

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	6000
Number of Logic Elements/Cells	76800
Total RAM Bits	4331520
Number of I/O	400
Number of Gates	-
Voltage - Supply	0.95V ~ 1.05V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc7s75-1fgga676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Min	Typ <mark>(1)</mark>	Max	Units
V _{DRINT}	Data retention V _{CCINT} voltage (below which configuration data might be lost).	0.75	_	_	V
V _{DRI}	Data retention V_{CCAUX} voltage (below which configuration data might be lost).	1.5	_	_	V
I _{REF}	V _{REF} leakage current per pin.	_	_	15	μA
I _L	Input or output leakage current per pin (sample-tested).	_	_	15	μA
C _{IN} ⁽²⁾	Die input capacitance at the pad.	_	_	8	pF
	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO} = 3.3V$.	90	_	330	μΑ
	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO} = 2.5V$.	68	_	250	μΑ
I _{RPU}	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO} = 1.8V$.	34	_	220	μΑ
N O	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO} = 1.5V$.	23	_	150	μΑ
	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO} = 1.2V$.	12	_	120	μΑ
I _{RPD}	Pad pull-down (when selected) at $V_{IN} = 3.3V$.	68	_	330	μΑ
I _{CCADC}	Analog supply current, analog circuits in powered up state.	_	_	25	mA
I _{BATT} ⁽³⁾	Battery supply current.	_	_	150	nA
	The venin equivalent resistance of programmable input termination to $V_{CCO}/2$ (UNTUNED_SPLIT_40).	28	40	55	Ω
R _{IN_TERM} ⁽⁴⁾	The venin equivalent resistance of programmable input termination to $V_{CCO}/2$ (UNTUNED_SPLIT_50).	35	50	65	Ω
	The venin equivalent resistance of programmable input termination to $V_{CCO}/2$ (UNTUNED_SPLIT_60).	44	60	83	Ω
n	Temperature diode ideality factor.	_	1.010	_	_
r	Temperature diode series resistance.	_	2	_	Ω

Table 3: DC Characteristics Over Recommended Operating Conditions

Notes:

1. Typical values are specified at nominal voltage, 25°C.

2. This measurement represents the die capacitance at the pad, not including the package.

3. Maximum value specified for worst case process at 25°C.

4. Termination resistance to a V_{CCO}/2 level.

Table 5: Typical Quiescent Supply Current⁽¹⁾⁽²⁾⁽³⁾ (Cont'd)

					Speed	Grade			
Symbol	Description	Device			1.0V			0.95V	Units
			-2C	-21	-1C	-11	-1Q	-1LI	
		XC7S6	1	1	1	1	1	1	mA
		XC7S15	1	1	1	1	1	1	mA
		XC7S25	1	1	1	1	1	1	mA
	IQ Quiescent V _{CCBRAM} supply current.	XC7S50	2	2	2	2	2	1	mA
		XC7S75	9	9	9	9	9	8	mA
1		XC7S100	9	9	9	9	9	8	mA
^I CCBRAMQ		XA7S6	N/A	1	N/A	1	1	N/A	mA
		XA7S15	N/A	1	N/A	1	1	N/A	mA
		XA7S25	N/A	1	N/A	1	1	N/A	mA
		XA7S50	N/A	2	N/A	2	2	N/A	mA
		XA7S75	N/A	9	N/A	9	9	N/A	mA
		XA7S100	N/A	9	N/A	9	9	N/A	mA

Notes:

- 1. Typical values are specified at nominal voltage, 85°C junction temperature (T_i) with single-ended SelectIO[™] resources.
- 2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.
- 3. Use the Xilinx Power Estimator spreadsheet tool [Ref 6] to estimate static power consumption for conditions other than those specified.

Power-On/Off Power Supply Sequencing

The recommended power-on sequence is V_{CCINT} , V_{CCBRAM} , V_{CCAUX} , and V_{CCO} to achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The recommended power-off sequence is the reverse of the power-on sequence. If V_{CCINT} and V_{CCBRAM} have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously. If V_{CCAUX} and V_{CCO} have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously.

For V_{CCO} voltages of 3.3V in HR I/O banks and configuration bank 0 the following conditions apply.

