

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TFBGA
Supplier Device Package	64-TFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l051r6h6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The access line ultra-low-power STM32L051x6/8 microcontrollers incorporate the highperformance ARM[®] Cortex[®]-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (64 Kbytes of Flash program memory, 2 Kbytes of data EEPROM and 8 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.

The STM32L051x6/8 devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes.

The STM32L051x6/8 devices offer several analog features, one 12-bit ADC with hardware oversampling, two ultra-low-power comparators, several timers, one low-power timer (LPTIM), three general-purpose 16-bit timers and one basic timer, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock.

Moreover, the STM32L051x6/8 devices embed standard and advanced communication interfaces: up to two I2C, two SPIs, one I2S, two USARTs, a low-power UART (LPUART), .

The STM32L051x6/8 also include a real-time clock and a set of backup registers that remain powered in Standby mode.

The ultra-low-power STM32L051x6/8 devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications.

• Stop mode without RTC

The Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are disabled.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.

The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 μ s, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). It can also be wakened by the USART/I2C/LPUART/LPTIMER wakeup events.

• Standby mode with RTC

The Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

Standby mode without RTC

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).

The device exits Standby mode in 60 μ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode.

Operating power supply	Functionalities depending on the operating power supply range				
range	ADC operation Dynamic voltage scaling range		I/O operation		
V _{DD} = 1.65 to 1.71 V	ADC only, conversion time up to 570 ksps	Range 2 or range 3	Degraded speed performance		
V _{DD} = 1.71 to 1.8 V ⁽¹⁾	ADC only, conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Degraded speed performance		
V _{DD} = 1.8 to 2.0 V ⁽¹⁾	Conversion time up to 1.14 Msps	Range1, range 2 or range 3	Degraded speed performance		

Table 3.	Functionalities	depending	on the o	perating	power su	pplv range
		acponancy		por a mig	p 0 11 0 1 0 0	

STM32L051x6 STM32L051x8

Figure 2. Clock tree

4 Pin descriptions

1. The above figure shows the package top view.

2. I/O supplied by VDDIO2.

Figure 5. STM32L051x6/8 LQFP48 pinout - 7 x 7 mm

1. The above figure shows the package top view.

2. I/O supplied by VDDIO2.

Figure 6. STM32L051x6/8 WLCSP36 ballout

1. The above figure shows the package top view.

		Pin N	umber								
LQFP64	TFBGA64	LQFP48	WLCSP36 ⁽¹⁾	LQFP32	UFQFPN32	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
48	E5	36	-	-	-	VDDIO2	S		-	-	-
49	A7	37	B2	24	24	PA14	I/O	FT	-	SWCLK, USART2_TX	
50	A6	38	A2	25	25	PA15	I/O	FT	-	SPI1_NSS, TIM2_ETR, EVENTOUT, USART2_RX, TIM2_CH1	-
51	B7	I	-	-	-	PC10	I/O	FT	-	LPUART1_TX	-
52	B6	-	-	-	-	PC11	I/O	FT	-	LPUART1_RX	-
53	C5	-	-	-	-	PC12	I/O	FT	-	-	-
54	B5	-	-	-	-	PD2	I/O	FT	-	LPUART1_RTS_DE	-
55	A5	39	В3	26	26	PB3	I/O	FT	-	SPI1_SCK, TIM2_CH2, EVENTOUT	COMP2_INN
56	A4	40	A3	27	27	PB4	I/O	FT	-	SPI1_MISO, EVENTOUT, TIM22_CH1	COMP2_INP
57	C4	41	C4	28	28	PB5	I/O	FT	-	SPI1_MOSI, LPTIM1_IN1, I2C1_SMBA, TIM22_CH2	COMP2_INP
58	D3	42	B4	29	29	PB6	I/O	FTf	-	USART1_TX, I2C1_SCL, LPTIM1_ETR	COMP2_INP
59	C3	43	A4	30	30	PB7	I/O	FTf	-	USART1_RX, I2C1_SDA, LPTIM1_IN2	COMP2_INP, PVD_IN
60	B4	44	C5	31	31	BOOT0	В		-	-	-
61	B3	45	B5	-	32	PB8	I/O	FTf	-	I2C1_SCL	-
62	A3	46	-	-	-	PB9	I/O	FTf	-	EVENTOUT, I2C1_SDA, SPI2_NSS/I2S2_WS	-

Table 15. STM32L051x6/8 pin definitions (continued)

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_Amax$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.6 V (for the 1.65 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V	DVD throshold 6	Falling edge	2.97	3.05	3.09	V	
VPVD6		Rising edge	3.08	3.15	3.20	v	
		BOR0 threshold	-	40	-		
V _{hyst}	Hysteresis voltage	All BOR and PVD thresholds excepting BOR0	-	100	-	mV	

Table 24. Embedded reset and power control block characteristics (continued)

1. Guaranteed by characterization results.

2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.

