Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 360 | | Number of Logic Elements/Cells | 2880 | | Total RAM Bits | 40960 | | Number of I/O | 102 | | Number of Gates | 199000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 85°C (TA) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1k50ti144-2n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ### ...and More Features - -1 speed grade devices are compliant with *PCI Local Bus Specification, Revision 2.2* for 5.0-V operation - Built-in Joint Test Action Group (JTAG) boundary-scan test (BST) circuitry compliant with IEEE Std. 1149.1-1990, available without consuming additional device logic. - Operate with a 2.5-V internal supply voltage - In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port - ClockLock™ and ClockBoost™ options for reduced clock delay, clock skew, and clock multiplication - Built-in, low-skew clock distribution trees - 100% functional testing of all devices; test vectors or scan chains are not required - Pull-up on I/O pins before and during configuration #### ■ Flexible interconnect - FastTrack® Interconnect continuous routing structure for fast, predictable interconnect delays - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions) - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions) - Tri-state emulation that implements internal tri-state buses - Up to six global clock signals and four global clear signals #### Powerful I/O pins - Individual tri-state output enable control for each pin - Open-drain option on each I/O pin - Programmable output slew-rate control to reduce switching noise - Clamp to V_{CCIO} user-selectable on a pin-by-pin basis - Supports hot-socketing # General Description Altera® ACEX 1K devices provide a die-efficient, low-cost architecture by combining look-up table (LUT) architecture with EABs. LUT-based logic provides optimized performance and efficiency for data-path, register intensive, mathematical, or digital signal processing (DSP) designs, while EABs implement RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. These elements make ACEX 1K suitable for complex logic functions and memory functions such as digital signal processing, wide data-path manipulation, data transformation and microcontrollers, as required in high-performance communications applications. Based on reconfigurable CMOS SRAM elements, the ACEX 1K architecture incorporates all features necessary to implement common gate array megafunctions, along with a high pin count to enable an effective interface with system components. The advanced process and the low voltage requirement of the 2.5-V core allow ACEX 1K devices to meet the requirements of low-cost, high-volume applications ranging from DSL modems to low-cost switches. The ability to reconfigure ACEX 1K devices enables complete testing prior to shipment and allows the designer to focus on simulation and design verification. ACEX 1K device reconfigurability eliminates inventory management for gate array designs and test vector generation for fault coverage. Table 4 shows ACEX 1K device performance for some common designs. All performance results were obtained with Synopsys DesignWare or LPM functions. Special design techniques are not required to implement the applications; the designer simply infers or instantiates a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file. | Application | Reso
Us | urces
ed | | Performa | nce | | |--|------------|-------------|-----|-------------|-----|-------| | | LEs | EABs | | Speed Grade | | Units | | | | | -1 | -2 | -3 | | | 16-bit loadable counter | 16 | 0 | 285 | 232 | 185 | MHz | | 16-bit accumulator | 16 | 0 | 285 | 232 | 185 | MHz | | 16-to-1 multiplexer (1) | 10 | 0 | 3.5 | 4.5 | 6.6 | ns | | 16-bit multiplier with 3-stage pipeline(2) | 592 | 0 | 156 | 131 | 93 | MHz | | 256 × 16 RAM read cycle speed (2) | 0 | 1 | 278 | 196 | 143 | MHz | | 256 × 16 RAM write cycle speed (2) | 0 | 1 | 185 | 143 | 111 | MHz | #### Notes: - This application uses combinatorial inputs and outputs. - (2) This application uses registered inputs and outputs. Table 5 shows ACEX 1K device performance for more complex designs. These designs are available as Altera MegaCore $^{\rm TM}$ functions. | Table 