - Tri-state emulation that implements internal tri-state buses - Up to six global clock signals and four global clear signals #### Powerful I/O pins - Individual tri-state output enable control for each pin - Open-drain option on each I/O pin - Programmable output slew-rate control to reduce switching noise - Clamp to V_{CCIO} user-selectable on a pin-by-pin basis - Supports hot-socketing Table 5 shows ACEX 1K device performance for more complex designs. These designs are available as Altera MegaCore $^{\rm TM}$ functions. | Table 5. ACEX 1K Device Performance for Compl | ex Design | s | | | | |---|-----------|------|-------------|-------|------| | Application | LEs | | Perform | ance | | | | Used | | Speed Grade | Units | | | | · | -1 | -2 | -3 | | | 16-bit, 8-tap parallel finite impulse response (FIR) filter | 597 | 192 | 156 | 116 | MSPS | | 8-bit, 512-point Fast Fourier transform (FFT) | 1,854 | 23.4 | 28.7 | 38.9 | μs | | function | | 113 | 92 | 68 | MHz | | a16450 universal asynchronous receiver/transmitter (UART) | 342 | 36 | 28 | 20.5 | MHz | Each ACEX 1K device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and data-transformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device. ACEX 1K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers EPC16, EPC2, EPC1, and EPC1441 configuration devices, which configure ACEX 1K devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera MasterBlaster $^{\text{TM}}$, ByteBlasterMV $^{\text{TM}}$, or BitBlaster $^{\text{TM}}$ download cables. After an ACEX 1K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 40 ms, real-time changes can be made during system operation. ACEX 1K devices contain an interface that permits microprocessors to configure ACEX 1K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat an ACEX 1K device as memory and configure it by writing to a virtual memory location, simplifying device reconfiguration. For more information on the configuration of ACEX 1K devices, see the following documents: - Configuration Devices for ACEX, APEX, FLEX, & Mercury Devices Data Sheet - MasterBlaster Serial/USB Communications Cable Data Sheet - ByteBlasterMV Parallel Port Download Cable Data Sheet - BitBlaster Serial Download Cable Data Sheet ACEX 1K devices are supported by Altera development systems, which are integrated packages that offer schematic, text (including AHDL), and waveform design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, and device configuration. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX workstation-based EDA tools. The Altera software works easily with common gate array EDA tools for synthesis and simulation. For example, the Altera software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the Altera software contains EDA libraries that use device-specific features such as carry chains, which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the Altera development system includes DesignWare functions that are optimized for the ACEX 1K device architecture. The Altera development systems run on Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations. For more information, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet. # Functional Description Each ACEX 1K device contains an enhanced embedded array that implements memory and specialized logic functions, and a logic array that implements general logic. The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 4,096 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions such as multipliers, microcontrollers, state machines, and DSP functions. EABs can be used independently, or multiple EABs can be combined to implement larger functions. Figure 2. ACEX 1K Device in Dual-Port RAM Mode Note (1) #### Notes: - (1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset. - (2) EP1K10, EP1K30, and EP1K50 devices have 88 EAB local interconnect channels; EP1K100 devices have 104 EAB local interconnect