

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	8000
Number of Logic Elements/Cells	102400
Total RAM Bits	4423680
Number of I/O	400
Number of Gates	-
Voltage - Supply	0.95V ~ 1.05V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc7s100-2fgga676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1: Absolute Maximum Ratings⁽¹⁾ (Cont'd)

Symbol	Description	Min	Max	Units
	I/O input voltage.	-0.4	$V_{CCO} + 0.55$	V
V _{IN} ⁽²⁾⁽³⁾⁽⁴⁾	I/O input voltage (when V_{CCO} = 3.3V) for V_{REF} and differential I/O standards except TMDS_33. ⁽⁵⁾	-0.4	2.625	V
V _{CCBATT}	Key memory battery backup supply.	-0.5	2.0	V
XADC				
V _{CCADC}	XADC supply relative to GNDADC.	-0.5	2.0	V
V _{REFP}	XADC reference input relative to GNDADC.	-0.5	2.0	V
Temperature				
T _{STG}	Storage temperature (ambient).	-65	150	°C
т	Maximum soldering temperature for Pb/Sn component bodies. ⁽⁶⁾	_	+220	°C
T _{SOL}	Maximum soldering temperature for Pb-free component bodies. ⁽⁶⁾	_	+260	°C
Tj	Maximum junction temperature. ⁽⁶⁾	_	+125	°C

Notes:

1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

2. The lower absolute voltage specification always applies.

3. For I/O operation, refer to the 7 Series FPGAs SelectIO Resources User Guide (UG471) [Ref 3].

4. The maximum limit applies to DC signals. For maximum undershoot and overshoot AC specifications, see Table 4.

5. See Table 9 for TMDS_33 specifications.

6. For soldering guidelines and thermal considerations, see the 7 Series FPGA Packaging and Pinout Specification (UG475) [Ref 4].

Table 2: Recommended Operating Conditions⁽¹⁾⁽²⁾

Symbol	Description	Min	Тур	Max	Units
FPGA Logic	·				
V (3)	For -2 and -1 (1.0V) devices: internal supply voltage.	0.95	1.00	1.05	V
V _{CCINT} ⁽³⁾	For -1L (0.95V) devices: internal supply voltage.	0.92	0.95	0.98	V
V _{CCAUX}	Auxiliary supply voltage.	1.71	1.80	1.89	V
V (3)	For -2 and -1 (1.0V) devices: block RAM supply voltage.	0.95	1.00	1.05	V
V _{CCBRAM} ⁽³⁾	For -1L (0.95V) devices: block RAM supply voltage.	0.92	0.95	0.98	V
V _{CCO} ⁽⁴⁾⁽⁵⁾	Supply voltage for HR I/O banks.	1.14	_	3.465	V
	I/O input voltage.	-0.20	_	$V_{CCO} + 0.20$	V
V _{IN} ⁽⁶⁾	I/O input voltage (when $V_{CCO} = 3.3V$) for V_{REF} and differential I/O standards except TMDS_33. ⁽⁷⁾		_	2.625	V
I _{IN} ⁽⁸⁾	Maximum current through any pin in a powered or unpowered bank when forward biasing the clamp diode.		_	10	mA
V _{CCBATT} (9)	Battery voltage.	1.0	-	1.89	V
XADC					
V _{CCADC}	XADC supply relative to GNDADC.	1.71	1.80	1.89	V
V _{REFP}	Externally supplied reference voltage.	1.20	1.25	1.30	V
Temperature	2	1			
	Junction temperature operating range for commercial (C) temperature devices.	0	_	85	°C
Т _ј	Junction temperature operating range for industrial (I) temperature devices.	-40	_	100	°C
	Junction temperature operating range for expanded (Q) temperature devices.	-40	_	125	°C

Notes:

- 1. All voltages are relative to ground.
- 2. For the design of the power distribution system consult the 7 Series FPGAs PCB Design Guide (UG483) [Ref 5].
- 3. If V_{CCINT} and V_{CCBRAM} are operating at the same voltage, V_{CCINT} and V_{CCBRAM} should be connected to the same supply.
- 4. Configuration data is retained even if V_{CCO} drops to 0V.
- 5. Includes V_{CCO} of 1.2V, 1.35V, 1.5V, 1.8V, 2.5V, and 3.3V at $\pm 5\%.$
- 6. The lower absolute voltage specification always applies.
- 7. See Table 9 for TMDS_33 specifications.
- 8. A total of 200 mA per bank should not be exceeded.

9. V_{CCBATT} is required only when using bitstream encryption. If battery is not used, connect V_{CCBATT} to either ground or V_{CCAUX}.

Table 4: V_{IN} Maximum Allowed AC Voltage Overshoot and Undershoot for HR I/O Banks⁽¹⁾⁽²⁾

AC Voltage Overshoot	% of UI at -40°C to 125°C	AC Voltage Undershoot	% of UI at -40°C to 125°C
		-0.40	100
	100	-0.45	61.7
V _{CCO} + 0.55	100	-0.50	25.8
		-0.55	11.0
V _{CCO} + 0.60	46.6	-0.60	4.77
V _{CCO} + 0.65	21.2	-0.65	2.10
V _{CCO} + 0.70	9.75	-0.70	0.94
V _{CCO} + 0.75	4.55	-0.75	0.43
V _{CCO} + 0.80	2.15	-0.80	0.20
V _{CCO} + 0.85	1.02	-0.85	0.09
V _{CCO} + 0.90	0.49	-0.90	0.04
V _{CCO} + 0.95	0.24	-0.95	0.02

Notes:

1. A total of 200 mA per bank should not be exceeded.

2. The peak voltage of the overshoot or undershoot, and the duration above V_{CCO} + 0.20V or below GND – 0.20V, must not exceed the values in this table.

