

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	29
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-UFBGA, WLCSP
Supplier Device Package	36-WLCSP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l051t8y6dtr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 42.	TFBGA64 marking example (package top view)	107
Figure 43.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline	108
Figure 44.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint	109
Figure 45.	LQFP48 marking example (package top view)	
Figure 46.	Standard WLCSP36 - 2.61 x 2.88 mm, 0.4 mm pitch wafer level chip scale	
-	package outline.	111
Figure 47.	Standard WLCSP36 - 2.61 x 2.88 mm, 0.4 mm pitch wafer level chip scale	
-	recommended footprint.	112
Figure 48.	Standard WLCSP36 marking example (package top view)	113
Figure 49.	Thin WLCSP36 - 2.61 x 2.88 mm, 0.4 mm pitch wafer level chip scale	
-	package outline.	114
Figure 50.	Thin WLCSP36 - 2.61 x 2.88 mm, 0.4 mm pitch wafer level chip scale	
	package recommended footprint	115
Figure 51.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline	116
Figure 52.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint	117
Figure 53.	LQFP32 marking example (package top view)	
Figure 54.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	
-	package outline.	119
Figure 55.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	
-	recommended footprint.	120
Figure 56.	UFQFPN32 marking example (package top view)	
Figure 57.	Thermal resistance	

2.1 Device overview

Table 2. Ultra-low-power	STM32L051x6	6/x8 device	features and	periphera	al counts	

Peripheral		STM32 L051K6	STM32L 051T6	STM32 L051C6	STM32 L051R6	STM32 L051K8	STM32L 051T8	STM32 L051C8	STM32 L051R8
Flash (Kbyte	s)		32	2			64	4	
Data EEPROI	M (Kbytes)		2				2		
RAM (Kbytes	i)		8				8	}	
	General- purpose		3				3	5	
Timers	Basic		1				1		
	LPTIMER		1				1		
	ICK/IWDG/ /DG		1/1/	1/1			1/1/	1/1	
	SPI/I2S	3(2) ⁽¹⁾ /0	3(2) ⁽¹⁾ /0	4(2) ⁽¹⁾ /1	4(2) ⁽¹⁾ /1	3(2) ⁽¹⁾ /0	3(2) ⁽¹⁾ /0	4(2) ⁽¹⁾ /1	4(2) ⁽¹⁾ /1
Communi-	l ² C	1	2	2	2	1	2	2	2
cation interfaces	USART		2			2			
	LPUART	0	1	1	1	0	1	1	1
GPIOs		27 ⁽²⁾	29	37	51 ⁽³⁾	27 ⁽²⁾	29	37	51 ⁽³⁾
Clocks: HSE/LSE/HSI	I/MSI/LSI	0/1/1/1/1	0/1/1/1/1	1/1/1/1/1	1/1/1/1/1	0/1/1/1/1	0/1/1/1/1	1/1/1/1/1	1/1/1/1/1
12-bit synchr Number of ch		1 10	1 10	1 10	1 16 ⁽³⁾	1 10	1 10	1 10	1 16 ⁽³⁾
Comparators	i		2	L	L		2		
Max. CPU fre	quency	32 MHz							
Operating vo	Itage	1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option							
Operating ter	mperatures					re: –40 to + re: –40 to +			
Packages		LQFP32, UFQFPN 32	WLCSP 36	LQFP48	LQFP64 TFBGA 64	LQFP32, UFQFPN 32	WLCSP 36	LQFP48	LQFP64 TFBGA 64

 $1. \ \ 2 \ SPI \ interfaces \ are \ USARTs \ operating \ in \ SPI \ master \ mode.$

2. LQFP32 has two GPIOs, less than UFQFPN32 (27).

3. TFBGA64 has one GPIO, one ADC input and one capacitive sensing channel less than LQFP64.

2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary core up to ARM[®] Cortex[®]-M4, including ARM[®] Cortex[®]-M3 and ARM[®] Cortex[®]-M0+. The STM32Lx series are the best choice to answer your needs in terms of ultra-low-power features. The STM32 ultra-low-power series are the best solution for applications such as gaz/water meter, keyboard/mouse or fitness and healthcare application. Several built-in features like LCD drivers, dual-bank memory, low-power run mode, operational amplifiers, 128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to respond to the latest market feature and efficiency requirements.

