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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Voltage - Supply 2.375V ~ 2.625V

Mounting Type Surface Mount
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...and More 
Features

– -1 speed grade devices are compliant with PCI Local Bus 
Specification, Revision 2.2 for 5.0-V operation

– Built-in Joint Test Action Group (JTAG) boundary-scan test 
(BST) circuitry compliant with IEEE Std. 1149.1-1990, available 
without consuming additional device logic.

– Operate with a 2.5-V internal supply voltage
– In-circuit reconfigurability (ICR) via external configuration 

devices, intelligent controller, or JTAG port
– ClockLockTM and ClockBoostTM options for reduced clock delay, 

clock skew, and clock multiplication
– Built-in, low-skew clock distribution trees
– 100% functional testing of all devices; test vectors or scan chains 

are not required
– Pull-up on I/O pins before and during configuration

■ Flexible interconnect
– FastTrack® Interconnect continuous routing structure for fast, 

predictable interconnect delays
– Dedicated carry chain that implements arithmetic functions such 

as fast adders, counters, and comparators (automatically used by 
software tools and megafunctions)

– Dedicated cascade chain that implements high-speed, 
high-fan-in logic functions (automatically used by software tools 
and megafunctions)

– Tri-state emulation that implements internal tri-state buses
– Up to six global clock signals and four global clear signals

■ Powerful I/O pins
– Individual tri-state output enable control for each pin
– Open-drain option on each I/O pin
– Programmable output slew-rate control to reduce switching 

noise
– Clamp to VCCIO user-selectable on a pin-by-pin basis
– Supports hot-socketing
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General 
Description

Altera® ACEX 1K devices provide a die-efficient, low-cost architecture by 
combining look-up table (LUT) architecture with EABs. LUT-based logic 
provides optimized performance and efficiency for data-path, register 
intensive, mathematical, or digital signal processing (DSP) designs, while 
EABs implement RAM, ROM, dual-port RAM, or first-in first-out (FIFO) 
functions. These elements make ACEX 1K suitable for complex logic 
functions and memory functions such as digital signal processing, wide 
data-path manipulation, data transformation and microcontrollers, as 
required in high-performance communications applications. Based on 
reconfigurable CMOS SRAM elements, the ACEX 1K architecture 
incorporates all features necessary to implement common gate array 
megafunctions, along with a high pin count to enable an effective interface 
with system components. The advanced process and the low voltage 
requirement of the 2.5-V core allow ACEX 1K devices to meet the 
requirements of low-cost, high-volume applications ranging from DSL 
modems to low-cost switches.

The ability to reconfigure ACEX 1K devices enables complete testing prior 
to shipment and allows the designer to focus on simulation and design 
verification. ACEX 1K device reconfigurability eliminates inventory 
management for gate array designs and test vector generation for fault 
coverage.

Table 4 shows ACEX 1K device performance for some common designs. 
All performance results were obtained with Synopsys DesignWare or 
LPM functions. Special design techniques are not required to implement 
the applications; the designer simply infers or instantiates a function in a 
Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or 
schematic design file.

Notes:
(1) This application uses combinatorial inputs and outputs.
(2) This application uses registered inputs and outputs.

Table 4. ACEX 1K Device Performance

Application Resources 
Used

Performance

LEs EABs Speed Grade Units

-1 -2 -3

16-bit loadable counter 16 0 285 232 185 MHz

16-bit accumulator 16 0 285 232 185 MHz

16-to-1 multiplexer (1) 10 0 3.5 4.5 6.6 ns

16-bit multiplier with 3-stage pipeline(2) 592 0 156 131 93 MHz

256 × 16 RAM read cycle speed (2) 0 1 278 196 143 MHz

256 × 16 RAM write cycle speed (2) 0 1 185 143 111 MHz
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Table 5 shows ACEX 1K device performance for more complex designs. 
These designs are available as Altera MegaCoreTM functions.

Each ACEX 1K device contains an embedded array and a logic array. The 
embedded array is used to implement a variety of memory functions or 
complex logic functions, such as digital signal processing (DSP), wide 
data-path manipulation, microcontroller applications, and data-
transformation functions. The logic array performs the same function as 
the sea-of-gates in the gate array and is used to implement general logic 
such as counters, adders, state machines, and multiplexers. The 
combination of embedded and logic arrays provides the high 
performance and high density of embedded gate arrays, enabling 
designers to implement an entire system on a single device.