Table 5: Typical Quiescent Supply Current⁽¹⁾⁽²⁾⁽³⁾

		Device	Speed Grade						
Symbol	Description					0.95V	Units		
			-2C	-21	-1C	-11	-1Q	-1LI	
		XC7S6	36	36	36	36	36	32	mA
		XC7S15	36	36	36	36	36	32	mA
	Quiescent V _{CCINT} supply current.	XC7S25	48	48	48	48	48	43	mA
		XC7S50	95	95	95	95	95	59	mA
		XC7S75	148	148	148	148	148	134	mA
		XC7S100	148	148	148	148	148	134	mA
ICCINTQ		XA7S6	N/A	36	N/A	36	36	N/A	mA
		XA7S15	N/A	36	N/A	36	36	N/A	mA
		XA7S25	N/A	48	N/A	48	48	N/A	mA
		XA7S50	N/A	95	N/A	95	95	N/A	mA
		XA7S75	N/A	148	N/A	148	148	N/A	mA
		XA7S100	N/A	148	N/A	148	148	N/A	mA

Table 5: Typical Quiescent Supply Current⁽¹⁾⁽²⁾⁽³⁾ (Cont'd)

			Speed Grade						
Symbol	Description	Device		0.95V	Units				
			-2C	-21	-1C	-11	-1Q	-1LI	
		XC7S6	1	1	1	1	1	1	mA
		XC7S15	1	1	1	1	1	1	mA
		XC7S25	1	1	1	1	1	1	mA
	Quiescent V _{CCBRAM} supply current.	XC7S50	2	2	2	2	2	1	mA
		XC7S75	9	9	9	9	9	8	mA
		XC7S100	9	9	9	9	9	8	mA
CCBRAMQ		XA7S6	N/A	1	N/A	1	1	N/A	mA
		XA7S15	N/A	1	N/A	1	1	N/A	mA
		XA7S25	N/A	1	N/A	1	1	N/A	mA
		XA7S50	N/A	2	N/A	2	2	N/A	mA
		XA7S75	N/A	9	N/A	9	9	N/A	mA
		XA7S100	N/A	9	N/A	9	9	N/A	mA

Notes:

- 1. Typical values are specified at nominal voltage, 85°C junction temperature (T_i) with single-ended SelectIO[™] resources.
- 2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.
- 3. Use the Xilinx Power Estimator spreadsheet tool [Ref 6] to estimate static power consumption for conditions other than those specified.

Power-On/Off Power Supply Sequencing

The recommended power-on sequence is V_{CCINT} , V_{CCBRAM} , V_{CCAUX} , and V_{CCO} to achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The recommended power-off sequence is the reverse of the power-on sequence. If V_{CCINT} and V_{CCBRAM} have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously. If V_{CCAUX} and V_{CCO} have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously.

For V_{CCO} voltages of 3.3V in HR I/O banks and configuration bank 0 the following conditions apply.

- The voltage difference between V_{CCO} and V_{CCAUX} must not exceed 2.625V for longer than $T_{VCCO2VCCAUX}$ for each power-on/off cycle to maintain device reliability levels.
- The T_{VCCO2VCCAUX} time can be allocated in any percentage between the power-on and power-off ramps.

There is no recommended sequence for supplies not discussed in this section.

Table 9: Differential SelectIO DC Input and Output Levels

	V _{ICM} ⁽¹⁾			V _{ID} ⁽²⁾			V _{OCM} ⁽³⁾				V _{OD} ⁽⁴⁾		
I/O Standard	V, Min	V, Тур	V, Max	V, Min	V, Тур	V, Max	V, Min	V, Тур	V, Max	V, Min	V, Тур	V, Max	
BLVDS_25	0.300	1.200	1.425	0.100	_	-	-	1.250	-		Note 5	5	
MINI_LVDS_25	0.300	1.200	V _{CCAUX}	0.200	0.400	0.600	1.000	1.200	1.400	0.300	0.450	0.600	
PPDS_25	0.200	0.900	V _{CCAUX}	0.100	0.250	0.400	0.500	0.950	1.400	0.100	0.250	0.400	
RSDS_25	0.300	0.900	1.500	0.100	0.350	0.600	1.000	1.200	1.400	0.100	0.350	0.600	
TMDS_33	2.700	2.965	3.230	0.150	0.675	1.200	$V_{CCO} - 0.405$	$V_{CCO} - 0.300$	V _{CCO} – 0.190	0.400	0.600	0.800	

Notes:

1. V_{ICM} is the input common mode voltage.

2. V_{ID} is the input differential voltage (Q – \overline{Q}).

3. V_{OCM} is the output common mode voltage.

4. V_{OD} is the output differential voltage (Q – \overline{Q}).

5. V_{OD} for BLVDS will vary significantly depending on topology and loading.

Table 10: Complementary Differential SelectIO DC Input and Output Levels

I/O Standard	V _{ICM} ⁽¹⁾		V _{ID} ⁽²⁾		V _{OL} ⁽³⁾	V _{OH} ⁽⁴⁾	I _{OL}	I _{ОН}	
iyo Standard	V, Min	V, Тур	V, Max	V, Min	V, Max	V, Max	V, Min	mA, Max	mA, Min
DIFF_HSTL_I	0.300	0.750	1.125	0.100	-	0.400	V _{CCO} – 0.400	8.00	-8.00
DIFF_HSTL_I_18	0.300	0.900	1.425	0.100	_	0.400	$V_{CCO} - 0.400$	8.00	-8.00
DIFF_HSTL_II	0.300	0.750	1.125	0.100	_	0.400	$V_{CCO} - 0.400$	16.00	-16.00
DIFF_HSTL_II_18	0.300	0.900	1.425	0.100	_	0.400	$V_{CCO} - 0.400$	16.00	-16.00
DIFF_HSUL_12	0.300	0.600	0.850	0.100	-	20% V _{CCO}	80% V _{CCO}	0.100	-0.100
DIFF_MOBILE_DDR	0.300	0.900	1.425	0.100	-	10% V _{CCO}	90% V _{CCO}	0.100	-0.100
DIFF_SSTL135	0.300	0.675	1.000	0.100	-	(V _{CCO} /2) – 0.150	$(V_{CCO}/2) + 0.150$	13.0	-13.0
DIFF_SSTL135_R	0.300	0.675	1.000	0.100	-	(V _{CCO} /2) – 0.150	$(V_{CCO}/2) + 0.150$	8.9	-8.9
DIFF_SSTL15	0.300	0.750	1.125	0.100	-	(V _{CCO} /2) – 0.175	$(V_{CCO}/2) + 0.175$	13.0	-13.0
DIFF_SSTL15_R	0.300	0.750	1.125	0.100	-	(V _{CCO} /2) – 0.175	$(V_{CCO}/2) + 0.175$	8.9	-8.9
DIFF_SSTL18_I	0.300	0.900	1.425	0.100	-	$(V_{CCO}/2) - 0.470$	$(V_{CCO}/2) + 0.470$	8.00	-8.00
DIFF_SSTL18_II	0.300	0.900	1.425	0.100	_	$(V_{CCO}/2) - 0.600$	$(V_{CCO}/2) + 0.600$	13.4	-13.4

Notes:

1. V_{ICM} is the input common mode voltage.

2. V_{ID} is the input differential voltage $(Q - \overline{Q})$.

3. V_{OL} is the single-ended low-output voltage.

4. V_{OH} is the single-ended high-output voltage.

AC Switching Characteristics

All values represented in this data sheet are based on the speed specifications from the Vivado® Design Suite as outlined in Table 12.

Table 12: Speed Specification Version By Device

2018.2.1	Device
1.23	XC7S6, XC7S15, XC7S25, XC7S50, XC7S75, XC7S100
1.16	XA7S6, XA7S15, XA7S25, XA7S50, XA7S75, XA7S100

Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows.

Advance Product Specification

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur.

Preliminary Product Specification

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

Production Product Specification

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

Testing of AC Switching Characteristics

Internal timing parameters are derived from measuring internal test patterns. All AC switching characteristics are representative of worst-case supply voltage and junction temperature conditions.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Spartan-7 FPGAs.

		V _{CCINT} Operati	ng Voltage, Spe	ed Grade, and Tem	perature Range						
Device		1.0V									
	-2C	-21	-1C	-11	-1Q	-1LI					
XC7S6		Vivado tools 2	2018.2 v1.22		Vivado tools 2018.2.1 v1.23	Vivado tools 2018.2 v1.22					
XC7S15		Vivado tools 2	2018.2 v1.22		Vivado tools 2018.2.1 v1.23	Vivado tools 2018.2 v1.22					
XC7S25		Vivado tools 2017.4 v1.20 Vivado tools 2018.1 v1.21									
XC7S50		Vivado tools 2017.2 v1.17 Vivado tools 2017.3 v1.19									
XC7S75		Vivado tools 2018.1 v1.21 Vivado tools 2018.2.1 v1.23									
XC7S100		Vivado tools 2		Vivado tools 2018.2.1 v1.23	Vivado tools 2018.1 v1.21						
XA7S6	N/A	Vivado tools 2018.2.1 v1.16	N/A	Vivado tools 2	2018.2.1 v1.16	N/A					
XA7S15	N/A	Vivado tools 2018.2.1 v1.16	N/A	Vivado tools 2	2018.2.1 v1.16	N/A					
XA7S25	N/A	Vivado tools 2018.1 v1.15	N/A	Vivado tools	2018.1 v1.15	N/A					
XA7S50	N/A	Vivado tools 2017.3 v1.12	N/A	Vivado tools	Vivado tools 2017.3 v1.12						
XA7S75	N/A	Vivado tools 2018.2.1 v1.16	N/A	Vivado tools 2	Vivado tools 2018.2.1 v1.16						
XA7S100	N/A	Vivado tools 2018.2.1 v1.16	N/A	Vivado tools 2	2018.2.1 v1.16	N/A					

Table 14: Spartan-7 Device Production Software and Speed Specification Release

Performance Characteristics

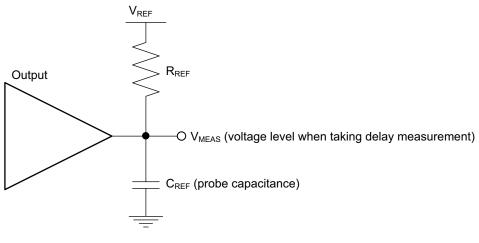
This section provides the performance characteristics of some common functions and designs implemented in Spartan-7 FPGAs. These values are subject to the same guidelines as the AC Switching Characteristics, page 12.