Table 5. Functionalities depending on the working mode (from Run/active down to standby) (continued)⁽¹⁾

			Low-	Low-	Stop		Standby	
IPs	Run/Active	Sleep	power run	power sleep		Wakeup capability		Wakeup capability
			Down to 8 µA			↓ μΑ (No V _{DD} =1.8 V		28 µA (No) V _{DD} =1.8 V
Consumption $V_{-} = 1.8 \text{ to } 3.6 \text{ V}$	Down to 140 µA/MHz	Down to 37 µA/MHz		Down to		µA (with V _{DD} =1.8 V		5 µA (with) V _{DD} =1.8 V
V _{DD} =1.8 to 3.6 V (Typ)	(from Flash memory)	(from Flash memory)		4.5 µA		↓μΑ (No V _{DD} =3.0 V		29 µA (No) V _{DD} =3.0 V
						(with RTC) _{9D} =3.0 V		5 μΑ (with) V _{DD} =3.0 V

1. Legend:

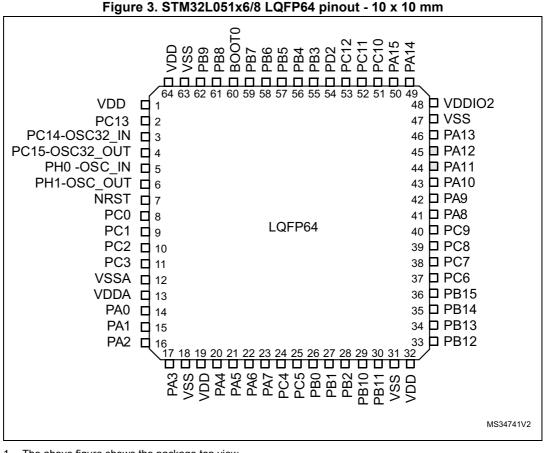
"Y" = Yes (enable). "O" = Optional can be enabled/disabled by software)

"-" = Not available

- Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need it anymore.
- 3. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start. To generate a wakeup on address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep running the HSI clock.
- 4. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up the HSI during reception.

3.2 Interconnect matrix

Several peripherals are directly interconnected. This allows autonomous communication between peripherals, thus saving CPU resources and power consumption. In addition, these hardware connections allow fast and predictable latency.


Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power run, Low-power sleep and Stop modes.

Interconnect source	Interconnect destination Interconnect action R		Run	Sleep	Low- power run	Low- power sleep	Stop	
COMPx	TIM2,TIM21, TIM22	Timer input channel, trigger from analog signals comparison	Y	Y	Y	Y	-	
	LPTIM	Timer input channel, trigger from analog signals comparison	Y	Y	Y	Y	Y	
TIMx	TIMx	Timer triggered by other timer	Y	Y	Y	Y	-	

Table 6. STM32L0xx peripherals interconnect matrix

4 Pin descriptions

1. The above figure shows the package top view.

2. I/O supplied by VDDIO2.

		Pin Nu	umber										
LQFP64	TFBGA64	LQFP48	WLCSP36 ⁽¹⁾	LQFP32	UFQFPN32	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions		
5	C1	5	-	-	-	PH0-OSC_IN (PH0)	I/O	тс	-	-	OSC_IN		
6	D1	6	-	-	-	PH1- OSC_OUT (PH1)	I/O	тс	-	-	OSC_OUT		
7	E1	7	C6	4	4	NRST	I/O	RST	-	-	-		
8	E3	-	-	-	-	PC0	I/O	FT	-	LPTIM1_IN1, EVENTOUT	ADC_IN10		
9	E2	-	-	-	-	PC1	I/O	FT	-	LPTIM1_OUT, EVENTOUT	ADC_IN11		
10	F2	-	-	-	-	PC2	I/O	FT	-	LPTIM1_IN2, SPI2_MISO/I2S2_M CK	ADC_IN12		
11	-	-	-	-	-	PC3	I/O	FT	-	LPTIM1_ETR, SPI2_MOSI/I2S2_SD	ADC_IN13		
12	F1	8	-	-	-	VSSA	S		-	-	-		
-	G1	-	E6	-	-	VREF+	S		-	-	-		
13	H1	9	D5	5	5	VDDA	S		-	-	-		
14	G2	10	D4	6	6	PA0	I/O	тс	-	TIM2_CH1, USART2_CTS, TIM2_ETR, COMP1_OUT	COMP1_INM6, ADC_IN0, RTC_TAMP2/WKU P1		
15	H2	11	F6	7	7	PA1	I/O	FT	-	EVENTOUT, TIM2_CH2, USART2_RTS_DE, TIM21_ETR	COMP1_INP, ADC_IN1		
16	F3	12	E5	8	8	PA2	I/O	FT	-	TIM21_CH1, TIM2_CH3, USART2_TX, COMP2_OUT	COMP2_INM6, ADC_IN2		
17	G3	13	F5	9	9	PA3	I/O	FT	-	TIM21_CH2, TIM2_CH4, USART2_RX	COMP2_INP, ADC_IN3		
18	C2	-	-	-	-	VSS	S		-	-	-		