ACEX 1K devices are configured at system power-up with data stored in 
an Altera serial configuration device or provided by a system controller. 
Altera offers EPC16, EPC2, EPC1, and EPC1441 configuration devices, 
which configure ACEX 1K devices via a serial data stream. Configuration 
data can also be downloaded from system RAM or via the Altera 
MasterBlasterTM, ByteBlasterMVTM, or BitBlasterTM download cables. After 
an ACEX 1K device has been configured, it can be reconfigured in-circuit 
by resetting the device and loading new data. Because reconfiguration 
requires less than 40 ms, real-time changes can be made during system 
operation.

ACEX 1K devices contain an interface that permits microprocessors to 
configure ACEX 1K devices serially or in parallel, and synchronously or 
asynchronously. The interface also enables microprocessors to treat an 
ACEX 1K device as memory and configure it by writing to a virtual 
memory location, simplifying device reconfiguration.

Table 5. ACEX 1K Device Performance for Complex Designs

Application LEs 
Used

Performance

Speed Grade Units

-1 -2 -3

16-bit, 8-tap parallel finite impulse response (FIR) 
filter

597 192 156 116 MSPS

8-bit, 512-point Fast Fourier transform (FFT) 
function

1,854 23.4 28.7 38.9 µs

113 92 68 MHz

a16450 universal asynchronous 
receiver/transmitter (UART)

342 36 28 20.5 MHz
Altera Corporation  5
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Embedded Array Block

The EAB is a flexible block of RAM, with registers on the input and output 
ports, that is used to implement common gate array megafunctions. 
Because it is large and flexible, the EAB is suitable for functions such as 
multipliers, vector scalars, and error correction circuits. These functions 
can be combined in applications such as digital filters and 
microcontrollers. 

Logic functions are implemented by programming the EAB with a read-
only pattern during configuration, thereby creating a large LUT. With 
LUTs, combinatorial functions are implemented by looking up the results 
rather than by computing them. This implementation of combinatorial 
functions can be faster than using algorithms implemented in general 
logic, a performance advantage that is further enhanced by the fast access 
times of EABs. The large capacity of EABs enables designers to implement 
complex functions in a single logic level without the routing delays 
associated with linked LEs or field-programmable gate array (FPGA) 
RAM blocks. For example, a single EAB can implement any function with 
8 inputs and 16 outputs. Parameterized functions, such as LPM functions, 
can take advantage of the EAB automatically.

The ACEX 1K enhanced EAB supports dual-port RAM. The dual-port 
structure is ideal for FIFO buffers with one or two clocks. The ACEX 1K 
EAB can also support up to 16-bit-wide RAM blocks. The ACEX 1K EAB 
can act in dual-port or single-port mode. When in dual-port mode, 
separate clocks may be used for EAB read and write sections, allowing the 
EAB to be written and read at different rates. It also has separate 
synchronous clock enable signals for the EAB read and write sections, 
which allow independent control of these sections.

The EAB can also be used for bidirectional, dual-port memory 
applications where two ports read or write simultaneously. To implement 
this type of dual-port memory, two EABs are used to support two 
simultaneous reads or writes.

Alternatively, one clock and clock enable can be used to control the input 
registers of the EAB, while a different clock and clock enable control the 
output registers (see Figure 2).
Altera Corporation  9
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Each LAB provides four control signals with programmable inversion 
that can be used in all eight LEs. Two of these signals can be used as clocks, 
the other two can be used for clear/preset control. The LAB clocks can be 
driven by the dedicated clock input pins, global signals, I/O signals, or 
internal signals via the LAB local interconnect. The LAB preset and clear 
control signals can be driven by the global signals, I/O signals, or internal 
signals via the LAB local interconnect. The global control signals are 
typically used for global clock, clear, or preset signals because they 
provide asynchronous control with very low skew across the device. If 
logic is required on a control signal, it can be generated in one or more LEs 
in any LAB and driven into the local interconnect of the target LAB. In 
addition, the global control signals can be generated from LE outputs.

Logic Element

The LE, the smallest unit of logic in the ACEX 1K architecture, has a 
compact size that provides efficient logic utilization. Each LE contains a 
4-input LUT, which is a function generator that can quickly compute any 
function of four variables. In addition, each LE contains a programmable 
flipflop with a synchronous clock enable, a carry chain, and a cascade 
chain. Each LE drives both the local and the FastTrack Interconnect 
routing structure. Figure 8 shows the ACEX 1K LE.
Altera Corporation  15
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a 4-input LUT. The compiler automatically selects the carry-
in or the DATA3 signal as one of the inputs to the LUT. The LUT output 
can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect routing 
structure at the same time. 