5. ACEX 1K Device Performance for Compl | ex Design | s | | | | |---|-----------|------|-------------|----------|-------| | Application | LEs | | Perform | ance | | | | Used | | Speed Grade | ! | Units | | | · | -1 | -2 | -3 | | | 16-bit, 8-tap parallel finite impulse response (FIR) filter | 597 | 192 | 156 | 116 | MSPS | | 8-bit, 512-point Fast Fourier transform (FFT) | 1,854 | 23.4 | 28.7 | 38.9 | μs | | function | | 113 | 92 | 68 | MHz | | a16450 universal asynchronous receiver/transmitter (UART) | 342 | 36 | 28 | 20.5 | MHz | Each ACEX 1K device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and data-transformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device. ACEX 1K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers EPC16, EPC2, EPC1, and EPC1441 configuration devices, which configure ACEX 1K devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera MasterBlaster $^{\text{TM}}$, ByteBlasterMV $^{\text{TM}}$, or BitBlaster $^{\text{TM}}$ download cables. After an ACEX 1K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 40 ms, real-time changes can be made during system operation. ACEX 1K devices contain an interface that permits microprocessors to configure ACEX 1K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat an ACEX 1K device as memory and configure it by writing to a virtual memory location, simplifying device reconfiguration. #### **Embedded Array Block** The EAB is a flexible block of RAM, with registers on the input and output ports, that is used to implement common gate array megafunctions. Because it is large and flexible, the EAB is suitable for functions such as multipliers, vector scalars, and error correction circuits. These functions can be combined in applications such as digital filters and microcontrollers. Logic functions are implemented by programming the EAB with a read-only pattern during configuration, thereby creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of EABs. The large capacity of EABs enables designers to implement complex functions in a single logic level without the routing delays associated with linked LEs or field-programmable gate array (FPGA) RAM blocks. For example, a single EAB can implement any function with 8 inputs and 16 outputs. Parameterized functions, such as LPM functions, can take advantage of the EAB automatically. The ACEX 1K enhanced EAB supports dual-port RAM. The dual-port structure is ideal for FIFO buffers with one or two clocks. The ACEX 1K EAB can also support up to 16-bit-wide RAM blocks. The ACEX 1K EAB can act in dual-port or single-port mode. When in dual-port mode, separate clocks may be used for EAB read and write sections, allowing the EAB to be written and read at different rates. It also has separate synchronous clock enable signals for the EAB read and write sections, which allow independent control of these sections. The EAB can also be used for bidirectional, dual-port memory applications where two ports read or write simultaneously. To implement this type of dual-port memory, two EABs are used to support two simultaneous reads or writes. Alternatively, one clock and clock enable can be used to control the input registers of the EAB, while a different clock and clock enable control the output registers (see Figure 2). Each LAB provides four control signals with programmable inversion that can be used in all eight LEs. Two of these signals can be used as clocks, the other two can be used for clear/preset control. The LAB clocks can be driven by the dedicated clock input pins, global signals, I/O signals, or internal signals via the LAB local interconnect. The LAB preset and clear control signals can be driven by the global signals, I/O signals, or internal signals via the LAB local interconnect. The global control signals are typically used for global clock, clear, or preset signals because they provide asynchronous control with very low skew across the device. If logic is required on a control signal, it can be generated in one or more LEs in any LAB and driven into the local interconnect of the target LAB. In addition, the global control signals can be generated from LE outputs. #### Logic Element The LE, the smallest unit of logic in the