Memory mapping 5

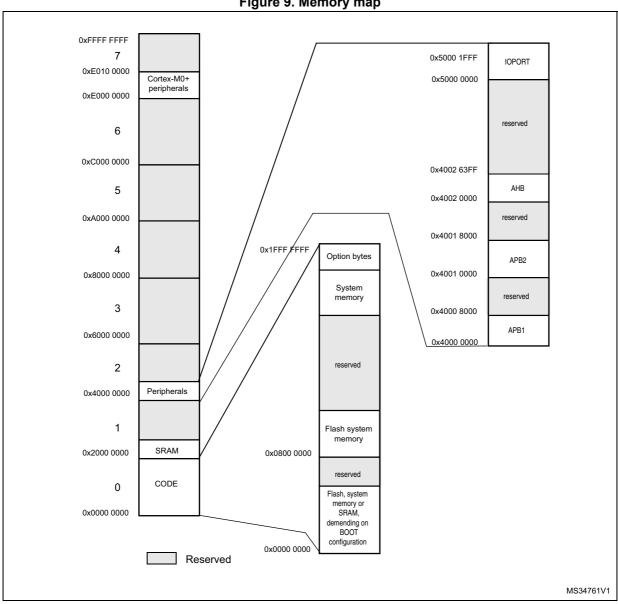


Figure 9. Memory map

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
M	PVD threshold 6	Falling edge	2.97	3.05	3.09	V
V _{PVD6}		Rising edge	3.08	3.15	3.20	v
		BOR0 threshold	-	40	-	
V _{hyst}	Hysteresis voltage	All BOR and PVD thresholds excepting BOR0	-	100	-	mV

Table 24. Embedded reset and power control block characteristics (continued)

1. Guaranteed by characterization results.

2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.

6.3.3 Embedded internal reference voltage

The parameters given in *Table 26* are based on characterization results, unless otherwise specified.

Calibration value name	Description	Memory address
	Raw data acquired at temperature of 25 °C V _{DDA} = 3 V	0x1FF8 0078 - 0x1FF8 0079

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽²⁾	Internal reference voltage	– 40 °C < T _J < +125 °C	1.202	1.224	1.242	V
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V_{DDA} and V_{REF+} voltage during V_{REFINT} factory measure	-	2.99	3	3.01	V
A _{VREF_MEAS}	Accuracy of factory-measured V_{REFINT} value ⁽³⁾	Including uncertainties due to ADC and V _{DDA} /V _{REF+} values	-	-	±5	mV
T _{Coeff} ⁽⁴⁾	Temperature coefficient	–40 °C < T _J < +125 °C	-	25	100	ppm/°C
A _{Coeff} ⁽⁴⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽⁴⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽⁴⁾⁽⁵⁾	ADC sampling time when reading the internal reference voltage	-	5	10	-	μs
T _{ADC_BUF} ⁽⁴⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽⁴⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μA
I _{VREF_OUT} ⁽⁴⁾	VREF_OUT output current ⁽⁶⁾	-	-	-	1	μA
C _{VREF_OUT} ⁽⁴⁾	VREF_OUT output load	-	-	-	50	pF