The LUT and the register in the LE can be used independently (register 
packing). To support register packing, the LE has two outputs; one drives 
the local interconnect, and the other drives the FastTrack Interconnect 
routing structure. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a 3-input function can be computed in the LUT, and a 
fourth independent signal can be registered. Alternatively, a 4-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect routing structure while the LUT drives 
the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers two 3-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a 3-input function; the other generates a carry output. As shown 
in Figure 11, the first LUT uses the carry-in signal and two data inputs 
from the LAB local interconnect to generate a combinatorial or registered 
output. For example, in an adder, this output is the sum of three signals: 
a, b, and carry-in. The second LUT uses the same three signals to generate 
a carry-out signal, thereby creating a carry chain. The arithmetic mode 
also supports simultaneous use of the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, 
synchronous up/down control, and data loading options. These control 
signals are generated by the data inputs from the LAB local interconnect, 
the carry-in signal, and output feedback from the programmable register. 
Two 3-input LUTs are used; one generates the counter data, and the other 
generates the fast carry bit. A 2-to-1 multiplexer provides synchronous 
loading. Data can also be loaded asynchronously with the clear and preset 
register control signals without using the LUT resources.
22 Altera Corporation
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In addition to the six clear and preset modes, ACEX 1K devices provide a 
chip-wide reset pin that can reset all registers in the device. Use of this 
feature is set during design entry. In any of the clear and preset modes, the 
chip-wide reset overrides all other signals. Registers with asynchronous 
presets may be preset when the chip-wide reset is asserted. Inversion can 
be used to implement the asynchronous preset. Figure 12 shows examples 
of how to setup the preset and clear inputs for the desired functionality.

Figure 12. ACEX 1K LE Clear & Preset Modes
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Figure 13. ACEX 1K LAB Connections to Row & Column Interconnect
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On all ACEX 1K devices, the input path from the I/O pad to the FastTrack 
Interconnect has a programmable delay element that can be used to 
guarantee a zero hold time. Depending on the placement of the IOE 
relative to what it is driving, the designer may choose to turn on the 
programmable delay to ensure a zero hold time or turn it off to minimize 
setup time. This feature is used to reduce setup time for complex pin-to-
register paths (e.g., PCI designs).

Each IOE selects the clock, clear, clock enable, and output enable controls 
from a network of I/O control signals called the peripheral control bus. 
The peripheral control bus uses high-speed drivers to minimize signal 
skew across devices and provides up to 12 peripheral control signals that 
can be allocated as follows:

■ Up to eight output enable signals
■ Up to six clock enable signals
■ Up to two clock signals
■ Up to two clear signals

If more than six clock-enable or eight output-enable signals are required, 
each IOE on the device can be controlled by clock enable and output 
enable signals driven by specific LEs. In addition to the two clock signals 
available on the peripheral control bus, each IOE can use one of two 
dedicated clock pins. Each peripheral control signal can be driven by any 
of the dedicated input pins or the first LE of each LAB in a particular row. 
In addition, a LE in a different row can drive a column interconnect, which 
causes a row interconnect to drive the peripheral control signal. The chip-
wide reset signal resets all IOE registers, overriding any other control 
signals.

When a dedicated clock pin drives IOE registers, it can be inverted for all 
IOEs in the device. All IOEs must use the same sense of the clock. For 
example, if any IOE uses the inverted clock, all IOEs must use the inverted 
clock, and no IOE can use the non-inverted clock. However, LEs can still 
use the true or complement of the clock on an LAB-by-LAB basis. 

The incoming signal may be inverted at the dedicated clock pin and will 
drive all IOEs. For the true and complement of a clock to be used to drive 
IOEs, drive it into both global clock pins. One global clock pin will supply 
the true, and the other will supply the complement. 

When the true and complement of a dedicated input drives IOE clocks, 
two signals on the peripheral control bus are consumed, one for each 
sense of the clock.
Altera Corporation  31
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Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row 
channels. The signal is accessible by all LEs within that row. When an IOE 
is used as an output, the signal is driven by a multiplexer that selects a 
signal from the row channels. Up to eight IOEs connect to each side of 
each row channel (see Figure 16).