channels. The EAB can use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3. The ACEX 1K EAB can also be used in a single-port mode (see Figure 4). #### Cascade Chain With the cascade chain, the ACEX 1K architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. With a delay as low as 0.6 ns per LE, each additional LE provides four more inputs to the effective width of a function. Cascade chain logic can be created automatically by the compiler during design processing, or manually by the designer during design entry. Cascade chains longer than eight bits are implemented automatically by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EP1K50 device, the cascade chain stops at the eighteenth LAB, and a new one begins at the nineteenth LAB). This break is due to the EAB's placement in the middle of the row. Figure 10 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. The LE delay is 1.3 ns; the cascade chain delay is 0.6 ns. With the cascade chain, decoding a 16-bit address requires 3.1 ns. Figure 10. ACEX 1K Cascade Chain Operation #### Normal Mode The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a 4-input LUT. The compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time. The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a 3-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a 4-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa. #### Arithmetic Mode The arithmetic mode offers two 3-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a 3-input function; the other generates a carry output. As shown in Figure 11, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. #### **Up/Down Counter Mode** The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Two 3-input LUTs are used; one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources. #### **Clearable Counter Mode** The clearable counter mode is similar to the up/down counter mode, but it supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Two 3-input LUTs are used; one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is AND ed with a synchronous clear signal. #### Internal Tri-State Emulation Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer. #### Clear & Preset Logic Control Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register. During compilation, the compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset. The clear and preset logic is implemented in one of the following six modes chosen during design entry: - Asynchronous clear - Asynchronous preset - Asynchronous clear and preset - Asynchronous load with clear - Asynchronous load with preset - Asynchronous load without clear or preset In addition to the six clear and preset modes, ACEX 1K devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality. Figure 12. ACEX 1K LE Clear & Preset Modes For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row. Table 6 summarizes the FastTrack Interconnect routing structure resources available in each ACEX 1K device. | Table 6. ACEX 1K FastTrack Interconnect Resources | | | | | | | | | | |---|------------------------|-----|----|----|--|--|--|--|--| | Device | Channels per
Column | | | | | | | | | | EP1K10 | 3 | 144 | 24 | 24 | | | | | | | EP1K30 | 6 | 216 | 36 | 24 | | | | | | | EP1K50 | 10 | 216 | 36 | 24 | | | | | | | EP1K100 | 12 | 312 | 52 | 24 | | | | | | In addition to general-purpose I/O pins, ACEX 1K devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output-enable and clock-enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device. Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3. For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to the GCLK1 pin. In the Altera software, the GCLK1 pin can feed both the ClockLock and ClockBoost circuitry in the ACEX 1K device. However, when both circuits are used, the other clock pin cannot be used. ### ClockLock & ClockBoost Timing Parameters For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. Figure 19 shows the incoming and generated clock specifications. Figure 19. Specifications for the Incoming & Generated Clocks Note (1) #### Note: (1) The $\mathbf{t_I}$ parameter refers to the nominal input clock period; the $\mathbf{t_O}$ parameter refers to the nominal output clock period. ## **Generic Testing** Each ACEX 1K device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for ACEX 1K devices are made under conditions equivalent to those shown in Figure 21. Multiple test patterns can be used to configure devices during all stages of the production flow. Figure 21. ACEX 1K AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices or outputs. Numbers without brackets are for 3.3-V devices or outputs. ## Operating Conditions Tables 18 through 21 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V ACEX 1K devices. | Table 1 | 8. ACEX 1K Device Absolute I | Maximum Ratings Note (1) | | | | |--------------------|------------------------------|--|------|------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CCINT} | Supply voltage | With respect to ground (2) | -0.5 | 3.6 | V | | V _{CCIO} | | | -0.5 | 4.6 | V | | VI | DC input voltage | | -2.0 | 5.75 | V | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | TJ | Junction temperature | PQFP, TQFP, and BGA packages, under bias | | 135 | ° C | | Table 2 | Table 21. ACEX 1K Device Capacitance Note (14) | | | | | | |--------------------|--|-------------------------------------|-----|-----|------|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial- and extended-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V. - (7) These values are specified under the ACEX 1K Recommended Operating Conditions shown in Table 19 on page 46. - (8) The ACEX 1K input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22. - The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current. - (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (11) This value is specified for normal device operation. The value may vary during power-up. - (12) This parameter applies to -1 speed grade commercial temperature devices and -2 speed grade industrial and extended temperature devices. - (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source. - (14) Capacitance is sample-tested only. Figure 24 shows the overall timing model, which maps the possible paths to and from the various elements of the ACEX 1K device. Figure 24. ACEX 1K Device Timing Model Figures 25 through 28 show the delays that correspond to various paths and functions within the LE, IOE, EAB, and bidirectional timing models. Figure 25. ACEX 1K Device LE Timing Model | Table 22. LE | Timing Microparameters (Part 2 of 2) Note (1) | | |-------------------|--|------------| | Symbol | Parameter | Conditions | | t _{CASC} | Cascade-in to cascade-out delay | | | t_{C} | LE register control signal delay | | | t_{CO} | LE register clock-to-output delay | | | t _{COMB} | Combinatorial delay | | | t _{SU} | LE register setup time for data and enable signals before clock; LE register recovery time after asynchronous clear, preset, or load | | | t_H | LE register hold time for data and enable signals after clock | | | t _{PRE} | LE register preset delay | | | t _{CLR} | LE register clear delay | | | t _{CH} | Minimum clock high time from clock pin | | | t_{CL} | Minimum clock low time from clock pin | | | Table 23. 