Table 26. Embedded internal reference voltage⁽¹⁾

Symbol	Parameter	Conditions		f _{HCLK}	Тур	Max ⁽¹⁾	Unit
			Range 3,	1 MHz	43.5	90	
			V _{CORE} =1.2 V,	2 MHz	72	120	
			VOS[1:0]=11	4 MHz	130	180	
		f _{HSE} = f _{HCLK} up to	Range 2,	4 MHz	160	210	
		16 MHz included, f _{HSE} = f _{HCLK} /2 above	V _{CORE} =1.5 V,	8 MHz	305	370	
		16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16 MHz	590	710	
			Range 1,	8 MHz	370	430	
	Supply current		V _{CORE} =1.8 V,	16 MHz	715	860	
	in Sleep mode, Flash		VOS[1:0]=01	32 MHz	1650	1900	
	OFF		Range 3,	65 kHz	18	65	
		MSI clock	V _{CORE} =1.2 V,	524 kHz	31.5	75	
			VOS[1:0]=11	4.2 MHz	140	210	
		HSI16 clock source (16 MHz)	Range 2, V _{CORE} =1.5 V, VOS[1:0]=10	16 MHz	665	830	
			Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	32 MHz	1750	2100	
I _{DD} (Sleep)		$f_{HSE} = f_{HCLK}$ up to 16 MHz included, $f_{HSE} = f_{HCLK}/2$ above 16 MHz (PLL ON) ⁽²⁾	Range 3, V _{CORE} =1.2 V, VOS[1:0]=11	1 MHz	57.5	130	- μΑ - - -
				2 MHz	84	170	
				4 MHz	150	280	
			Range 2, _{CORE} =1.5 V, VOS[1:0]=10	4 MHz	170	310	
				8 MHz	315	420	
				16 MHz	605	770	
			Range 1,	8 MHz	380	460	
	Supply current		V _{CORE} =1.8 V,	16 MHz	730	950	
	in Sleep mode, Flash		VOS[1:0]=01	32 MHz	1650	2400	
	ON		Range 3,	65 kHz	29.5	110	
		MSI clock	V _{CORE} =1.2 V,	524 kHz	44.5	130	
			VOS[1:0]=11	4.2 MHz	150	270	
		HSI16 clock source	Range 2, V _{CORE} =1.5 V, VOS[1:0]=10	16 MHz	680	950	
		(16 MHz)	Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	32 MHz	1750	2100	

Table 31. Current consumption in Sleep mode

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter		Conditions		Тур	Max ⁽¹⁾	Unit
				$T_A = -40 \text{ to } 25^{\circ}\text{C}$	8.5	10	
			MSI clock = 65 kHz,	T _A = 85 °C	11.5	48	
			f _{HCLK} = 32 kHz	T _A = 105 °C	15.5	53	
				T _A = 125 °C	27.5	130	
		All peripherals		$T_A = -40 \text{ °C to } 25 \text{ °C}$	10	15	
		OFF, code executed from	MSI clock= 65 kHz,	T _A = 85 °C	15.5	50	
		RAM, Flash	f _{HCLK} = 65 kHz	T _A = 105 °C	19.5	54	
		switched off, V _{DD} from 1.65		T _A = 125 °C	31.5	130	
		to 3.6 V		$T_A = -40 \text{ to } 25^{\circ}\text{C}$	20	25	
				T _A = 55 °C	23	50	- μΑ
			MSI clock= 131 kHz, f _{HCLK} = 131 kHz	T _A = 85 °C	25.5	55	
	Supply			T _A = 105 °C	29.5	64	
I _{DD}	current in			T _A = 125 °C	40	140	
(LP Run)	Low-power run mode		MSI clock= 65 kHz, f _{HCLK} = 32 kHz	$T_A = -40 \text{ to } 25^{\circ}\text{C}$	22	28	
	Turi mode			T _A = 85 °C	26	68	
				T _A = 105 °C	31	75	
				T _A = 125 °C	44	95	
		All peripherals		$T_A = -40 \text{ to } 25^{\circ}\text{C}$	27.5	33	
		OFF, code	MSI clock = 65 kHz,	T _A = 85 °C	31.5	73	
		executed from Flash, V _{DD}	f _{HCLK} = 65 kHz	T _A = 105 °C	36.5	80	1
		from 1.65 V to		T _A = 125 °C	49	100	
		3.6 V		$T_A = -40 \text{ to } 25^{\circ}\text{C}$	39	46	
			MSI clock =	T _A = 55 °C	41	80	1
			131 kHz,	T _A = 85 °C	44	86	
			f _{HCLK} = 131 kHz	T _A = 105 °C	49.5	100	
				T _A = 125 °C	60	120	