- The voltage difference between V_{CCO} and V_{CCAUX} must not exceed 2.625V for longer than $T_{VCCO2VCCAUX}$ for each power-on/off cycle to maintain device reliability levels.
- The T_{VCCO2VCCAUX} time can be allocated in any percentage between the power-on and power-off ramps.

There is no recommended sequence for supplies not discussed in this section.

E XILINX_®

Table 6 shows the minimum current, in addition to I_{CCQ} maximum, that is required by Spartan-7 devices for proper power-on and configuration. If the current minimums shown in Table 6 are met, the device powers on after all four supplies have passed through their power-on reset threshold voltages. The FPGA must not be configured until after V_{CCINT} is applied. Once initialized and configured, use the *Xilinx Power Estimator* spreadsheet tool [Ref 6] to estimate current drain on these supplies.

Device	ICCINTMIN	ICCAUXMIN	I _{CCOMIN}	ICCBRAMMIN	Units
XC7S6	I _{CCINTQ} + 120	I _{CCAUXQ} + 40	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 60	mA
XC7S15	I _{CCINTQ} + 120	$I_{CCAUXQ} + 40$	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 60	mA
XC7S25	I _{CCINTQ} + 120	$I_{CCAUXQ} + 40$	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 60	mA
XC7S50	I _{CCINTQ} + 120	$I_{CCAUXQ} + 40$	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 60	mA
XC7S75	I _{CCINTQ} + 300	I _{CCAUXQ} + 140	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 60	mA
XC7S100	I _{CCINTQ} + 300	I _{CCAUXQ} + 140	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 60	mA
XA7S6	I _{CCINTQ} + 120	I _{CCAUXQ} + 40	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 60	mA
XA7S15	I _{CCINTQ} + 120	I _{CCAUXQ} + 40	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 60	mA
XA7S25	I _{CCINTQ} + 120	I _{CCAUXQ} + 40	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 60	mA
XA7S50	I _{CCINTQ} + 120	I _{CCAUXQ} + 40	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 60	mA
XA7S75	I _{CCINTQ} + 300	I _{CCAUXQ} + 140	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 60	mA
XA7S100	I _{CCINTQ} + 300	I _{CCAUXQ} + 140	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 60	mA

Table 6: Power-On Current

Table 7: Power Supply Ramp Time

Symbol	Description	Conditions	Min	Max	Units
T _{VCCINT}	Ramp time from GND to 90% of V _{CCINT} .		0.2	50	ms
T _{VCCO}	Ramp time from GND to 90% of V_{CCO} .			50	ms
T _{VCCAUX}	Ramp time from GND to 90% of V _{CCAUX} .			50	ms
T _{VCCBRAM}	Ramp time from GND to 90% of V _{CCBRAM} .			50	ms
	Allowed time per power cycle for $V_{CCO} - V_{CCAUX} > 2.625V$.	$T_{J} = 125^{\circ}C^{(1)}$	-	300	ms
T _{VCCO2VCCAUX}		$T_{J} = 100^{\circ}C^{(1)}$	-	500	ms
		$T_{J} = 85^{\circ}C^{(1)}$	-	800	ms

Notes:

1. Based on 240,000 power cycles with a nominal V_{CCO} of 3.3V or 36,500 power cycles with a worst case V_{CCO} of 3.465V.

		V _{CCINT} Operati	ing Voltage, Spee	ed Grade, and Tem	perature Range			
Device		1.0V						
	-2C	-21	-1C	-11	-1Q	-1LI		
XC7S6		Vivado tools	2018.2 v1.22		Vivado tools 2018.2.1 v1.23	Vivado tools 2018.2 v1.22		
XC7S15		Vivado tools	2018.2 v1.22		Vivado tools 2018.2.1 v1.23	Vivado tools 2018.2 v1.22		
XC7S25		Vivado tools 2017.4 v1.20			Vivado tools 2018.1 v1.21			
XC7S50		Vivado tools	2017.2 v1.17		Vivado tools 2017.3 v1.19			
XC7S75	Vivado tools 2018.1 v1.21 Vivado tools 2018.2.1 v1.23				Vivado tools 2018.1 v1.21			
XC7S100	Vivado tools 2018.1 v1.21 Vivado tool 2018.2.1 v1			Vivado tools 2018.2.1 v1.23	Vivado tools 2018.1 v1.21			
XA7S6	N/A	Vivado tools 2018.2.1 v1.16	N/A	Vivado tools 2	2018.2.1 v1.16	N/A		
XA7S15	N/A	Vivado tools 2018.2.1 v1.16	N/A	Vivado tools 2	2018.2.1 v1.16	N/A		
XA7S25	N/A	Vivado tools 2018.1 v1.15	N/A	Vivado tools	2018.1 v1.15	N/A		
XA7S50	N/A	Vivado tools 2017.3 v1.12	N/A	Vivado tools	N/A			
XA7S75	N/A	Vivado tools 2018.2.1 v1.16	N/A	Vivado tools 2	Vivado tools 2018.2.1 v1.16			
XA7S100	N/A	Vivado tools 2018.2.1 v1.16	N/A	Vivado tools 2	2018.2.1 v1.16	N/A		