6.3.3 Embedded internal reference voltage

The parameters given in *Table 26* are based on characterization results, unless otherwise specified.

Table 25. Embedded internal reference	voltage calibration values
---------------------------------------	----------------------------

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 25 °C V _{DDA} = 3 V	0x1FF8 0078 - 0x1FF8 0079

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽²⁾	Internal reference voltage	– 40 °C < T _J < +125 °C	1.202	1.224	1.242	V
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V _{DDA} and V _{REF+} voltage during V _{REFINT} factory measure	-	2.99	3	3.01	V
A _{VREF_MEAS}	Accuracy of factory-measured V _{REFINT} value ⁽³⁾	Including uncertainties due to ADC and V _{DDA} /V _{REF+} values	-	-	±5	mV
T _{Coeff} ⁽⁴⁾	Temperature coefficient	–40 °C < T _J < +125 °C	-	25	100	ppm/°C
A _{Coeff} ⁽⁴⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽⁴⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽⁴⁾⁽⁵⁾	ADC sampling time when reading the internal reference voltage	-	5	10	-	μs
T _{ADC_BUF} ⁽⁴⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽⁴⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μA
I _{VREF_OUT} ⁽⁴⁾	VREF_OUT output current ⁽⁶⁾	-	-	-	1	μA
C _{VREF_OUT} ⁽⁴⁾	VREF_OUT output load	-	-	-	50	pF

Table 26. Embedded internal reference voltage⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{LPBUF} ⁽⁴⁾	Consumption of reference voltage buffer for VREF_OUT and COMP	-	-	730	1200	nA
V _{REFINT_DIV1} ⁽⁴⁾	1/4 reference voltage	-	24	25	26	
V _{REFINT_DIV2} ⁽⁴⁾	1/2 reference voltage	-	49	50	51	% Vrefinit
V _{REFINT_DIV3} ⁽⁴⁾	3/4 reference voltage	-	74	75	76	

Table 26. Embedded internal reference voltage⁽¹⁾ (continued)

1. Refer to *Table 38: Peripheral current consumption in Stop and Standby mode* for the value of the internal reference current consumption (I_{REFINT}).

2. Guaranteed by test in production.

3. The internal V_{REF} value is individually measured in production and stored in dedicated EEPROM bytes.

4. Guaranteed by design.

5. Shortest sampling time can be determined in the application by multiple iterations.

6. To guarantee less than 1% VREF_OUT deviation.

6.3.4 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in *Figure 13: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code if not specified otherwise.

The current consumption values are derived from the tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions* unless otherwise specified.

The MCU is placed under the following conditions:

- All I/O pins are configured in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time and prefetch is adjusted depending on fHCLK frequency and voltage range to provide the best CPU performance unless otherwise specified.
- When the peripherals are enabled f_{APB1} = f_{APB2} = f_{APB}
- When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or HSE = 16 MHz (if HSE bypass mode is used)
- The HSE user clock applied to OSCI_IN input follows the characteristic specified in *Table 40: High-speed external user clock characteristics*
- For maximum current consumption $V_{DD} = V_{DDA} = 3.6$ V is applied to all supply pins
- For typical current consumption $V_{DD} = V_{DDA} = 3.0$ V is applied to all supply pins if not specified otherwise

The parameters given in *Table 47*, *Table 23* and *Table 24* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 23*.

Figure 15. I_{DD} vs V_{DD} , at T_A= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS

6.3.8 PLL characteristics

The parameters given in *Table 47* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 23*.