Table 32. Current consumption in Low-power run mode

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following tables. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked OFF
 - with only one peripheral clocked on

Table 37. Peripheral current consumption in Run or Sleep mode⁽¹⁾

		Typical consumption, V_{DD} = 3.0 V, T _A = 25 °C						
Peripheral		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit		
	I2C1	11	9.5	7.5	9			
	I2C2	4	3.5	3	2.5			
	LPTIM1	10	8.5	6.5	8			
	LPUART1	8	6.5	5.5	6			
APB1	SPI2	9	4.5	3.5	4	µA/MHz (f _{HCLK})		
	USART2	14.5	12	9.5	11	(HOLK)		
	TIM2	10.5	8.5	7	9			
	TIM6	3.5	3	2.5	2			
	WWDG	3	2	2	2			
	ADC1 ⁽²⁾	5.5	5	3.5	4			
	SPI1	4	3	3	2.5			
	USART1	14.5	11.5	9.5	12			
APB2	TIM21	7.5	6	5	5.5	µA/MHz		
AFDZ	TIM22	7	6	5	6	(f _{HCLK})		
	FIREWALL	1.5	1	1	0.5			
	DBGMCU	1.5	1	1	0.5			
	SYSCFG	2.5	2	2	1.5			
	GPIOA	3.5	3	2.5	2.5			
Cortex- M0+ core	GPIOB	3.5	2.5	2	2.5	µA/MHz		
I/O port	GPIOC	8.5	6.5	5.5	7	(f _{HCLK})		
	GPIOD	1	0.5	0.5	0.5			
	CRC	1.5	1	1	1			
AHB	FLASH	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	µA/MHz (f _{HCLK})		
	DMA1	10	8	6.5	8.5	VIICLK/		

6.3.5 Wakeup time from low-power mode

The wakeup times given in the following table are measured with the MSI or HSI16 RC oscillator. The clock source used to wake up the device depends on the current operating mode:

- Sleep mode: the clock source is the clock that was set before entering Sleep mode
- Stop mode: the clock source is either the MSI oscillator in the range configured before entering Stop mode, the HSI16 or HSI16/4.
- Standby mode: the clock source is the MSI oscillator running at 2.1 MHz

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 23*.

Symbol	Parameter	Conditions	Тур	Max	Unit	
t _{WUSLEEP}	Wakeup from Sleep mode	f _{HCLK} = 32 MHz	7	8		
+	Wakeup from Low-power sleep mode,	f _{HCLK} = 262 kHz Flash memory enabled	7 8		Number of clock	
twusleep_lp	f _{HCLK} = 262 kHz	f _{HCLK} = 262 kHz Flash memory switched OFF	9	10	cycles	
		f _{HCLK} = f _{MSI} = 4.2 MHz	5.0	8		
	Wakeup from Stop mode, regulator in Run mode	f _{HCLK} = f _{HSI} = 16 MHz	4.9	7		
		f _{HCLK} = f _{HSI} /4 = 4 MHz	8.0	11		
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage range 1	5.0	8		
	Wakeup from Stop mode, regulator in low- power mode	f _{HCLK} = f _{MSI} = 4.2 MHz Voltage range 2	5.0	8		
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage range 3	5.0	8		
		f _{HCLK} = f _{MSI} = 2.1 MHz	7.3	13		
t _{WUSTOP}		f _{HCLK} = f _{MSI} = 1.05 MHz	13	23	μs	
		f _{HCLK} = f _{MSI} = 524 kHz	28	38		
		f _{HCLK} = f _{MSI} = 262 kHz	51	65		
		f _{HCLK} = f _{MSI} = 131 kHz	100	120		
		f _{HCLK} = MSI = 65 kHz	190	260		
		f _{HCLK} = f _{HSI} = 16 MHz	4.9	7		
		f _{HCLK} = f _{HSI} /4 = 4 MHz	8.0	11		
		f _{HCLK} = f _{HSI} = 16 MHz	4.9	7		
	Wakeup from Stop mode, regulator in low- power mode, code running from RAM	f _{HCLK} = f _{HSI} /4 = 4 MHz	7.9	10		
		f _{HCLK} = f _{MSI} = 4.2 MHz	4.7	8		
turiotoci	Wakeup from Standby mode, FWU bit = 1	f _{HCLK} = MSI = 2.1 MHz	65	130	μs	
t _{WUSTDBY}	Wakeup from Standby mode, FWU bit = 0	f _{HCLK} = MSI = 2.1 MHz	2.2	3	ms	