Table 14: Spartan-7 Device Production Software and Speed Specification Release

Performance Characteristics

This section provides the performance characteristics of some common functions and designs implemented in Spartan-7 FPGAs. These values are subject to the same guidelines as the AC Switching Characteristics, page 12.

TUDIE 13. Networking Applications interface renormance	Table	15:	Networking A	pplications	Interface	Performance
--	-------	-----	--------------	-------------	-----------	-------------

	V _{CCINT} Oj Grade, a			
Description	1	0V	0.95V	Units
	-2C/-2I	-1C/-1I/-1Q	-1LI	
SDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 8)	680	600	600	Mb/s
DDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 14)	1250	950	950	Mb/s
SDR LVDS receiver ⁽¹⁾	680	600	600	Mb/s

Table	19:	Input Delay	/ Measurement	Methodology	(Cont'd)
-------	-----	-------------	---------------	-------------	----------

Description	I/O Standard Attribute	V_(1)	V _H ⁽¹⁾	V _{MEAS} ⁽³⁾⁽⁵⁾	V _{REF} ⁽²⁾⁽⁴⁾
PPDS_25	PPDS_25	1.25 – 0.125	1.25 + 0.125	0 ⁽⁵⁾	-
RSDS_25	RSDS_25	1.25 – 0.125	1.25 + 0.125	0 ⁽⁵⁾	-
TMDS_33	TMDS_33	3 – 0.125	3 + 0.125	0 ⁽⁵⁾	_

Notes:

1. Input waveform switches between V_L and V_H .

Measurements are made at typical, minimum, and maximum V_{REF} values. Reported delays reflect worst case of these measurements. V_{REF} values listed are typical.

3. Input voltage level from which measurement starts.

4. This is an input voltage reference that bears no relation to the V_{REF} / V_{MEAS} parameters found in IBIS models and/or noted in Figure 1.