ACEX 1K architecture, has a compact size that provides efficient logic utilization. Each LE contains a 4-input LUT, which is a function generator that can quickly compute any function of four variables. In addition, each LE contains a programmable flipflop with a synchronous clock enable, a carry chain, and a cascade chain. Each LE drives both the local and the FastTrack Interconnect routing structure. Figure 8 shows the ACEX 1K LE. #### Normal Mode The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a 4-input LUT. The compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time. The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a 3-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a 4-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa. #### Arithmetic Mode The arithmetic mode offers two 3-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a 3-input function; the other generates a carry output. As shown in Figure 11, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. #### **Up/Down Counter Mode** The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Two 3-input LUTs are used; one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources. In addition to the six clear and preset modes, ACEX 1K devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality. Figure 12. ACEX 1K LE Clear & Preset Modes Figure 13. ACEX 1K LAB Connections to Row & Column Interconnect On all ACEX 1K devices, the input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold time or turn it off to minimize setup time. This feature is used to reduce setup time for complex pin-to-register paths (e.g., PCI designs). Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across devices and provides up to 12 peripheral control signals that can be allocated as follows: - Up to eight output enable signals - Up to six clock enable signals - Up to two clock signals - Up to two clear signals If more than six clock-enable or eight output-enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, a LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chipwide reset signal resets all IOE registers, overriding any other control signals. When a dedicated clock pin drives IOE registers, it can be inverted for all IOEs in the device. All IOEs must use the same sense of the clock. For example, if any IOE uses the inverted clock, all IOEs must use the inverted clock, and no IOE can use the non-inverted clock. However, LEs can still use the true or complement of the clock on an LAB-by-LAB basis. The incoming signal may be inverted at the dedicated clock pin and will drive all IOEs. For the true and complement of a clock to be used to drive IOEs, drive it into both global clock pins. One global clock pin will supply the true, and the other will supply the complement. When the true and complement of a dedicated input drives IOE clocks, two signals on the peripheral control bus are consumed, one for each sense of the clock. #### Row-to-IOE Connections When an IOE is used as an input signal, it can drive two separate row channels. The signal is accessible by all LEs within that row. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the row channels. Up to eight IOEs connect to each side of each row channel (see Figure 16). Figure 16. ACEX 1K Row-to-IOE Connections Note (1) #### Note: (1) The values for m and n are shown in Table 8. Table 8 lists the ACEX 1K row-to-IOE interconnect resources. | Table 8. ACEX 1K Ro | Table 8. ACEX 1K Row-to-IOE Interconnect Resources | | | | | | | |---------------------|--|--------------------------|--|--|--|--|--| | Device | Channels per Row (n) | Row Channels per Pin (m) | | | | | | | EP1K10 | 144 | 18 | | | | | | | EP1K30 | 216 | 27 | | | | | | | EP1K50 | 216 | 27 | | | | | | | EP1K100 | 312 | 39 | | | | | | | Table 12. | ClockLock & ClockBoost Parameters for -2 | ? Speed-Grade De | vices | | | | |-----------------------|---|-----------------------------|-------|-----|----------------|------| | Symbol | Parameter | Condition | Min | Тур | Max | Unit | | t_R | Input rise time | | | | 5 | ns | | t_{\digamma} | Input fall time | | | | 5 | ns | | t _{INDUTY} | Input duty cycle | | 40 | | 60 | % | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | | 25 | | 80 | MHz | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | | 16 | | 40 | MHz | | f _{CLKDEV} | Input deviation from user specification in the software (1) | | | | 25,000 | PPM | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | | | 100 | ps | | t _{LOCK} | Time required for ClockLock or ClockBoost to acquire lock (3) | | | | 10 | μs | | t _{JITTER} | Jitter on ClockLock or ClockBoost- | t _{INCLKSTB} < 100 | | | 250 <i>(4)</i> | ps | | | generated clock (4) | t _{INCLKSTB} < 50 | | | 200 (4) | ps | | toutduty | Duty cycle for ClockLock or ClockBoost-