Table 39.	Low-power	mode	wakeup	timinas

DocID025938 Rev 7

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 51*. They are based on the EMS levels and classes defined in application note AN1709.

s	Symbol	Parameter	Conditions	Level/ Class
v	FESD	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP64, T_A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-2	3B
V	EFTB	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3$ V, LQFP64, $T_A = +25$ °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-4	4A

Table 51. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of $-5 \mu A/+0 \mu A$ range), or other functional failure (for example reset occurrence oscillator frequency deviation).

The test results are given in the Table 55.

		Functional s			
Symbol	Description	Negative injection	Positive injection	Unit	
I _{INJ}	Injected current on BOOT0	-0	NA		
	Injected current on PA0, PA4, PA5, PA11, PA12, PC15, PH0 and PH1	-5	0	mA	
	Injected current on any other FT, FTf pins	-5 ⁽¹⁾	NA		
	Injected current on any other pins	-5 ⁽¹⁾	+5		

Table 55. I/O current injection susceptibility

1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Output voltage levels

Unless otherwise specified, the parameters given in *Table 57* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 23*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾ , I _{IO} = +8 mA	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	$1_{O} = +0.01 \text{ M/A}$ 2.7 V \leq V _{DD} \leq 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾ , I_{IO} =+ 8 mA 2.7 V \leq V _{DD} \leq 3.6 V	-	0.4	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	TTL port ⁽²⁾ , I_{IO} = -6 mA 2.7 V \leq V _{DD} \leq 3.6 V	2.4	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I_{IO} = +15 mA 2.7 V \leq V _{DD} \leq 3.6 V	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	I _{IO} = -15 mA 2.7 V ≤V _{DD} ≤ 3.6 V	V _{DD} -1.3	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = +4 mA 1.65 V ≤V _{DD} < 3.6 V	-	0.45	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	I_{IO} = -4 mA 1.65 V \leq V _{DD} \leq 3.6 V	V _{DD} -0.45	-	
V _{OLFM+} ⁽¹⁾⁽⁴⁾	Output low level voltage for an FTf	$I_{IO} = 20 \text{ mA}$ $2.7 \text{ V} \leq V_{DD} \leq 3.6 \text{ V}$	-	0.4	
VOLFM+	I/O pin in Fm+ mode	I_{IO} = 10 mA 1.65 V \leq V _{DD} \leq 3.6 V	-	0.4	

Table 57.	Output voltage	characteristics
-----------	----------------	-----------------

 The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 21*. The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and must not exceed ΣI_{IO(PIN)}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 21. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be respected and must not exceed $\Sigma I_{IO(PIN)}$.