5. The value given is the differential input voltage.

Table 20: Output Delay Measurement Methodology

Description	I/O Standard Attribute	R _{REF} (Ω)	C _{REF} ⁽¹⁾ (pF)	V _{MEAS} (V)	V _{REF} (V)
LVCMOS, 1.2V	LVCMOS12	1M	0	0.6	0
LVCMOS, 1.5V	LVCMOS15	1M	0	0.75	0
LVCMOS, 1.8V	LVCMOS18	1M	0	0.9	0
LVCMOS, 2.5V	LVCMOS25	1M	0	1.25	0
LVCMOS, 3.3V	LVCMOS33	1M	0	1.65	0
LVTTL, 3.3V	LVTTL	1M	0	1.65	0
PCI33, 3.3V	PCI33_3	25	10	1.65	0
HSTL (high-speed transceiver logic), Class I, 1.2V	HSTL_I_12	50	0	V_{REF}	0.6
HSTL, Class I, 1.5V	HSTL_I	50	0	V_{REF}	0.75
HSTL, Class II, 1.5V	HSTL_II	25	0	V_{REF}	0.75
HSTL, Class I, 1.8V	HSTL_I_18	50	0	V_{REF}	0.9
HSTL, Class II, 1.8V	HSTL_II_18	25	0	V_{REF}	0.9
HSUL (high-speed unterminated logic), 1.2V	HSUL_12	50	0	V_{REF}	0.6
SSTL12, 1.2V	SSTL12	50	0	V_{REF}	0.6
SSTL135/SSTL135_R, 1.35V	SSTL135, SSTL135_R	50	0	V_{REF}	0.675
SSTL15/SSTL15_R, 1.5V	SSTL15, SSTL15_R	50	0	V_{REF}	0.75
SSTL (stub-series terminated logic), Class I & Class II, 1.8V	SSTL18_I, SSTL18_II	50	0	V _{REF}	0.9
DIFF_MOBILE_DDR, 1.8V	DIFF_MOBILE_DDR	50	0	V _{REF}	0.9
DIFF_HSTL, Class I, 1.2V	DIFF_HSTL_I_12	50	0	V_{REF}	0.6
DIFF_HSTL, Class I & II, 1.5V	DIFF_HSTL_I, DIFF_HSTL_II	50	0	V_{REF}	0.75
DIFF_HSTL, Class I & II, 1.8V	DIFF_HSTL_I_18, DIFF_HSTL_II_18	50	0	V _{REF}	0.9
DIFF_HSUL_12, 1.2V	DIFF_HSUL_12	50	0	V_{REF}	0.6
DIFF_SSTL135/DIFF_SSTL135_R, 1.35V	DIFF_SSTL135, DIFF_SSTL135_R	50	0	V _{REF}	0.675
DIFF_SSTL15/DIFF_SSTL15_R, 1.5V	DIFF_SSTL15, DIFF_SSTL15_R	50	0	V _{REF}	0.75
DIFF_SSTL18, Class I & II, 1.8V	DIFF_SSTL18_I, DIFF_SSTL18_II	50	0	V _{REF}	0.9
LVDS, 2.5V	LVDS_25	100	0	0 <mark>(</mark> 2)	0
BLVDS (Bus LVDS), 2.5V	BLVDS_25	100	0	0 <mark>(2)</mark>	0
Mini LVDS, 2.5V	MINI_LVDS_25	100	0	0 <mark>(2)</mark>	0
PPDS_25	PPDS_25	100	0	0 <mark>(2)</mark>	0
RSDS_25	RSDS_25	100	0	0 <mark>(2)</mark>	0
TMDS_33	TMDS_33	50	0	0 <mark>(2)</mark>	3.3

Notes:

1. C_{REF} is the capacitance of the probe, nominally 0 pF.

2. The value given is the differential output voltage.

Block RAM and FIFO Switching Characteristics

Table 30: Block RAM and FIFO Switching Characteristics

		V _{CCINT} Ope	rating Voltage Grade	and Speed	
Symbol	Description	1.	0V	0.95V	Units
		-2	-1	-1L	-
Block RAM and FIFO Clo	ck-to-Out Delays				
T _{RCKO DO} and	Clock CLK to DOUT output (without output register). ⁽¹⁾⁽²⁾	2.13	2.46	2.46	ns, Max
T _{RCKO_DO_REG}	Clock CLK to DOUT output (with output register). ⁽³⁾⁽⁴⁾	0.74	0.89	0.89	ns, Max
T _{RCKO_DO_ECC} and	Clock CLK to DOUT output with ECC (without output register). ⁽¹⁾⁽²⁾	3.04	3.84	3.84	ns, Max
T _{RCKO_DO_ECC_REG}	Clock CLK to DOUT output with ECC (with output register). ⁽³⁾⁽⁴⁾	0.81	0.94	0.94	ns, Max
T _{RCKO_DO_CASCOUT} and	Clock CLK to DOUT output with cascade (without output register). ⁽¹⁾	2.88	3.30	3.30	ns, Max
T _{RCKO_DO_CASCOUT_REG}	Clock CLK to DOUT output with cascade (with output register). ⁽³⁾	1.28	1.46	1.46	ns, Max
T _{RCKO_FLAGS}	Clock CLK to FIFO flags outputs. ⁽⁵⁾	0.87	1.05	1.05	ns, Max
T _{RCKO_POINTERS}	Clock CLK to FIFO pointers outputs. ⁽⁶⁾	1.02	1.15	1.15	ns, Max
T _{RCKO_PARITY_ECC}	Clock CLK to ECCPARITY in ECC encode only mode.	0.85	0.94	0.94	ns, Max
T _{RCKO} SDBIT ECC and	Clock CLK to BITERR (without output register).	2.81	3.55	3.55	ns, Max
T _{RCKO_SDBIT_ECC_REG}	Clock CLK to BITERR (with output register).	0.76	0.89	0.89	ns, Max
T _{RCKO RDADDR ECC} and	Clock CLK to RDADDR output with ECC (without output register).	0.88	1.07	1.07	ns, Max
T _{RCKO_RDADDR_ECC_REG}	Clock CLK to RDADDR output with ECC (with output register).	0.93	1.08	1.08	ns, Max
Setup and Hold Times Be	efore/After Clock CLK				
T _{rcck_addra} / T _{rckc_addra}	ADDR inputs. ⁽⁷⁾	0.49/0.33	0.57/0.36	0.57/0.36	ns, Min
T _{RDCK_DI_WF_NC} / T _{RCKD_DI_WF_NC}	Data input setup/hold time when block RAM is configured in WRITE_FIRST or NO_CHANGE mode. ⁽⁸⁾	0.65/0.63	0.74/0.67	0.74/0.67	ns, Min
T _{RDCK_DI_RF} / T _{RCKD_DI_RF}	Data input setup/hold time when block RAM is configured in READ_FIRST mode. ⁽⁸⁾	0.22/0.34	0.25/0.41	0.25/0.41	ns, Min
T _{RDCK_DI_ECC} / T _{RCKD_DI_ECC}	DIN inputs with block RAM ECC in standard mode. ⁽⁸⁾	0.55/0.46	0.63/0.50	0.63/0.50	ns, Min
T _{RDCK_DI_ECCW} / T _{RCKD_DI_ECCW}	DIN inputs with block RAM ECC encode only. ⁽⁸⁾	1.02/0.46	1.17/0.50	1.17/0.50	ns, Min