Figure 16. ACEX 1K Row-to-IOE Connections  Note (1)

Note:
(1) The values for m and n are shown in Table 8.

Table 8 lists the ACEX 1K row-to-IOE interconnect resources.

n

n

Each IOE is driven by an
m-to-1 multiplexer.

Each IOE can drive two
row channels.

IOE8

IOE1
m

m

Row FastTrack
Interconnect

n

Table 8. ACEX 1K Row-to-IOE Interconnect Resources

Device Channels per Row (n) Row Channels per Pin (m)

EP1K10 144 18

EP1K30 216 27

EP1K50 216 27

EP1K100 312 39
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Notes to tables:
(1) To implement the ClockLock and ClockBoost circuitry with the Altera software, designers must specify the input 

frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The 
fCLKDEV parameter specifies how much the incoming clock can differ from the specified frequency during device 
operation. Simulation does not reflect this parameter.

(2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
(3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If 

the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during 
configuration because the tLOCK value is less than the time required for configuration.

(4) The tJITTER specification is measured under long-term observation. The maximum value for tJITTER is 200 ps if 
tINCLKSTB is lower than 50 ps.

I/O 
Configuration

This section discusses the PCI pull-up clamping diode option, slew-rate 
control, open-drain output option, and MultiVolt I/O interface for 
ACEX 1K devices. The PCI pull-up clamping diode, slew-rate control, and 
open-drain output options are controlled pin-by-pin via Altera software 
logic options. The MultiVolt I/O interface is controlled by connecting 
VCCIO to a different voltage than VCCINT. Its effect can be simulated in the 
Altera software via the Global Project Device Options dialog box (Assign 
menu).

Table 12. ClockLock & ClockBoost Parameters for -2 Speed-Grade Devices

Symbol Parameter Condition Min Typ Max Unit

tR Input rise time 5 ns

tF Input fall time 5 ns

tINDUTY Input duty cycle 40 60 %

fCLK1 Input clock frequency (ClockBoost clock 
multiplication factor equals 1)

25 80 MHz

fCLK2 Input clock frequency (ClockBoost clock 
multiplication factor equals 2)

16 40 MHz

fCLKDEV Input deviation from user specification in 
the software (1)

25,000 PPM

tINCLKSTB Input clock stability (measured between 
adjacent clocks)

100 ps

tLOCK Time required for ClockLock or ClockBoost 
to acquire lock (3)

10 µs

tJITTER Jitter on ClockLock or ClockBoost-
generated clock (4)

tINCLKSTB < 100 250 (4) ps

tINCLKSTB < 50 200 (4) ps

tOUTDUTY Duty cycle for ClockLock or ClockBoost-
generated clock

40 50 60 %
Altera Corporation  39
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The VCCINT pins must always be connected to a 2.5-V power supply. 
With a 2.5-V VCCINT level, input voltages are compatible with 2.5-V, 3.3-
V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 
3.3-V power supply, depending on the output requirements. When the 
VCCIO pins are connected to a 2.5-V power supply, the output levels are 
compatible with 2.5-V systems. When the VCCIO pins are connected to a 
3.3-V power supply, the output high is at 3.3 V and is therefore compatible 
with 3.3-V or 5.0-V systems. Devices operating with VCCIO levels higher 
than 3.0 V achieve a faster timing delay of tOD2 instead of tOD1.

Table 13 summarizes ACEX 1K MultiVolt I/O support.

Notes:
(1) The PCI clamping diode must be disabled on an input which is driven with a 

voltage higher than VCCIO.
(2) When VCCIO = 3.3 V, an ACEX 1K device can drive a 2.5-V device that has 3.3-V 

tolerant inputs.

Open-drain output pins on ACEX 1K devices (with a pull-up resistor to 
the 5.0-V supply) can drive 5.0-V CMOS input pins that require a higher 
VIH than LVTTL. When the open-drain pin is active, it will drive low. 
When the pin is inactive, the resistor will pull up the trace to 5.0 V, thereby 
meeting the CMOS VOH requirement. The open-drain pin will only drive 
low or tri-state; it will never drive high. The rise time is dependent on the 
value of the pull-up resistor and load impedance. The IOL current 
specification should be considered when selecting a pull-up resistor.

Power 
Sequencing & 
Hot-Socketing

Because ACEX 1K devices can be used in a mixed-voltage environment, 
they have been designed specifically to tolerate any possible power-up 
sequence. The VCCIO and VCCINT power planes can be powered in any 
order.