		perating Voltage nd Temperature		
Description	1	0V	0.95V	Units Mb/s Mb/s
	-2C/-2I	-1C/-1I/-1Q	-1LI	
SDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 8)	680	600	600	Mb/s
DDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 14)	1250	950	950	Mb/s
SDR LVDS receiver ⁽¹⁾	680	600	600	Mb/s

		Т _{ЮРІ}			T _{IOOP}			T _{IOTP}		
			V _{CCINT} (Operating	Voltage	and Speed	d Grade			Units Ins Ins Ins Ins Ins Ins Ins Ins Ins In
I/O Standard	1.0	0V	0.95V	1.	0V	0.95V	1.	0V	0.95V	Units
	-2	-1	-1L	-2	-1	-1L	-2	-1	-1L	1
LVCMOS15_F8	0.86	0.93	0.93	1.72	1.98	1.98	1.75	1.99	1.99	ns
LVCMOS15_F12	0.86	0.93	0.93	1.47	1.73	1.73	1.50	1.74	1.74	ns
LVCMOS15_F16	0.86	0.93	0.93	1.46	1.71	1.71	1.49	1.73	1.73	ns
LVCMOS12_S4	0.95	1.02	1.02	2.69	2.95	2.95	2.72	2.96	2.96	ns
LVCMOS12_S8	0.95	1.02	1.02	2.21	2.46	2.46	2.24	2.48	2.48	ns
LVCMOS12_S12	0.95	1.02	1.02	1.91	2.17	2.17	1.94	2.18	2.18	ns
LVCMOS12_F4	0.95	1.02	1.02	2.10	2.35	2.35	2.13	2.37	2.37	ns
LVCMOS12_F8	0.95	1.02	1.02	1.66	1.92	1.92	1.69	1.93	1.93	ns
LVCMOS12_F12	0.95	1.02	1.02	1.51	1.76	1.76	1.54	1.77	1.77	ns
SSTL135_S	0.75	0.82	0.82	1.47	1.73	1.73	1.50	1.74	1.74	ns
SSTL15_S	0.68	0.75	0.75	1.43	1.68	1.68	1.46	1.69	1.69	ns
SSTL18_I_S	0.75	0.82	0.82	1.79	2.04	2.04	1.82	2.06	2.06	ns
SSTL18_II_S	0.75	0.82	0.82	1.43	1.68	1.68	1.46	1.70	1.70	ns
DIFF_SSTL135_S	0.76	0.83	0.83	1.47	1.73	1.73	1.50	1.74	1.74	ns
DIFF_SSTL15_S	0.76	0.83	0.83	1.43	1.68	1.68	1.46	1.69	1.69	ns
DIFF_SSTL18_I_S	0.79	0.86	0.86	1.80	2.06	2.06	1.83	2.07	2.07	ns
DIFF_SSTL18_II_S	0.79	0.86	0.86	1.51	1.76	1.76	1.54	1.77	1.77	ns
SSTL135_F	0.75	0.82	0.82	1.24	1.49	1.49	1.27	1.51	1.51	ns
SSTL15_F	0.68	0.75	0.75	1.19	1.45	1.45	1.22	1.46	1.46	ns
SSTL18_I_F	0.75	0.82	0.82	1.24	1.49	1.49	1.27	1.51	1.51	ns
SSTL18_II_F	0.75	0.82	0.82	1.24	1.49	1.49	1.27	1.51	1.51	ns
DIFF_SSTL135_F	0.76	0.83	0.83	1.24	1.49	1.49	1.27	1.51	1.51	ns
DIFF_SSTL15_F	0.76	0.83	0.83	1.19	1.45	1.45	1.22	1.46	1.46	ns
DIFF_SSTL18_I_F	0.79	0.86	0.86	1.35	1.60	1.60	1.38	1.62	1.62	ns
DIFF_SSTL18_II_F	0.79	0.86	0.86	1.33	1.59	1.59	1.36	1.60	1.60	ns

Table 17: IOB High Range (HR) Switching Characteristics (Cont'd)

Table 18 specifies the values of T_{IOTPHZ} and $T_{IOIBUFDISABLE}$. T_{IOTPHZ} is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is enabled (i.e., a high impedance state). $T_{IOIBUFDISABLE}$ is described as the IOB delay from IBUFDISABLE to O output. In HR I/O banks, the internal IN_TERM termination turn-off time is always faster than T_{IOTPHZ} when the INTERMDISABLE pin is used.


Table 18: IOB 3-state Output Switching Characteristics

		V _{CCINT} O			
Symbol	Description	1.	0V	0.95V	Units
		-2	-1	-1L	
T _{IOTPHZ}	T input to pad high-impedance.	2.19	2.37	2.37	ns
TIOIBUFDISABLE	IBUF turn-on time from IBUFDISABLE to O output.	2.30	2.60	2.60	ns

Output Delay Measurements

Output delays are measured with short output traces. Standard termination was used for all testing. The propagation delay of the trace is characterized separately and subtracted from the final measurement, and is therefore not included in the generalized test setups shown in Figure 1 and Figure 2.