Table 30: Block RAM and FIFO Switching Characteristics (Cont'd)

		V _{CCINT} Oper					
Symbol	Description	1.0V		1.0V 0.95V		0.95V	Units
		-2	-1	-1L			
F _{MAX_CAS_RF_} DELAYED_WRITE	When in cascade RF mode and there is a possibility of address overlap between port A and port B.	362.19	297.35	297.35	MHz		
F _{MAX_FIFO}	FIFO in all modes without ECC.	460.83	388.20	388.20	MHz		
F _{MAX_ECC}	Block RAM and FIFO in ECC configuration.	365.10	297.53	297.53	MHz		

Notes:

- 1. T_{RCKO_DOR} includes T_{RCKO_DOW} , T_{RCKO_DOPR} , and T_{RCKO_DOPW} as well as the B port equivalent timing parameters.
- 2. These parameters also apply to synchronous FIFO with DO_REG = 0.
- 3. $T_{RCKO DO}$ includes $T_{RCKO DOP}$ as well as the B port equivalent timing parameters.
- 4. These parameters also apply to multi-rate (asynchronous) and synchronous FIFO with DO_REG = 1.
- 5. T_{RCKO_FLAGS} includes the following parameters: T_{RCKO_AEMPTY}, T_{RCKO_AFULL}, T_{RCKO_EMPTY}, T_{RCKO_FULL}, T_{RCKO_RDERR}, T_{RCKO_WRERR}.
- 6. $T_{RCKO_POINTERS}$ includes both $T_{RCKO_RDCOUNT}$ and $T_{RCKO_WRCOUNT}$.
- 7. The ADDR setup and hold must be met when EN is asserted (even when WE is deasserted). Otherwise, block RAM data corruption is possible.
- 8. These parameters include both A and B inputs as well as the parity inputs of A and B.
- 9. T_{RCO FLAGS} includes the following flags: AEMPTY, AFULL, EMPTY, FULL, RDERR, WRERR, RDCOUNT, and WRCOUNT.
- 10. RDEN and WREN must be held Low prior to and during reset. The FIFO reset must be asserted for at least five positive clock edges of the slowest clock (WRCLK or RDCLK).