Signals can be driven into ACEX 1K devices before and during power up 
without damaging the device. Additionally, ACEX 1K devices do not 
drive out during power up. Once operating conditions are reached, 
ACEX 1K devices operate as specified by the user.

Table 13. ACEX 1K MultiVolt I/O Support

VCCIO (V) Input Signal (V) Output Signal (V)

2.5 3.3 5.0 2.5 3.3 5.0

2.5 v v (1) v (1) v

3.3 v v v (1) v (2) v v
Altera Corporation  41
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Figure 24 shows the overall timing model, which maps the possible paths 
to and from the various elements of the ACEX 1K device.

Figure 24. ACEX 1K Device Timing Model

Figures 25 through 28 show the delays that correspond to various paths 
and functions within the LE, IOE, EAB, and bidirectional timing models.

Figure 25. ACEX 1K Device LE Timing Model
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Table 25. EAB Timing Macroparameters Notes (1), (6)

Symbol Parameter Conditions

tEABAA EAB address access delay

tEABRCCOMB EAB asynchronous read cycle time

tEABRCREG EAB synchronous read cycle time

tEABWP EAB write pulse width

tEABWCCOMB EAB asynchronous write cycle time

tEABWCREG EAB synchronous write cycle time

tEABDD EAB data-in to data-out valid delay

tEABDATACO EAB clock-to-output delay when using output registers

tEABDATASU EAB data/address setup time before clock when using input register

tEABDATAH EAB data/address hold time after clock when using input register

tEABWESU EAB WE setup time before clock when using input register

tEABWEH EAB WE hold time after clock when using input register

tEABWDSU EAB data setup time before falling edge of write pulse when not using input 
registers

tEABWDH EAB data hold time after falling edge of write pulse when not using input 
registers

tEABWASU EAB address setup time before rising edge of write pulse when not using 
input registers

tEABWAH EAB address hold time after falling edge of write pulse when not using input 
registers

tEABWO EAB write enable to data output valid delay
Altera Corporation  57
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Table 32. EP1K10 Device EAB Internal Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABDATA1 1.8 1.9 1.9 ns

tEABDATA2 0.6 0.7 0.7 ns

tEABWE1 1.2 1.2 1.2 ns

tEABWE2 0.4 0.4 0.4 ns

tEABRE1 0.9 0.9 0.9 ns

tEABRE2 0.4 0.4 0.4 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.3 0.3 ns

tEABBYPASS 0.5 0.6 0.6 ns

tEABSU 1.0 1.0 1.0 ns

tEABH 0.5 0.4 0.4 ns

tEABCLR 0.3 0.3 0.3 ns

tAA 3.4 3.6 3.6 ns

tWP 2.7 2.8 2.8 ns

tRP 1.0 1.0 1.0 ns

tWDSU 1.0 1.0 1.0 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.8 1.9 1.9 ns

tWAH 1.9 2.0 2.0 ns

tRASU 3.1 3.5 3.5 ns

tRAH 0.2 0.2 0.2 ns

tWO 2.7 2.8 2.8 ns

tDD 2.7 2.8 2.8 ns

tEABOUT 0.5 0.6 0.6 ns

tEABCH 1.5 2.0 2.0 ns

tEABCL 2.7 2.8 2.8 ns
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Table 40. EP1K30 Device EAB Internal Timing Macroparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tEABAA 6.4 7.6 8.8 ns

tEABRCOMB 6.4 7.6 8.8 ns

tEABRCREG 4.4 5.1 6.0 ns

tEABWP 2.5 2.9 3.3 ns

tEABWCOMB 6.0 7.0 8.0 ns

tEABWCREG 6.8 7.8 9.0 ns

tEABDD 5.7 6.7 7.7 ns

tEABDATACO 0.8 0.9 1.1 ns

tEABDATASU 1.5 1.7 2.0 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 1.3 1.4 1.7 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.5 1.7 2.0 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.3 ns

tEABWAH 0.5 0.5 0.4 ns

tEABWO 5.1 6.0 6.8 ns
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tCO 0.6 0.6 0.7 ns

tCOMB 0.3 0.4 0.5 ns

tSU 0.5 0.6 0.7 ns

tH 0.5 0.6 0.8 ns

tPRE 0.4 0.5 0.7 ns

tCLR 0.8 1.0 1.2 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

Table 45. EP1K50 Device IOE Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tIOD 1.3 1.3 1.9 ns