X16654-092616

Figure 1: Single-ended Test Setup

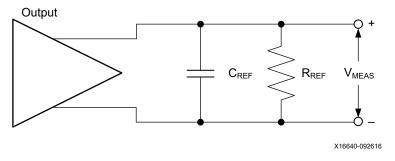


Figure 2: Differential Test Setup

Parameters V_{REF} , R_{REF} , C_{REF} , and V_{MEAS} fully describe the test conditions for each I/O standard. The most accurate prediction of propagation delay in any given application can be obtained through IBIS simulation, using this method:

- 1. Simulate the output driver of choice into the generalized test setup using values from Table 20.
- 2. Record the time to V_{MEAS} .
- 3. Simulate the output driver of choice into the actual PCB trace and load using the appropriate IBIS model or capacitance value to represent the load.
- 4. Record the time to V_{MEAS}.
- 5. Compare the results of step 2 and step 4. The increase or decrease in delay yields the actual propagation delay of the PCB trace.

TUDIE 30. DIOCK RAIVI and	FIFO Switching Characteristics (Cont a)					
		V _{CCINT} Operating Voltage and Spee Grade				
Symbol	Description	1.	0V	0.95V		
		-2	-1	-1L		

Table 30. Block RAM and EIEO Switching Characteristics (Cont'd)

			Grade		Units ns, Min ns, Max ms, Max MHz MHz
Symbol	Description	1.	0V	0.95V	
		-2	-1	-1L	+
T _{RDCK_DI_ECC_FIFO} / T _{RCKD_DI_ECC_FIFO}	DIN inputs with FIFO ECC in standard mode. ⁽⁸⁾	1.15/0.59	1.32/0.64	1.32/0.64	ns, Min
T _{RCCK_INJECTBITERR} / T _{RCKC_INJECTBITERR}	Inject single/double bit error in ECC mode.	0.64/0.37	0.74/0.40	0.74/0.40	ns, Min
T _{RCCK_EN} /T _{RCKC_EN}	Block RAM enable (EN) input.	0.39/0.21	0.45/0.23	0.45/0.23	ns, Min
T _{RCCK_REGCE} / T _{RCKC_REGCE}	CE input of output register.	0.29/0.15	0.36/0.16	0.36/0.16	ns, Min
T _{RCCK_RSTREG} / T _{RCKC_RSTREG}	Synchronous RSTREG input.	0.32/0.07	0.35/0.07	0.35/0.07	ns, Min
T _{RCCK_RSTRAM} / T _{RCKC_RSTRAM}	Synchronous RSTRAM input.	0.34/0.43	0.36/0.46	0.36/0.46	ns, Min
T _{RCCK_WEA} /T _{RCKC_WEA}	Write enable (WE) input (block RAM only).	0.48/0.19	0.54/0.20	0.54/0.20	ns, Min
T _{RCCK_WREN} / T _{RCKC_WREN}	WREN FIFO inputs.	0.46/0.35	0.47/0.43	0.47/0.43	ns, Min
T _{RCCK_RDEN} / T _{RCKC_RDEN}	RDEN FIFO inputs.	0.43/0.35	0.43/0.43	0.43/0.43	ns, Min
Reset Delays					
T _{RCO_FLAGS}	Reset RST to FIFO flags/pointers. ⁽⁹⁾	0.98	1.10	1.10	ns, Max
T _{RREC_RST} /T _{RREM_RST}	FIFO reset recovery and removal timing. ⁽¹⁰⁾	2.07/-0.81	2.37/-0.81	2.37/-0.81	ns, Max
Maximum Frequency					
F _{MAX_BRAM_WF_NC}	Block RAM (write first and no change modes) when not in SDP RF mode.	460.83	388.20	388.20	MHz
F _{MAX_BRAM_RF_} PERFORMANCE	Block RAM (read first, performance mode) when in SDP RF mode but no address overlap between port A and port B.	460.83	388.20	388.20	MHz
F _{MAX_BRAM_RF_} DELAYED_WRITE	Block RAM (read first, delayed write mode) when in SDP RF mode and there is possibility of overlap between port A and port B addresses.	404.53	339.67	339.67	MHz
F _{MAX_CAS_WF_NC}	Block RAM cascade (write first, no change mode) when cascade but not in RF mode.	418.59	345.78	345.78	MHz
F _{MAX_CAS_RF_} PERFORMANCE	Block RAM cascade (read first, performance mode) when in cascade with RF mode and no possibility of address overlap/one port is disabled.	418.59	345.78	345.78	MHz

Table 31: DSP48E1 Switching Characteristics (Cont'd)