Table 35: Horizontal Clock Buffer Switching Characteristics (BUFH)

		V _{CCINT} Oper							
Symbol	Description	1.	0V	0.95V	Units				
		-2	-1	-1L					
Т _{внско_о}	BUFH delay from I to O.	0.11	0.13	0.13	ns				
Т _{ВНССК_СЕ} / Т _{ВНСКС_СЕ}	CE pin setup and hold.	0.22/0.15	0.28/0.21	0.28/0.21	ns				
Maximum Frequency									
F _{MAX_BUFH}	Horizontal clock buffer (BUFH).	628.00	464.00	464.00	MHz				

Table 36: Duty Cycle Distortion and Clock-Tree Skew

			V _{CCINT} O			
Symbol	Description	Device	1.	0V	0.95V	Units
			-2	-1	-1L	
T _{DCD_CLK}	Global clock tree duty-cycle distortion. ⁽¹⁾	All	0.20	0.20	0.20	ns
		XC7S6	0.05	0.06	0.06	ns
		XC7S15	0.05	0.06	0.06	ns
-	Global clock tree skew. ⁽²⁾	XC7S25	0.26	0.26	0.26	ns
		XC7S50	0.26	0.26	0.26	ns
		XC7S75	0.33	0.36	0.36	ns
		XC7S100	0.33	0.36	0.36	ns
CKSKEW		XA7S6	0.05	0.06	N/A	ns
		XA7S15	0.05	0.06	N/A	ns
		XA7S25	0.26	0.26	N/A	ns
		XA7S50	0.26	0.26	N/A	ns
		XA7S75	0.33	0.36	N/A	ns
		XA7S100	0.33	0.36	N/A	ns
T _{DCD_BUFIO}	I/O clock tree duty cycle distortion.	All	0.14	0.14	0.14	ns
T _{BUFIOSKEW}	I/O clock tree skew across one clock region.	All	0.03	0.03	0.03	ns
T _{DCD_BUFR}	Regional clock tree duty cycle distortion.	All	0.18	0.18	0.18	ns

Notes:

1. These parameters represent the worst-case duty cycle distortion observable at the I/O flip flops. For all I/O standards, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times.

The T_{CKSKEW} value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx timing analysis tools to evaluate clock skew specific to your application.

MMCM Switching Characteristics

Table 37: MMCM Specification

		V _{CCINT} Oper			
Symbol	Description	1.0	v	0.95V	Units
		-2	-1	-1L	
MMCM_F _{INMAX}	Maximum input clock frequency.	800.00	800.00	800.00	MHz
MMCM_F _{INMIN}	Minimum input clock frequency.	10.00	10.00	10.00	MHz
MMCM_F _{INJITTER}	Maximum input clock period jitter.	< 20% c	of clock inpu	t period or 1	ns Max
	Allowable input duty cycle: 10-49 MHz.	25	25	25	%
MMCM_F _{INDUTY}	Allowable input duty cycle: 50–199 MHz.	30	30	30	%
	Allowable input duty cycle: 200—399 MHz.	35	35	35	%
	Allowable input duty cycle: 400—499 MHz.	40	40	40	%
	Allowable input duty cycle: > 500 MHz.	45	45	45	%
MMCM_F _{MIN_PSCLK}	Minimum dynamic phase-shift clock frequency.	0.01	0.01	0.01	MHz
MMCM_F _{MAX_PSCLK}	Maximum dynamic phase-shift clock frequency.	500.00	450.00	450.00	MHz
MMCM_F _{VCOMIN}	Minimum MMCM VCO frequency.	600.00	600.00	600.00	MHz
MMCM_F _{VCOMAX}	Maximum MMCM VCO frequency.	1440.00	1200.00	1200.00	MHz
	Low MMCM bandwidth at typical. ⁽¹⁾	1.00	1.00	1.00	MHz
WINCW_FBANDWIDTH	High MMCM bandwidth at typical. ⁽¹⁾	4.00	4.00	4.00	MHz
MMCM_T _{STATPHAOFFSET}	Static phase offset of the MMCM outputs. ⁽²⁾	0.12	0.12	0.12	ns
MMCM_T _{OUTJITTER}	MMCM output jitter.		Not	e 3	
MMCM_T _{OUTDUTY}	MMCM output clock duty-cycle precision. ⁽⁴⁾	0.20	0.20	0.20	ns
MMCM_T _{LOCKMAX}	MMCM maximum lock time.	100.00	100.00	100.00	μs
MMCM_F _{OUTMAX}	MMCM maximum output frequency.	800.00	800.00	800.00	MHz
MMCM_F _{OUTMIN}	MMCM minimum output frequency. ⁽⁵⁾⁽⁶⁾	4.69	4.69	4.69	MHz
MMCM_T _{EXTFDVAR}	External clock feedback variation.	< 20% c	of clock inpu	t period or 1	ns Max
MMCM_RST _{MINPULSE}	Minimum reset pulse width.	5.00	5.00	5.00	ns
MMCM_F _{PFDMAX}	Maximum frequency at the phase frequency detector.	500.00	450.00	450.00	MHz
MMCM_F _{PFDMIN}	Minimum frequency at the phase frequency detector.	10.00	10.00	10.00	MHz
MMCM_T _{FBDELAY}	Maximum delay in the feedback path.	3 r	ns Max or or	e CLKIN cyc	le
MMCM Switching Charac	cteristics Setup and Hold				
T _{MMCMDCK_PSEN} / T _{MMCMCKD_PSEN}	Setup and hold of phase-shift enable.	1.04/0.00	1.04/0.00	1.04/0.00	ns