4. Guaranteed by characterization results.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{AIN} ⁽³⁾	External input impedance	See <i>Equation 1</i> and <i>Table 61</i> for details	-	-	50	kΩ
R _{ADC} ⁽³⁾⁽⁴⁾	Sampling switch resistance	-	-	-	1	kΩ
C _{ADC} ⁽³⁾	Internal sample and hold capacitor	-	-	-	8	pF
t _{CAL} ⁽³⁾⁽⁵⁾	Calibration time	f _{ADC} = 16 MHz		5.2		μs
^L CAL CAL		-		83		1/f _{ADC}
		ADC clock = HSI16	1.5 ADC cycles + 2 f _{PCLK} cycles	-	1.5 ADC cycles + 3 f _{PCLK} cycles	-
W _{LATENCY} ⁽⁶⁾	ADC_DR register write latency	ADC clock = PCLK/2	-	4.5	-	f _{PCLK} cycle
		ADC clock = PCLK/4	-	8.5	-	f _{PCLK} cycle
		$f_{ADC} = f_{PCLK}/2 = 16 \text{ MHz}$	0.266			μs
	Trigger conversion latency	$f_{ADC} = f_{PCLK}/2$	8.5		1/f _{PCLK}	
t _{latr} (3)		$f_{ADC} = f_{PCLK}/4 = 8 \text{ MHz}$	0.516		μs	
		$f_{ADC} = f_{PCLK}/4$		16.5		1/f _{PCLK}
		$f_{ADC} = f_{HSI16} = 16 \text{ MHz}$	0.252	-	0.260	μs
Jitter _{ADC}	ADC jitter on trigger conversion	f _{ADC} = f _{HSI16}	-	1	-	1/f _{HSI16}
ts ⁽³⁾	Sampling time	f _{ADC} = 16 MHz	0.093	-	10.03	μs
ıs' '		-	1.5	-	160.5	1/f _{ADC}
t _{UP_LDO} ⁽³⁾⁽⁵⁾	Internal LDO power-up time	-	-	-	10	μs
t _{STAB} ⁽³⁾⁽⁵⁾	ADC stabilization time	-		14		1/f _{ADC}
t _{ConV} ⁽³⁾	Total conversion time	f _{ADC} = 16 MHz, 12-bit resolution	0.875	-	10.81	μs
^L ConV`´	(including sampling time)	12-bit resolution	14 to 173 (t _S for sampling +12.5 for successive approximation)		1/f _{ADC}	

 Table 60. ADC characteristics (continued)

1. V_{DDA} minimum value can be decreased in specific temperature conditions. Refer to Table 61: RAIN max for fADC = 16 MHz.

2. A current consumption proportional to the APB clock frequency has to be added (see *Table 37: Peripheral current consumption in Run or Sleep mode*).

3. Guaranteed by design.

 Standard channels have an extra protection resistance which depends on supply voltage. Refer to Table 61: RAIN max for fADC = 16 MHz.

5. This parameter only includes the ADC timing. It does not take into account register access latency.

6. This parameter specifies the latency to transfer the conversion result into the ADC_DR register. EOC bit is set to indicate the conversion is complete and has the same latency.

6.3.17 Comparators

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V_{DDA}	Analog supply voltage	-	1.65		3.6	V
R _{400K}	R _{400K} value	-	-	400	-	- kΩ
R _{10K}	R _{10K} value	-	-	10	-	- K32
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	V
t _{START}	Comparator startup time	-	-	7	10	110
td	Propagation delay ⁽²⁾	-	-	3	10	- μs
Voffset	Comparator offset	-	-	±3	±10	mV
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions	$\label{eq:VDDA} \begin{split} V_{DDA} &= 3.6 \text{ V}, \text{V}_{\text{IN+}} = 0 \text{ V}, \\ V_{\text{IN-}} &= V_{\text{REFINT}}, \text{T}_{\text{A}} = 25 \ ^{\circ}\text{C} \end{split}$	0	1.5	10	mV/1000 h
I _{COMP1}	Current consumption ⁽³⁾	-	-	160	260	nA

1. Guaranteed by characterization.

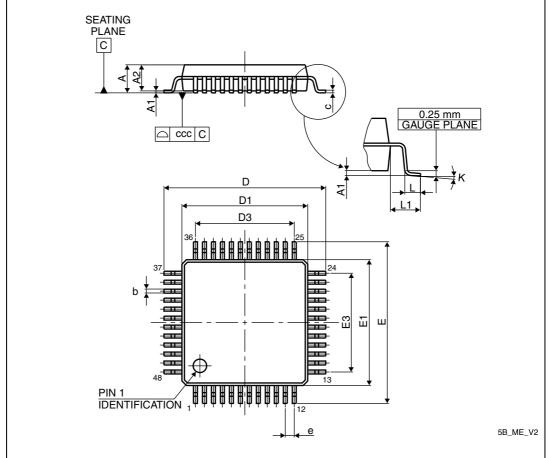
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