Symbol	Doromotor		Unit			
Symbol	Faidilleter	Min	Тур	Max ⁽¹⁾		
f	PLL input clock ⁽²⁾	2	-	24	MHz	
'PLL_IN	PLL input clock duty cycle	45	-	55	%	
f _{PLL_OUT}	PLL output clock	2	-	32	MHz	
t _{LOCK}	PLL input = 16 MHz PLL VCO = 96 MHz	-	115	160	μs	
Jitter	Cycle-to-cycle jitter	-		±600	ps	
I _{DDA} (PLL)	Current consumption on V _{DDA}	-	220	450		
I _{DD} (PLL)	Current consumption on V _{DD}	-	120	150	μΑ	

Table	47.	PLL	characteristics

1. Guaranteed by characterization results.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT} .

6.3.9 Memory characteristics

RAM memory

Table 48.	RAM an	d hardware	reaisters
14010 101			

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Flash memory and data EEPROM

Table 49. Flash memory and data EEPROM characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V_{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V
t _{prog}	Programming time for word or half-page	Erasing	-	3.28	3.94	ms
		Programming	-	3.28	3.94	

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 51*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP64, T_A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, \text{LQFP64}, \text{T}_{\text{A}} = +25 \text{ °C},$ f _{HCLK} = 32 MHz conforms to IEC 61000-4-4	4A

Table 51. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

Symbol	Ratings Conditions		Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \text{ °C},$ conforming to ANSI/JEDEC JS-001	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \text{ °C},$ conforming to ANSI/ESD STM5.3.1.	C4	500	v

Table 53. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 54. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +125$ °C conforming to JESD78A	II level A

Figure 24. V_{IH}/V_{IL} versus VDD (CMOS I/Os)

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 15 mA with the non-standard V_{OL}/V_{OH} specifications given in *Table 57*.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD(Σ)} (see *Table 21*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS(Σ)} (see *Table 21*).

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 26* and *Table 58*, respectively.

Unless otherwise specified, the parameters given in *Table 58* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 23*.

OSPEEDRx[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit
	f	Maximum frequency ⁽³⁾	$C_{L} = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		400	kH7
00	'max(IO)out		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	100	KI IZ
00	t _{f(IO)out}	Output rise and fall time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	125	ne
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	320	113
	f (IO) (Maximum frequency ⁽³⁾	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	2	MHz
01	'max(IO)out	Maximum nequency	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	0.6	101112
01	t _{f(IO)out}	Output rise and fall time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	30	ne
	t _{r(IO)out}		C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	65	113
	F	Maximum frequency ⁽³⁾	$C_{L} = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		10	МНт
10	max(IO)out		$C_{L} = 50 \text{ pF}, V_{DD} = 1.65 \text{ V to } 2.7 \text{ V}$ -		2	
10	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	13	ne
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	28	
	F	Maximum frequency ⁽³⁾	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	35	МНт
11	' max(IO)out		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	10	
	t _{f(IO)out}	Output rise and fall time	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	6	ne
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	17	115
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	1	MHz
	t _{f(IO)out}	Output fall time	C_{L} = 50 pF, V_{DD} = 2.5 V to 3.6 V	-	10	ne
Fm+	t _{r(IO)out}	Output rise time		-	30	115
configuration ⁽⁴⁾	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	350	KHz
	t _{f(IO)out}	Output fall time	$C_{L} = 50 \text{ pF}, V_{DD} = 1.65 \text{ V to } 3.6 \text{ V}$	-	15	20
	t _{r(IO)out}	Output rise time		-	60	115
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	8	-	ns

Table 58. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the line reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. The maximum frequency is defined in *Figure 26*.

4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the line reference manual for a detailed description of Fm+ I/O configuration.

DocID025938 Rev 7

Figure 26. I/O AC characteristics definition

NRST pin characteristics 6.3.14

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU}, except when it is internally driven low (see Table 59).

Unless otherwise specified, the parameters given in Table 59 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in Table 23.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	V_{SS}	-	0.8	
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	-	1.4	-	V_{DD}	
V _{OL(NRST)} ⁽¹⁾	NRST output low level	I _{OL} = 2 mA 2.7 V < V _{DD} < 3.6 V	-	-	0.4	V
	voltage	I _{OL} = 1.5 mA 1.65 V < V _{DD} < 2.7 V	-	-	0.4	
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	10%V _{DD} ⁽²⁾	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	50	ns
V _{NF(NRST)} ⁽¹⁾	NRST input not filtered pulse	-	350	-	-	ns