10 | E Timing Microparameters Note (1) | | |---------------------|---|----------------| | Symbol | Parameter | Conditions | | t_{IOD} | IOE data delay | | | t_{IOC} | IOE register control signal delay | | | t _{IOCO} | IOE register clock-to-output delay | | | t _{IOCOMB} | IOE combinatorial delay | | | t _{IOSU} | IOE register setup time for data and enable signals before clock; IOE register recovery time after asynchronous clear | | | t _{IOH} | IOE register hold time for data and enable signals after clock | | | t _{IOCLR} | IOE register clear time | | | t _{OD1} | Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (2) | | t _{OD2} | Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 2.5 V | C1 = 35 pF (3) | | t _{OD3} | Output buffer and pad delay, slow slew rate = on | C1 = 35 pF (4) | | t_{XZ} | IOE output buffer disable delay | | | t_{ZX1} | IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (2) | | t_{ZX2} | IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 2.5 V | C1 = 35 pF (3) | | t _{ZX3} | IOE output buffer enable delay, slow slew rate = on | C1 = 35 pF (4) | | t _{INREG} | IOE input pad and buffer to IOE register delay | | | t _{IOFD} | IOE register feedback delay | | | t _{INCOMB} | IOE input pad and buffer to FastTrack Interconnect delay | | | Table 24. EA | B Timing Microparameters Note (1) | | |------------------------|--|------------| | Symbol | Parameter | Conditions | | t _{EABDATA1} | Data or address delay to EAB for combinatorial input | | | t _{EABDATA2} | Data or address delay to EAB for registered input | | | t _{EABWE1} | Write enable delay to EAB for combinatorial input | | | t _{EABWE2} | Write enable delay to EAB for registered input | | | t _{EABRE1} | Read enable delay to EAB for combinatorial input | | | t _{EABRE2} | Read enable delay to EAB for registered input | | | t _{EABCLK} | EAB register clock delay | | | t _{EABCO} | EAB register clock-to-output delay | | | t _{EABBYPASS} | Bypass register delay | | | t _{EABSU} | EAB register setup time before clock | | | t _{EABH} | EAB register hold time after clock | | | t _{EABCLR} | EAB register asynchronous clear time to output delay | | | t_{AA} | Address access delay (including the read enable to output delay) | | | t _{WP} | Write pulse width | | | t_{RP} | Read pulse width | | | t _{WDSU} | Data setup time before falling edge of write pulse | (5) | | t _{WDH} | Data hold time after falling edge of write pulse | (5) | | t _{WASU} | Address setup time before rising edge of write pulse | (5) | | t _{WAH} | Address hold time after falling edge of write pulse | (5) | | t _{RASU} | Address setup time before rising edge of read pulse | | | t _{RAH} | Address hold time after falling edge of read pulse | | | t_{WO} | Write enable to data output valid delay | | | t_{DD} | Data-in to data-out valid delay | | | t _{EABOUT} | Data-out delay | | | t _{EABCH} | Clock high time | | | t _{EABCL} | Clock low time | | **ACEX 1K Programmable Logic Device Family Data Sheet** | Symbol | | Speed Grade | | | | | | | | |-------------------------|-----|-------------|-----|-----|-----|-----|----|--|--| | | _ | 1 | - | -2 | | 3 | ı | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{EABAA} | | 6.4 | | 7.6 | | 8.8 | ns | | | | t _{EABRCOMB} | 6.4 | | 7.6 | | 8.8 | | ns | | | | t _{EABRCREG} | 4.4 | | 5.1 | | 6.0 | | ns | | | | t _{EABWP} | 2.5 | | 2.9 | - | 3.3 | | ns | | | | t _{EABWCOMB} | 6.0 | | 7.0 | | 8.0 | | ns | | | | t _{EABWCREG} | 6.8 | | 7.8 | | 9.0 | | ns | | | | t _{EABDD} | | 5.7 | | 6.7 | | 7.7 | ns | | | | t _{EABDATA} CO | | 0.8 | | 0.9 | | 1.1 | ns | | | | t _{EABDATASU} | 1.5 | | 1.7 | | 2.0 | | ns | | | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{EABWESU} | 1.3 | | 1.4 | | 1.7 | | ns | | | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{EABWDSU} | 1.5 | | 1.7 | | 2.0 | | ns | | | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{EABWASU} | 3.0 | | 3.6 | | 4.3 | | ns | | | | t _{EABWAH} | 0.5 | | 0.5 | | 0.4 | | ns | | | | t _{EABWO} | | 5.1 | | 6.0 | | 6.8 | ns | | | | Symbol | Speed Grade | | | | | | | | |------------------------|-------------|-----|-----|-----|-----|-----|----|--| | | _ | 1 | - | 2 | - | 3 | | | | | Min | Max | Min | Max | Min | Max | | | | t _{EABDATA1} | | 1.7 | | 2.4 | | 3.2 | ns | | | t _{EABDATA2} | | 0.4 | | 0.6 | | 0.8 | ns | | | t _{EABWE1} | | 1.0 | | 1.4 | | 1.9 | ns | | | t _{EABWE2} | | 0.0 | | 0.0 | | 0.0 | ns | | | t _{EABRE1} | | 0.0 | | 0.0 | | 0.0 | | | | t _{EABRE2} | | 0.4 | | 0.6 | | 0.8 | | | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | | t _{EABCO} | | 0.8 | | 1.1 | | 1.5 | ns | | | t _{EABBYPASS} | | 0.0 | | 0.0 | | 0.0 | ns | | | t _{EABSU} | 0.7 | | 1.0 | | 1.3 | | ns | | | t _{EABH} | 0.4 | | 0.6 | | 0.8 | | ns | | | t _{EABCLR} | 0.8 | | 1.1 | | 1.5 | | | | | t_{AA} | | 2.0 | | 2.8 | | 3.8 | ns | | | t_{WP} | 2.0 | | 2.8 | | 3.8 | | ns | | | t _{RP} | 1.0 | | 1.4 | | 1.9 | | | | | t _{WDSU} | 0.5 | | 0.7 | | 0.9 | | ns | | | t _{WDH} | 0.1 | | 0.1 | | 0.2 | | ns | | | t _{WASU} | 1.0 | | 1.4 | | 1.9 | | ns | | | t _{WAH} | 1.5 | | 2.1 | | 2.9 | | ns | | | t _{RASU} | 1.5 | | 2.1 | | 2.8 | | | | | t _{RAH} | 0.1 | | 0.1 | | 0.2 | | | | | t_{WO} | | 2.1 | | 2.9 | | 4.0 | ns | | | t _{DD} | | 2.1 | | 2.9 | | 4.0 | ns | | | t _{EABOUT} | | 0.0 | | 0.0 | | 0.0 | ns | | | t _{EABCH} | 1.5 | | 2.0 | | 2.5 | | ns | | | t _{EABCL} | 1.5 | | 2.0 | | 2.5 | | ns | | | Symbol | | Speed Grade | | | | | | | | |-------------------------|-----|-------------|-----|-----|------|-----|----|--|--| | | _ | 1 | - | -2 | | 3 | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{EABAA} | | 3.7 | | 5.2 | | 7.0 | ns | | | | t _{EABRCCOMB} | 3.7 | | 5.2 | | 7.0 | | ns | | | | t _{EABRCREG} | 3.5 | | 4.9 | | 6.6 | | ns | | | | t _{EABWP} | 2.0 | | 2.8 | | 3.8 | | ns | | | | t _{EABWCCOMB} | 4.5 | | 6.3 | | 8.6 | | ns | | | | t _{EABWCREG} | 5.6 | | 7.8 | | 10.6 | | ns | | | | t _{EABDD} | | 3.8 | | 5.3 | | 7.2 | ns | | | | t _{EABDATA} CO | | 0.8 | | 1.1 | | 1.5 | ns | | | | t _{EABDATASU} | 1.1 | | 1.6 | | 2.1 | | ns | | | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{EABWESU} | 0.7 | | 1.0 | | 1.3 | | ns | | | | t _{EABWEH} | 0.4 | | 0.6 | | 0.8 | | ns | | | | t _{EABWDSU} | 1.2 | | 1.7 | | 2.2 | | ns | | | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{EABWASU} | 1.6 | | 2.3 | | 3.0 | | ns | | | | t _{EABWAH} | 0.9 | | 1.2 | | 1.8 | | ns | | | | t _{EABWO} | | 3.1 | | 4.3 | | 5.9 | ns | | | Tables 51 through 57 show EP1K100 device internal and external timing parameters. | Symbol | Speed Grade | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|-----|----|--| | | - | 1 | - | -2 | | 3 | İ | | | | Min | Max | Min | Max | Min | Max | | | | t_{LUT} | | 0.7 | | 1.0 | | 1.5 | ns | | | t _{CLUT} | | 0.5 | | 0.7 | | 0.9 | ns | | | t _{RLUT} | | 0.6 | | 0.8 | | 1.1 | ns | | | t _{PACKED} | | 0.3 | | 0.4 | | 0.5 | ns | | | t _{EN} | | 0.2 | | 0.3 | | 0.3 | ns | | | t _{CICO} | | 0.1 | | 0.1 | | 0.2 | ns | | | t _{CGEN} | | 0.4 | _ | 0.5 | | 0.7 | ns | | | t _{CGENR} | | 0.1 | | 0.1 | | 0.2 | ns | | | t _{CASC} | | 0.6 | | 0.9 | | 1.2 | ns | | | t_C | | 0.8 | | 1.0 | | 1.4 | ns | | | t_{CO} | | 0.6 | | 0.8 | | 1.1 | ns | | | t _{COMB} | | 0.4 | | 0.5 | | 0.7 | ns | | | t _{SU} | 0.4 | | 0.6 | | 0.7 | | ns | | | t _H | 0.5 | | 0.7 | | 0.9 | | ns | | | t _{PRE} | | 0.8 | | 1.0 | | 1.4 | ns | | | t _{CLR} | | 0.8 | | 1.0 | | 1.4 | ns | | | t _{CH} | 1.5 | | 2.0 | | 2.5 | | ns | | | t_{CL} | 1.5 | | 2.0 | | 2.5 | | ns | | | Symbol | Speed Grade | | | | | | Unit | |---------------------|-------------|-----|-----|-----|-----|-----|------| | | -1 | | -2 | | -3 | | | | | Min | Max | Min | Max | Min | Max | | | t_{IOD} | | 1.7 | | 2.0 | | 2.6 | ns | | t _{IOC} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{IOCO} | | 1.4 | | 1.6 | | 2.1 | ns | | t _{IOCOMB} | | 0.5 | | 0.7 | | 0.9 | ns | | t _{IOSU} | 0.8 | | 1.0 | | 1.3 | | ns | | t _{IOH} | 0.7 | | 0.9 | | 1.2 | | ns | | t _{IOCLR} | | 0.5 | | 0.7 | | 0.9 | ns | | t _{OD1} | | 3.0 | | 4.2 | | 5.6 | ns | | t _{OD2} | | 3.0 | | 4.2 | | 5.6 | ns | | t _{OD3} | | 4.0 | | 5.5 | | 7.3 | ns | | t_{XZ} | | 3.5 | | 4.6 | | 6.1 | ns | | t_{ZX1} | | 3.5 | | 4.6 | | 6.1 | ns | | t_{ZX2} | | 3.5 | | 4.6 | | 6.1 | ns | | t_{ZX3} | | 4.5 | | 5.9 | | 7.8 | ns | | t _{INREG} | | 2.0 | | 2.6 | | 3.5 | ns | | t _{IOFD} | | 0.5 | | 0.8 | | 1.2 | ns | | t _{INCOMB} | | 0.5 | | 0.8 | | 1.2 | ns |