generated clock | | 40 | 50 | 60 | % | #### Notes to tables: - (1) To implement the ClockLock and ClockBoost circuitry with the Altera software, designers must specify the input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter. - (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period. - (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration. - (4) The t_{IITTER} specification is measured under long-term observation. The maximum value for t_{IITTER} is 200 ps if $t_{INCLKSTB}$ is lower than 50 ps. # I/O Configuration This section discusses the PCI pull-up clamping diode option, slew-rate control, open-drain output option, and MultiVolt I/O interface for ACEX 1K devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via Altera software logic options. The MultiVolt I/O interface is controlled by connecting $V_{\rm CCIO}$ to a different voltage than $V_{\rm CCINT}$. Its effect can be simulated in the Altera software via the **Global Project Device Options** dialog box (Assign menu). The VCCINT pins must always be connected to a 2.5-V power supply. With a 2.5-V $V_{\rm CCINT}$ level, input voltages are compatible with 2.5-V, 3.3-V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels higher than 3.0 V achieve a faster timing delay of t_{OD2} instead of t_{OD1} . Table 13 summarizes ACEX 1K MultiVolt I/O support. | Table 13. ACEX 1 | K MultiVo | It I/O Supp | oort | | | | |-----------------------|-----------|--------------|--------------|--------------|------------|----------| | V _{CCIO} (V) | Inp | out Signal | (V) | Out | put Signal | (V) | | | 2.5 | 3.3 | 5.0 | 2.5 | 3.3 | 5.0 | | 2.5 | ✓ | √ (1) | √ (1) | ✓ | | | | 3.3 | ✓ | ✓ | √ (1) | √ (2) | ✓ | ✓ | #### Notes: - (1) The PCI clamping diode must be disabled on an input which is driven with a voltage higher than $V_{\rm CCIO}$. - (2) When $V_{\rm CCIO}$ = 3.3 V, an ACEX 1K device can drive a 2.5-V device that has 3.3-V tolerant inputs. Open-drain output pins on ACEX 1K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a higher V_{IH} than LVTTL. When the open-drain pin is active, it will drive low. When the pin is inactive, the resistor will pull up the trace to 5.0 V, thereby meeting the CMOS V_{OH} requirement. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor. ## Power Sequencing & Hot-Socketing Because ACEX 1K devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order. Signals can be driven into ACEX 1K devices before and during power up without damaging the device. Additionally, ACEX 1K devices do not drive out during power up. Once operating conditions are reached, ACEX 1K devices operate as specified by the user. Figure 24 shows the overall timing model, which maps the possible paths to and from the various elements of the ACEX 1K device. Figure 24. ACEX 1K Device Timing Model Figures 25 through 28 show the delays that correspond to various paths and functions within the LE, IOE, EAB, and bidirectional timing models. Figure 25. ACEX 1K Device LE Timing Model | Table 25. EAL | B Timing Macroparameters Notes (1), (6) | | |------------------------|---|------------| | Symbol | Parameter | Conditions | | t _{EABAA} | EAB address access delay | | | t _{EABRCCOMB} | EAB asynchronous read cycle time | | | t _{EABRCREG} | EAB synchronous read cycle time | | | t _{EABWP} | EAB write pulse width | | | t _{EABWCCOMB} | EAB asynchronous write cycle time | | | t _{EABWCREG} | EAB synchronous write cycle time | | | t_{EABDD} | EAB data-in to data-out valid delay | | | t _{EABDATACO} | EAB clock-to-output delay when using output registers | | | t _{EABDATASU} | EAB data/address setup time before clock when using input register | | | t _{EABDATAH} | EAB data/address hold time after clock when using input register | | | t _{EABWESU} | EAB WE setup time before clock when using input register | | | t _{EABWEH} | EAB WE hold time after clock when using input register | | | t _{EABWDSU} | EAB data setup time before falling edge of write pulse when not using input registers | | | t _{EABWDH} | EAB data hold time after falling edge of write pulse when not using input registers | | | t _{EABWASU} | EAB address setup time before rising edge of write pulse when not using input registers | | | t _{EABWAH} | EAB address hold time after falling edge of write pulse when not using input registers | | | t _{EABWO} | EAB write enable to data output valid delay | | | Symbol | Speed Grade | | | | | | | | | | |------------------------|-------------|-----|-----|-----|-----|-----|----|--|--|--| | | - | 1 | -2 | | -3 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{EABDATA1} | | 1.8 | | 1.9 | | 1.9 | ns | | | | | t _{EABDATA2} | | 0.6 | | 0.7 | | 0.7 | ns | | | | | t _{EABWE1} | | 1.2 | | 1.2 | | 1.2 | ns | | | | | t _{EABWE2} | | 0.4 | | 0.4 | | 0.4 | ns | | | | | t _{EABRE1} | | 0.9 | | 0.9 | | 0.9 | ns | | | | | t _{EABRE2} | | 0.4 | | 0.4 | | 0.4 | ns | | | | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | | | | t _{EABCO} | | 0.3 | | 0.3 | | 0.3 | ns | | | | | t _{EABBYPASS} | | 0.5 | | 0.6 | | 0.6 | ns | | | | | t _{EABSU} | 1.0 | | 1.0 | | 1.0 | | ns | | | | | t _{EABH} | 0.5 | | 0.4 | | 0.4 | | ns | | | | | t _{EABCLR} | 0.3 | | 0.3 | | 0.3 | | ns | | | | | t_{AA} | | 3.4 | | 3.6 | | 3.6 | ns | | | | | t_{WP} | 2.7 | | 2.8 | | 2.8 | | ns | | | | | t_{RP} | 1.0 | | 1.0 | | 1.0 | | ns | | | | | t _{WDSU} | 1.0 | | 1.0 | | 1.0 | | ns | | | | | t _{WDH} | 0.1 | | 0.1 | | 0.1 | | ns | | | | | t _{WASU} | 1.8 | | 1.9 | | 1.9 | | ns | | | | | t _{WAH} | 1.9 | | 2.0 | | 2.0 | | ns | | | | | t _{RASU} | 3.1 | | 3.5 | | 3.5 | | ns | | | | | t _{RAH} | 0.2 | | 0.2 | | 0.2 | | ns | | | | | t_{WO} | | 2.7 | | 2.8 | | 2.8 | ns | | | | | t_{DD} | | 2.7 | | 2.8 | | 2.8 | ns | | | | | t _{EABOUT} | | 0.5 | | 0.6 | | 0.6 | ns | | | | | t _{EABCH} | 1.5 | | 2.0 | | 2.0 | | ns | | | | | t _{EABCL} | 2.7 | | 2.8 | | 2.8 | | ns | | | | **ACEX 1K Programmable Logic Device Family Data Sheet** | Symbol | Speed Grade | | | | | | | | |-------------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{EABAA} | | 6.4 | | 7.6 | 7.6 | 8.8 | ns | | | t _{EABRCOMB} | 6.4 | | 7.6 | | 8.8 | | ns | | | t _{EABRCREG} | 4.4 | | 5.1 | | 6.0 | | ns | | | t _{EABWP} | 2.5 | | 2.9 | | 3.3 | | ns | | | t _{EABWCOMB} | 6.0 | | 7.0 | | 8.0 | | ns | | | t _{EABWCREG} | 6.8 | | 7.8 | | 9.0 | | ns | | | t _{EABDD} | | 5.7 | | 6.7 | | 7.7 | ns | | | t _{EABDATA} CO | | 0.8 | | 0.9 | | 1.1 | ns | | | t _{EABDATASU} | 1.5 | | 1.7 | | 2.0 | | ns | | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWESU} | 1.3 | | 1.4 | | 1.7 | | ns | | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWDSU} | 1.5 | | 1.7 | | 2.0 | | ns | | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWASU} | 3.0 | | 3.6 | | 4.3 | | ns | | | t _{EABWAH} | 0.5 | | 0.5 | | 0.4 | | ns | | | t _{EABWO} | | 5.1 | | 6.0 | | 6.8 | ns | | | Symbol | Speed Grade | | | | | | | | | |-------------------|-------------|-----|-----|-----|-----|-----|----|--|--| | | - | 1 | -2 | | -3 | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t_{CO} | | 0.6 | | 0.6 | | 0.7 | ns | | | | t _{COMB} | | 0.3 | | 0.4 | | 0.5 | ns | | | | t _{SU} | 0.5 | | 0.6 | | 0.7 | | ns | | | | t_H | 0.5 | | 0.6 | | 0.8 | | ns | | | | t _{PRE} | | 0.4 | | 0.5 | | 0.7 | ns | | | | t _{CLR} | | 0.8 | | 1.0 | | 1.2 | ns | | | | t _{CH} | 2.0 | | 2.5 | | 3.0 | | ns | | | | t_{CL} | 2.0 | | 2.5 | | 3.0 | | ns | | | | Symbol | Speed Grade | | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|-----|----|--|--| | • | _ | 1 | -2 | | -3 | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t_{IOD} | | 1.3 | | 1.3 | | 1.9 | ns | | | | t _{IOC} | | 0.3 | | 0.4 | | 0.4 | ns | | | | t _{IOCO} | | 1.7 | | 2.1 | | 2.6 | ns | | | | t _{IOCOMB} | | 0.5 | | 0.6 | | 0.8 | ns | | | | t _{IOSU} | 0.8 | | 1.0 | | 1.3 | | ns | | | | t _{IOH} | 0.4 | | 0.5 | | 0.6 | | ns | | | | t _{IOCLR} | | 0.2 | | 0.2 | | 0.4 | ns | | | | t _{OD1} | | 