Table	59	NRST	nin	characteristics
Table	55.		pill	Characteristics

1. Guaranteed by design.

2. 200 mV minimum value

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%. 3.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{AIN} ⁽³⁾	External input impedance	See <i>Equation 1</i> and <i>Table 61</i> for details	-	-	50	kΩ
R _{ADC} ⁽³⁾⁽⁴⁾	Sampling switch resistance	-	-	-	1	kΩ
C _{ADC} ⁽³⁾	Internal sample and hold capacitor	-	-	-	8	pF
↓ (3)(5)	Calibration time	f _{ADC} = 16 MHz		5.2		μs
CAL		-		83		1/f _{ADC}
		ADC clock = HSI16	1.5 ADC cycles + 2 f _{PCLK} cycles	-	1.5 ADC cycles + 3 f _{PCLK} cycles	-
W _{LATENCY} ⁽⁶⁾	ADC_DR register write latency	ADC clock = PCLK/2	-	4.5	-	f _{PCLK} cycle
		ADC clock = PCLK/4	-	8.5	-	f _{PCLK} cycle
		$f_{ADC} = f_{PCLK}/2 = 16 \text{ MHz}$	0.266			μs
	Trigger conversion latency	$f_{ADC} = f_{PCLK}/2$	8.5			1/f _{PCLK}
t _{latr} ⁽³⁾		$f_{ADC} = f_{PCLK}/4 = 8 \text{ MHz}$	0.516			μs
		$f_{ADC} = f_{PCLK}/4$	16.5			1/f _{PCLK}
		f _{ADC} = f _{HSI16} = 16 MHz	0.252	-	0.260	μs
Jitter _{ADC}	ADC jitter on trigger conversion	f _{ADC} = f _{HSI16}	-	1	-	1/f _{HSI16}
+ (3)	Sampling time	f _{ADC} = 16 MHz	0.093	-	10.03	μs
t _S ^(e)		-	1.5	-	160.5	1/f _{ADC}
t _{UP_LDO} ⁽³⁾⁽⁵⁾	Internal LDO power-up time	-	-	-	10	μs
t _{STAB} ⁽³⁾⁽⁵⁾	ADC stabilization time	-	14		1/f _{ADC}	
+ (3)	Total conversion time	f _{ADC} = 16 MHz, 12-bit resolution	0.875	-	10.81	μs
t _{ConV} ⁽³⁾	(including sampling time)	12-bit resolution	14 to 173 (t _S for sampling +12.5 for successive approximation)			1/f _{ADC}

 Table 60. ADC characteristics (continued)

1. V_{DDA} minimum value can be decreased in specific temperature conditions. Refer to Table 61: RAIN max for fADC = 16 MHz.

2. A current consumption proportional to the APB clock frequency has to be added (see *Table 37: Peripheral current consumption in Run or Sleep mode*).

3. Guaranteed by design.

4. Standard channels have an extra protection resistance which depends on supply voltage. Refer to *Table 61: RAIN max for fADC = 16 MHz*.

5. This parameter only includes the ADC timing. It does not take into account register access latency.

6. This parameter specifies the latency to transfer the conversion result into the ADC_DR register. EOC bit is set to indicate the conversion is complete and has the same latency.

Figure 31. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

6.3.16 Temperature sensor characteristics

Table 63. Temperature sensor calibration values

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 007A - 0x1FF8 007B
TS_CAL2	TS ADC raw data acquired at temperature of 130 °C, V_{DDA} = 3 V	0x1FF8 007E - 0x1FF8 007F

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	1.48	1.61	1.75	mV/°C
V ₁₃₀	Voltage at 130°C ±5°C ⁽²⁾	640	670	700	mV
I _{DDA(TEMP)} ⁽³⁾	Current consumption	-	3.4	6	μA
t _{START} ⁽³⁾	Startup time	-	-	10	116
$T_{S_{temp}}^{(4)(3)}$	ADC sampling time when reading the temperature	10	-	-	μο

Table 64. Temperature sensor characteristics

1. Guaranteed by characterization results.

2. Measured at V_{DD} = 3 V \pm 10 mV. V130 ADC conversion result is stored in the TS_CAL2 byte.

3. Guaranteed by design.

4. Shortest sampling time can be determined in the application by multiple iterations.

Figure 34. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

7.8 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient TFBGA64 - 5 x 5 mm / 0.5 mm pitch	61	
	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	45	
Θ _{JA}	Thermal resistance junction-ambient Standard WLCSP36 - 0.4 mm pitch	63	
	Thermal resistance junction-ambient Thin WLCSP36 - 0.4 mm pitch	59	°C/W
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	55	
	Thermal resistance junction-ambient LQFP32 - 7 x 7 mm / 0.8 mm pitch	57	
	Thermal resistance junction-ambient UFQFPN32 - 5 x 5 mm / 0.5 mm pitch	38	

Table 84. Thermal characteristics