tIOC 0.3 0.4 0.4 ns

tIOCO 1.7 2.1 2.6 ns

tIOCOMB 0.5 0.6 0.8 ns

tIOSU 0.8 1.0 1.3 ns

tIOH 0.4 0.5 0.6 ns

tIOCLR 0.2 0.2 0.4 ns

tOD1 1.2 1.2 1.9 ns

tOD2 0.7 0.8 1.7 ns

tOD3 2.7 3.0 4.3 ns

tXZ 4.7 5.7 7.5 ns

tZX1 4.7 5.7 7.5 ns

tZX2 4.2 5.3 7.3 ns

tZX3 6.2 7.5 9.9 ns

tINREG 3.5 4.2 5.6 ns

tIOFD 1.1 1.3 1.8 ns

tINCOMB 1.1 1.3 1.8 ns

Table 44. EP1K50 Device LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max



ACEX 1K Programmable Logic Device Family Data Sheet

D
evelopm

ent

13

Tools
Notes to tables:
(1) All timing parameters are described in Tables 22 through 29.
(2) This parameter is measured without use of the ClockLock or ClockBoost circuits.
(3) This parameter is measured with use of the ClockLock or ClockBoost circuits

Table 50. EP1K50 External Bidirectional Timing Parameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSUBIDIR (2) 2.7 3.2 4.3 ns

tINHBIDIR (2) 0.0 0.0 0.0 ns

tINSUBIDIR (3) 3.7 4.2 – ns

tINHBIDIR (3) 0.0 0.0 – ns

tOUTCOBIDIR (2) 2.0 4.5 2.0 5.2 2.0 7.3 ns

tXZBIDIR (2) 6.8 7.8 10.1 ns

tZXBIDIR (2) 6.8 7.8 10.1 ns

tOUTCOBIDIR (3) 0.5 3.5 0.5 4.2 – –

tXZBIDIR (3) 6.8 8.4 – ns

tZXBIDIR (3) 6.8 8.4 – ns
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Table 55. EP1K100 Device Interconnect Timing Microparameters Note (1)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDIN2IOE 3.1 3.6 4.4 ns

tDIN2LE 0.3 0.4 0.5 ns

tDIN2DATA 1.6 1.8 2.0 ns

tDCLK2IOE 0.8 1.1 1.4 ns

tDCLK2LE 0.3 0.4 0.5 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.5 2.5 3.4 ns

tSAMECOLUMN 0.4 1.0 1.6 ns

tDIFFROW 1.9 3.5 5.0 ns

tTWOROWS 3.4 6.0 8.4 ns

tLEPERIPH 4.3 5.4 6.5 ns

tLABCARRY 0.5 0.7 0.9 ns

tLABCASC 0.8 1.0 1.4 ns

Table 56. EP1K100 External Timing Parameters Notes (1), (2)

Symbol Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tDRR 9.0 12.0 16.0 ns

tINSU (3) 2.0 2.5 3.3 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0 5.2 2.0 6.9 2.0 9.1 ns

tINSU (4) 2.0 2.2 – ns

tINH (4) 0.0 0.0 – ns

tOUTCO (4) 0.5 3.0 0.5 4.6 – – ns

tPCISU 3.0 6.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 6.9 – – ns
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The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K × fMAX × N × togLC (µA)

Where:

fMAX = Maximum operating frequency in MHz
N = Total number of LEs used in the device 
togLC = Average percent of LEs toggling at each clock 

(typically 12.5%)
K = Constant

Table 58 provides the constant (K) values for ACEX 1K devices.

This supply power calculation provides an ICC estimate based on typical 
conditions with no output load. The actual ICC should be verified during 
operation because this measurement is sensitive to the actual pattern in 
the device and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant K in 
the power calculation equations) for continuous interconnect ACEX 1K 
devices assumes that LEs drive FastTrack Interconnect channels. In 
contrast, the power model of segmented FPGAs assumes that all LEs drive 
only one short interconnect segment. This assumption may lead to 
inaccurate results when compared to measured power consumption for 
actual designs in segmented FPGAs.

Figure 31 shows the relationship between the current and operating 
frequency of ACEX 1K devices. For information on other ACEX 1K 
devices, contact Altera Applications at (800) 800-EPLD.

Table 58.  ACEX 1K Constant Values

Device K Value

EP1K10 4.5

EP1K30 4.5

EP1K50 4.5

EP1K100 4.5
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