1.2 | | 1.2 | | 1.9 | ns | | | | t _{OD2} | | 0.7 | | 0.8 | | 1.7 | ns | | | | t _{OD3} | | 2.7 | | 3.0 | | 4.3 | ns | | | | t_{XZ} | | 4.7 | | 5.7 | | 7.5 | ns | | | | t_{ZX1} | | 4.7 | | 5.7 | | 7.5 | ns | | | | t_{ZX2} | | 4.2 | | 5.3 | | 7.3 | ns | | | | t_{ZX3} | | 6.2 | | 7.5 | | 9.9 | ns | | | | t _{INREG} | | 3.5 | | 4.2 | | 5.6 | ns | | | | t _{IOFD} | | 1.1 | | 1.3 | | 1.8 | ns | | | | t _{INCOMB} | | 1.1 | | 1.3 | | 1.8 | ns | | | | Symbol | Speed Grade | | | | | | | | | |-----------------------------|-------------|-----|-----|-----|-----|------|----|--|--| | | -1 | | -2 | | -3 | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{INSUBIDIR} (2) | 2.7 | | 3.2 | | 4.3 | | ns | | | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{INSUBIDIR} (3) | 3.7 | | 4.2 | | - | | ns | | | | t _{INHBIDIR} (3) | 0.0 | | 0.0 | | _ | | ns | | | | t _{OUTCOBIDIR} (2) | 2.0 | 4.5 | 2.0 | 5.2 | 2.0 | 7.3 | ns | | | | t _{XZBIDIR} (2) | | 6.8 | | 7.8 | | 10.1 | ns | | | | t _{ZXBIDIR} (2) | | 6.8 | | 7.8 | | 10.1 | ns | | | | t _{OUTCOBIDIR} (3) | 0.5 | 3.5 | 0.5 | 4.2 | = | - | | | | | t _{XZBIDIR} (3) | | 6.8 | | 8.4 | | - | ns | | | | t _{ZXBIDIR} (3) | | 6.8 | | 8.4 | • | - | ns | | | #### Notes to tables: - All timing parameters are described in Tables 22 through 29. This parameter is measured without use of the ClockLock or ClockBoost circuits. (2) - This parameter is measured with use of the ClockLock or ClockBoost circuits (3) | Symbol | Speed Grade | | | | | | | |--------------------------|-------------|-----|-----|-----|-----|-----|----| | | -1 | | -2 | | -3 | | | | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 3.1 | | 3.6 | | 4.4 | ns | | t _{DIN2LE} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{DIN2DATA} | | 1.6 | | 1.8 | | 2.0 | ns | | t _{DCLK2IOE} | | 0.8 | | 1.1 | | 1.4 | ns | | t _{DCLK2LE} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{SAMEROW} | | 1.5 | | 2.5 | | 3.4 | ns | | t _{SAME} COLUMN | | 0.4 | | 1.0 | | 1.6 | ns | | t _{DIFFROW} | | 1.9 | | 3.5 | | 5.0 | ns | | t _{TWOROWS} | | 3.4 | | 6.0 | | 8.4 | ns | | t _{LEPERIPH} | | 4.3 | | 5.4 | | 6.5 | ns | | t _{LABCARRY} | | 0.5 | | 0.7 | | 0.9 | ns | | t _{LABCASC} | | 0.8 | | 1.0 | | 1.4 | ns | | Table 56. EP1K100 External Timing Parameters Notes (1), (2) | | | | | | | | |---|-----|------|-----|------|-----|------|----| | Symbol | | Unit | | | | | | | | -1 | | -2 | | -3 | | | | | Min | Max | Min | Max | Min | Max | | | t _{DRR} | | 9.0 | | 12.0 | | 16.0 | ns | | t _{INSU} (3) | 2.0 | | 2.5 | | 3.3 | | ns | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{оитсо} (3) | 2.0 | 5.2 | 2.0 | 6.9 | 2.0 | 9.1 | ns | | t _{INSU} (4) | 2.0 | | 2.2 | | - | | ns | | t _{INH} (4) | 0.0 | | 0.0 | | - | | ns | | t _{OUTCO} (4) | 0.5 | 3.0 | 0.5 | 4.6 | - | - | ns | | t _{PCISU} | 3.0 | | 6.2 | | _ | | ns | | t _{PCIH} | 0.0 | | 0.0 | | _ | | ns | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 6.9 | _ | _ | ns | The I_{CCACTIVE} value can be calculated with the following equation: $$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} (\mu A)$$ Where: f_{MAX} = Maximum operating frequency in MHzN = Total number of LEs used in the device tog_{LC} = Average percent of LEs toggling at each clock (typically 12.5%) K = Constant Table 58 provides the constant (K) values for ACEX 1K devices. | Table 58. ACEX 1K Constant Values | | | | | | |-----------------------------------|---------|--|--|--|--| | Device | K Value | | | | | | EP1K10 | 4.5 | | | | | | EP1K30 | 4.5 | | | | | | EP1K50 | 4.5 | | | | | | EP1K100 | 4.5 | | | | | This supply power calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions. To better reflect actual designs, the power model (and the constant K in the power calculation equations) for continuous interconnect ACEX 1K devices assumes that LEs drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all LEs drive only one short interconnect segment. This assumption may lead to inaccurate results when compared to measured power consumption for actual designs in segmented FPGAs. Figure 31 shows the relationship between the current and operating frequency of ACEX 1K devices. For information on other ACEX 1K devices, contact Altera Applications at (800) 800-EPLD.