Symbol	Description	V _{CCI} Volta	_{NT} Opera age and S Grade	ating peed	Units
Symbol	Description	1.	0V	0.95V	
		-2	-1	-1L	
T _{DSPDO_PCIN_CARRYCASCOUT}	PCIN input to CARRYCASCOUT output.	1.56	1.85	1.85	ns
Clock to Outs from Output Register C	lock to Output Pins				
T _{DSPCKO_P_PREG}	CLK PREG to P output.	0.37	0.44	0.44	ns
TDSPCKO_CARRYCASCOUT_PREG	CLK PREG to CARRYCASCOUT output.	0.59	0.69	0.69	ns
Clock to Outs from Pipeline Register	Clock to Output Pins				
T _{DSPCKO_P_MREG}	CLK MREG to P output.	1.93	2.31	2.31	ns
TDSPCKO_CARRYCASCOUT_MREG	CLK MREG to CARRYCASCOUT output.	2.21	2.64	2.64	ns
T _{DSPCKO_P_ADREG_MULT}	CLK ADREG to P output using multiplier.	3.10	3.69	3.69	ns
T _{DSPCKO_CARRYCASCOUT_ADREG_MULT}	CLK ADREG to CARRYCASCOUT output using multiplier.	3.38	4.02	4.02	ns
Clock to Outs from Input Register Clo	ock to Output Pins	4	1	1	
TDSPCKO_P_AREG_MULT	CLK AREG to P output using multiplier.	4.51	5.37	5.37	ns
T _{DSPCKO_P_BREG}	CLK BREG to P output not using multiplier.	1.87	2.22	2.22	ns
T _{DSPCKO_P_CREG}	CLK CREG to P output not using multiplier.	1.93	2.30	2.30	ns
T _{DSPCKO_P_DREG_MULT}	CLK DREG to P output using multiplier.	4.48	5.32	5.32	ns
Clock to Outs from Input Register Clo	ock to Cascading Output Pins				
T _{DSPCKO_{ACOUT;} BCOUT}_ {AREG; BREG}	CLK (ACOUT, BCOUT) to {A,B} register output.	0.73	0.87	0.87	ns
TDSPCKO_CARRYCASCOUT_ {AREG, BREG}_MULT	CLK (AREG, BREG) to CARRYCASCOUT output using multiplier.	4.79	5.70	5.70	ns
T _{DSPCKO_} CARRYCASCOUT_ BREG	CLK BREG to CARRYCASCOUT output not using multiplier.	2.15	2.55	2.55	ns
T _{DSPCKO_} CARRYCASCOUT_ DREG_MULT	CLK DREG to CARRYCASCOUT output using multiplier.	4.76	5.65	5.65	ns
T _{DSPCKO_} CARRYCASCOUT_ CREG	CLK CREG to CARRYCASCOUT output.	2.21	2.63	2.63	ns
Maximum Frequency					
F _{MAX}	With all registers used.	550.66	464.25	464.25	MHz
F _{MAX_PATDET}	With pattern detector.	465.77	392.93	392.93	MHz
FMAX_MULT_NOMREG	Two register multiply without MREG.	305.62	257.47	257.47	MHz
F _{MAX_MULT_NOMREG_PATDET}	Two register multiply without MREG with pattern detect.	277.62	233.92	233.92	MHz
FMAX_PREADD_MULT_NOADREG	Without ADREG.	346.26	290.44	290.44	MHz
FMAX_PREADD_MULT_NOADREG_PATDET	Without ADREG with pattern detect.	346.26	290.44	290.44	MHz
F _{MAX_NOPIPELINEREG}	Without pipeline registers (MREG, ADREG).	227.01	190.69	190.69	MHz
F _{MAX_NOPIPELINEREG_PATDET}	Without pipeline registers (MREG, ADREG) with pattern detect.	211.15	177.43	177.43	MHz

www.xilinx.com

Table 38: PLL Specification

		V _{CCINT} Oper	ating Voltage Grade	e and Speed	
Symbol	Description	1.	0V	0.95V	Units
		-2	-1	-1L	
	Low PLL bandwidth at typical.	1.00	1.00	1.00	MHz
PLL_F _{BANDWIDTH}	High PLL bandwidth at typical. ⁽¹⁾	4.00	4.00	4.00	MHz
PLL_T _{STATPHAOFFSET}	Static phase offset of the PLL outputs. ⁽²⁾	0.12	0.12	0.12	ns
PLL_T _{OUTJITTER}	PLL output jitter.	Note 3			
PLL_T _{OUTDUTY}	PLL output clock duty-cycle precision. ⁽⁴⁾	0.20	0.20	0.20	ns
PLL_T _{LOCKMAX}	PLL maximum lock time.	100.00	100.00	100.00	μs
PLL_F _{OUTMAX}	PLL maximum output frequency.	800.00	800.00	800.00	MHz
PLL_F _{OUTMIN}	PLL minimum output frequency. ⁽⁵⁾	6.25	6.25	6.25	MHz
PLL_T _{EXTFDVAR}	External clock feedback variation.	< 20% c	of clock inpu	t period or 1	ns Max
PLL_RST _{MINPULSE}	Minimum reset pulse width.	5.00	5.00	5.00	ns
PLL_F _{PFDMAX}	Maximum frequency at the phase frequency detector.	500.00	450.00	450.00	MHz
PLL_F _{PFDMIN}	Minimum frequency at the phase frequency detector.	19.00	19.00	19.00	MHz
PLL_T _{FBDELAY}	Maximum delay in the feedback path.	3 r	ns Max or or	ne CLKIN cyc	cle
Dynamic Reconfigura	tion Port (DRP) for PLL Before and After DCLK	I			
T _{PLLDCK_DADDR} / T _{PLLCKD_DADDR}	Setup and hold of D address.	1.40/0.15	1.63/0.15	1.63/0.15	ns, Min
T _{PLLDCK_DI} / T _{PLLCKD_DI}	Setup and hold of D input.	1.40/0.15	1.63/0.15	1.63/0.15	ns, Min
T _{PLLDCK_DEN} / T _{PLLCKD_DEN}	Setup and hold of D enable.	1.97/0.00	2.29/0.00	2.29/0.00	ns, Min
T _{PLLDCK_DWE} / T _{PLLCKD_DWE}	Setup and hold of D write enable.	1.40/0.15	1.63/0.15	1.63/0.15	ns, Min
T _{PLLCKO_DRDY}	CLK to out of DRDY.	0.72	0.99	0.99	ns, Max
F _{DCK}	DCLK frequency.	200.00	200.00	200.00	MHz, Max

Notes:

1. The PLL does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.

2. The static offset is measured between any PLL outputs with identical phase.

3. Values for this parameter are available in the Clocking Wizard [Ref 8].

4. Includes global clock buffer.

5. Calculated as FVCO/128 assuming output duty cycle is 50%.

Device Pin-to-Pin Output Parameter Guidelines

Table 39: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Near Clock Region)⁽¹⁾

			V _{CCINT} O	perating Vo Speed Grade	Itage and e	
Symbol	Description	Device	1.	0V	0.95V	Units
			-2	-1	-1L	
SSTL15 Clock	-Capable Clock Input to Output Delay using Out	put Flip-Flop, F	ast Slew Rat	te, without I	ИМСМ/РШ	-•
T _{ICKOF}	Clock-capable clock input and OUTFF at	XC7S6	5.55	6.50	6.50	ns
	pins/banks closest to the BUFGs <i>without</i>	XC7S15	5.55	6.50	6.50	ns
MMCM/PLL (near clock region). ⁽²⁾	XC7S25	5.55	6.44	6.44	ns	
	XC7S50	5.71	6.62	6.62	ns	
		XC7S75	5.73	6.71	6.71	ns
		XC7S100	5.73	6.71	6.71	ns
		XA7S6	5.55	6.50	N/A	ns
		XA7S15	5.55	6.50	N/A	ns
		XA7S25	5.55	6.44	N/A	ns
		XA7S50	5.71	6.62	N/A	ns
		XA7S75	5.73	6.71	N/A	ns
		XA7S100	5.73	6.71	N/A	ns

Notes:

1. This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

2. Refer to the Die Level Bank Numbering Overview section of the 7 Series FPGA Packaging and Pinout Specification (UG475) [Ref 4].

	Description	Device		tage and		
Symbol	Description	Device	1.	0V	0.95V	Units
			-2	-1	-1L	
SSTL15 Cloc	k-Capable Clock Input to Output Delay using Outp	ut Flip-Flop, F	ast Slew Rat	te, without I	MMCM/PLL	•
T _{ICKOFFAR}	Clock-capable clock input and OUTFF at	XC7S6	5.55	6.50	6.50	ns
	pins/banks farthest from the BUFGs <i>without</i>	XC7S15	5.55	6.50	6.50	ns
MMCM/PLL (far clock region). ⁽²⁾	XC7S25	5.55	6.44	6.44	ns	
		XC7S50	5.71	6.62	6.62	ns
		XC7S75	6.01	7.02	7.02	ns
		XC7S100	6.01	7.02	7.02	ns
		XA7S6	5.55	6.50	N/A	ns
		XA7S15	5.55	6.50	N/A	ns
		XA7S25	5.55	6.44	N/A	ns
		XA7S50	5.71	6.62	N/A	ns
		XA7S75	6.01	7.02	N/A	ns
		XA7S100	6.01	7.02	N/A	ns

Table 40: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Far Clock Region)⁽¹⁾

Notes:

1. This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

2. Refer to the Die Level Bank Numbering Overview section of the 7 Series FPGA Packaging and Pinout Specification (UG475) [Ref 4].

	Description		V _{CCINT} Operating Voltage and Speed Grade				
Symbol	Description	Device	1.	0V	0.95V	Units	
			-2	-1	-1L		
Input Setup and Hold Time Relative to Clock-Capable Clock Input Signal for SSTL15 Standard. ⁽¹⁾⁽²⁾							
T _{PSPLLCC} /	No delay clock-capable clock input and	XC7S6	3.07/-0.17	3.69/-0.17	3.69/-0.17	ns	
T _{PHPLLCC}	Γ _{PHPLLCC} IFF ⁽³⁾ with PLL.	XC7S15	3.07/-0.17	3.69/-0.17	3.69/-0.17	ns	
		XC7S25	3.04/-0.19	3.64/-0.19	3.64/-0.19	ns	
		XC7S50	3.15/-0.19	3.77/-0.19	3.77/-0.19	ns	
		XC7S75	3.15/-0.19	3.78/-0.19	3.78/-0.19	ns	
		XC7S100	3.15/-0.19	3.78/-0.19	3.78/-0.19	ns	
		XA7S6	3.07/-0.17	3.69/-0.17	N/A	ns	
		XA7S15	3.07/-0.17	3.69/-0.17	N/A	ns	
		XA7S25	3.04/-0.19	3.64/-0.19	N/A	ns	
		XA7S50	3.15/-0.19	3.77/-0.19	N/A	ns	
		XA7S75	3.15/-0.19	3.78/-0.19	N/A	ns	
		XA7S100	3.15/-0.19	3.78/-0.19	N/A	ns	

Table 46: Clock-Capable Clock Input Setup and Hold With PLL

Notes:

1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.