Symbol	Parameter Conditions		Min	Тур	Max ⁽¹⁾	Unit	
V _{DDA}	Analog supply voltage	-	1.65	-	3.6	V	
V _{IN}	Comparator 2 input voltage range -		0	-	V _{DDA}	V	
t _{START}	Comparator startup time	Fast mode	-	15	20	20 25	
		Slow mode	-	20	25		
t _{d slow}	Propagation delay ⁽²⁾ in slow mode	1.65 V ≤V _{DDA} ≤2.7 V	-	1.8	3.5	μs	
		2.7 V ≤V _{DDA} ≤3.6 V	-	2.5	6		
4	Propagation delay ⁽²⁾ in fast mode	1.65 V ≤V _{DDA} ≤2.7 V	-	0.8	2		
t _{d fast}	Fropagation delay 7 in fast mode	2.7 V ≤V _{DDA} ≤3.6 V	-	1.2	4		
V _{offset}	Comparator offset error		-	<u>±4</u>	±20	mV	
dThreshold/ dt	$ \begin{array}{l} \mbox{Threshold voltage temperature} \\ \mbox{coefficient} \end{array} \begin{array}{l} \mbox{V}_{DDA} = 3.3 \mbox{V}, \mbox{T}_{A} = 0 \mbox{ to } 50 \ ^{\circ} \mbox{C}, \\ \mbox{V-} = \mbox{V}_{REFINT}, \\ \mbox{3/4} \ \mbox{V}_{REFINT}, \\ \mbox{1/2} \ \mbox{V}_{REFINT}, \\ \mbox{1/4} \ \mbox{V}_{REFINT}. \end{array} $		-	15	30	ppm /°C	
I _{COMP2}	Current consumption ⁽³⁾	Fast mode	-	3.5	5		
		Slow mode	-	0.5	2	μA	

Table 66. Comparator 2 characteristics

1. Guaranteed by characterization results.

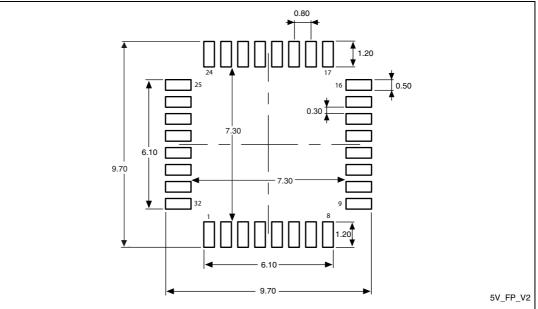

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (required for comparator operation) is not included.

7.3 LQFP48 package information

Figure 43. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.



Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.600	-	-	0.2205	-
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.600	-	-	0.2205	-
е	-	0.800	-	-	0.0315	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.100	-	-	0.0039

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

9 Revision history

Date	Revision	Changes
13-Feb-2014	1	Initial release.
29-Apr-2014	2	 Added WLCSP36 package. Updated Table 2: Ultra-low-power STM32L051x6/x8 device features and peripheral counts Updated Table 5: Functionalities depending on the working mode (from <i>Run/active down to standby</i>). Added Section 3.2: Interconnect matrix. Updated Tigure 4: STM32L051x6/8 TFBGA64 ballout - 5x 5 mm Replaced TTa I/O structure by TC, updated PA0/4/5, PC5/14, BOOT0 and NRST I/O structure in Table 15: STM32L051x6/8 pin definitions. Updated Table 23: General operating conditions, Table 20: Voltage characteristics and Table 26: Embedded internal reference voltage. Updated Table 27: Current consumption in Run mode, code with data processing running from Flash, Table 29: Current consumption in Run mode, code with data processing running from RAM, Table 31: Current consumption in Sleep mode, Table 32: Current consumption in Low- power run mode, Table 33: Current consumption in Low-power sleep mode, Table 34: Typical and maximum current consumptions in Stop mode and Table 35: Typical and maximum current consumptions in Standby mode. Added Figure 14: IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE, 1WS, Figure 15: IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS, Figure 16: IDD vs VDD, at TA= 25/55/85/105/125 °C, Cow-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS, Figure 17: IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC enabled and running on LSE Low drive and Figure 18: IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks OFF. Updated Table 53: ESD absolute maximum ratings, Table 55: I/O current injection susceptibility and Table 56: I/O static characteristics, and added Figure 24: VIH/VIL versus VDD (CMOS I/Os) and Figure 25: VIH/VIL versus VDD (TTL I/Os). Updated Table 57: Output voltage characteristics definition. Updated Table 60: ADC characteristi

Table 86. Document revision history