2. Use IBIS to determine any duty-cycle distortion incurred using various standards.

3. IFF = Input flip-flop or latch.

Table 47: Data Input Setup and Hold Times Relative to a Forwarded Clock Input Pin Using BUFIO

		V _{CCINT} Ope	rating Voltage Grade	and Speed			
Symbol	Description	1.	0V	0.95V	Units		
		-2	-1	-1L			
Input Setup and Hold Time Relative to a Forwarded Clock Input Pin Using BUFIO for SSTL15 Standard.							
T _{PSCS} /T _{PHCS}	Setup and hold of I/O clock.	-0.38/1.46	-0.38/1.73	-0.38/1.76	ns		

Table 48: Sample Window

		V _{CCINT} Ope	erating Voltage Grade		
Symbol	Description	1.	.0V	0.95V	Units
		-2	-1	-1 -1L	
T _{SAMP}	Sampling error at receiver pins. ⁽¹⁾	0.64	0.70	0.70	ns
T _{SAMP_BUFIO}	Sampling error at receiver pins using BUFIO. ⁽²⁾	0.40	0.46	0.46	ns

Notes:

1. This parameter indicates the total sampling error of the Spartan-7 FPGAs DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the MMCM to capture the DDR input registers' edges of operation. These measurements include:

- CLK0 MMCM jitter
- MMCM accuracy (phase offset)
- MMCM phase shift resolution
- These measurements do not include package or clock tree skew.
- This parameter indicates the total sampling error of the Spartan-7 FPGAs DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the BUFIO clock network and IDELAY to capture the DDR input registers' edges of operation. These measurements do not include package or clock tree skew.

Additional Package Parameter Guidelines

The parameters in this section provide the necessary values for calculating timing budgets for Spartan-7 FPGA clock transmitter and receiver data-valid windows.

Table 49: Package Skew⁽¹⁾

Symbol	Description	Device	Package	Value	Units
Т	Package skew. ⁽²⁾	XC7S6	CPGA196	44	ps
			CSGA225	83	ps
			FTGB196	65	ps
		XC7S15	CPGA196	44	ps
			CSGA225	83	ps
			FTGB196	65	ps
		XC7S25	CSGA225	93	ps
			CSGA324	62	ps
			FTGB196	83	ps
			CSGA324	80	ps
		XC7S50	FGGA484	110	ps
			FTGB196	103	ps
		XC7S75	FGGA484	117	ps
			FGGA676	110	ps
		XC7S100	FGGA484	117	ps
			FGGA676	110	ps
T _{PKGSKEW}		XA7S6	CPGA196	44	ps
			CSGA225	83	ps
			FTGB196	65	ps
		XA7S15	CPGA196	44	ps
			CSGA225	83	ps
			FTGB196	65	ps
		XA7S25	CSGA225	93	ps
			CSGA324	62	ps
			FTGB196	83	ps
		XA7S50	CSGA324	80	ps
			FGGA484	110	ps
			FTGB196	103	ps
		XA7S75	FGGA484	117	ps
			FGGA676	110	ps
		XC7S100	FGGA484	117	ps
			FGGA676	110	ps

Notes:

1. Package delay information is available for these device/package combinations. This information can be used to deskew the package.

2. These values represent the worst-case skew between any two SelectIO resources in the package: shortest delay to longest delay from die pad to ball.

Table 51: Configuration Switching Characteristics (Cont'd)

		V _{CCINT} Operating Voltage and Speed Grade			
Symbol	Description	1.0V		0.95V	Units
		-2	-1	-1L	
T _{SMCSCCK} / T _{SMCCKCS}	CSI_B setup/hold.	4.00/0.00	4.00/0.00	4.00/0.00	ns, Min
T _{SMWCCK} / T _{SMCCKW}	RDWR_B setup/hold.	10.00/0.00	10.00/0.00	10.00/0.00	ns, Min
T _{SMCKCSO}	CSO_B clock to out (330 Ω pull-up resistor required).	7.00	7.00	7.00	ns, Max
T _{SMCO}	D[31:00] clock to out in readback.	8.00	8.00	8.00	ns, Max
F _{RBCCK}	Readback frequency.	100.00	100.00	100.00	MHz, Max
Boundary-Sc	an Port Timing Specifications	1			
T _{TAPTCK} / T _{TCKTAP}	TMS and TDI setup/hold.	3.00/2.00	3.00/2.00	3.00/2.00	ns, Min
T _{TCKTDO}	TCK falling edge to TDO output.	7.00	7.00	7.00	ns, Max
F _{TCK}	TCK frequency.	66.00	66.00	66.00	MHz, Max
SPI Flash Ma	ster Mode Programming Switching	1	L	L	1
T _{SPIDCC} / T _{SPICCD}	D[03:00] setup/hold.	3.00/0.00	3.00/0.00	3.00/0.00	ns, Min
T _{SPICCM}	MOSI clock to out.	8.00	8.00	8.00	ns, Max
T _{SPICCFC}	FCS_B clock to out.	8.00	8.00	8.00	ns, Max
STARTUPE2	Ports	1	L	L	1
T _{USRCCLKO}	STARTUPE2 USRCCLKO input to CCLK output.	0.50/6.70	0.50/7.50	0.50/7.50	ns, Min/Max
F _{CFGMCLK}	STARTUPE2 CFGMCLK output frequency.	65.00	65.00	65.00	MHz, Typ
F _{CFGMCLKTOL}	STARTUPE2 CFGMCLK output frequency tolerance.	±50	±50	±50	%, Max
Device DNA		J	1	1	1
F _{DNACK}	DNA access port (DNA_PORT).	100.00	100.00	100.00	MHz, Max
	1	L	I.	1	I.

Notes:

1. To support longer delays in configuration, use the design solutions described in the 7 Series FPGA Configuration User Guide (UG470) [Ref 10].

2. See the 7 Series FPGAs Overview (DS180) [Ref 1] and XA Spartan-7 Automotive FPGA Data Sheet: Overview (DS171) [Ref 2] for a list of devices that support bitstream encryption.

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at www.xilinx.com/legal.htm#tos.

© Copyright 2016–2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Automotive Applications Disclaimer

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.