Table 38: PLL Specification

		V _{CCINT} Oper				
Symbol	Description	1.0V		0.95V	Units	
		-2	-1	-1L		
	Low PLL bandwidth at typical.	1.00	1.00	1.00	MHz	
PLL_FBANDWIDTH	High PLL bandwidth at typical. ⁽¹⁾	4.00	4.00	4.00	MHz	
PLL_T _{STATPHAOFFSET}	Static phase offset of the PLL outputs. ⁽²⁾	0.12	0.12	0.12	ns	
PLL_T _{OUTJITTER}	PLL output jitter.		Not	e 3		
PLL_T _{OUTDUTY}	PLL output clock duty-cycle precision. ⁽⁴⁾	0.20	0.20	0.20	ns	
PLL_T _{LOCKMAX}	PLL maximum lock time.	100.00	100.00	100.00	μs	
PLL_F _{OUTMAX}	PLL maximum output frequency.	800.00	800.00	800.00	MHz	
PLL_F _{OUTMIN}	PLL minimum output frequency. ⁽⁵⁾	6.25	6.25	6.25	MHz	
PLL_T _{EXTFDVAR}	External clock feedback variation.	< 20% c	ns Max			
PLL_RST _{MINPULSE}	Minimum reset pulse width.	5.00	5.00	5.00	ns	
PLL_F _{PFDMAX}	Maximum frequency at the phase frequency detector.	500.00	450.00	450.00	MHz	
PLL_F _{PFDMIN}	Minimum frequency at the phase frequency detector.	19.00	19.00	19.00	MHz	
PLL_T _{FBDELAY}	Maximum delay in the feedback path.	3 ns Max or one CLKIN cycle				
Dynamic Reconfigura	tion Port (DRP) for PLL Before and After DCLK					
T _{PLLDCK_DADDR} / T _{PLLCKD_DADDR}	Setup and hold of D address.	1.40/0.15	1.63/0.15	1.63/0.15	ns, Min	
T _{PLLDCK_DI} / T _{PLLCKD_DI}	Setup and hold of D input.	1.40/0.15	1.63/0.15	1.63/0.15	ns, Min	
T _{PLLDCK_DEN} / T _{PLLCKD_DEN}	Setup and hold of D enable.	1.97/0.00	2.29/0.00	2.29/0.00	ns, Min	
T _{PLLDCK_DWE} / T _{PLLCKD_DWE}	Setup and hold of D write enable.	1.40/0.15	1.63/0.15	1.63/0.15	ns, Min	
T _{PLLCKO_DRDY}	CLK to out of DRDY.	0.72	0.99	0.99	ns, Max	
F _{DCK}	DCLK frequency.	200.00	200.00	200.00	MHz, Max	

Notes:

1. The PLL does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.

2. The static offset is measured between any PLL outputs with identical phase.

3. Values for this parameter are available in the Clocking Wizard [Ref 8].

4. Includes global clock buffer.

5. Calculated as FVCO/128 assuming output duty cycle is 50%.

Device Pin-to-Pin Output Parameter Guidelines

Table 39: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Near Clock Region)⁽¹⁾

			V _{CCINT} O			
Symbol	Description	Device	1.	0V	0.95V	Units
			-2	-1	-1L	
SSTL15 Clock-	Capable Clock Input to Output Delay using Outp	ut Flip-Flop, F	ast Slew Rat	e, <i>without</i> N	MMCM/PLL	•
T _{ICKOF} Clock-capable pins/banks clo MMCM/PLL (ne	Clock-capable clock input and OUTFF at	XC7S6	5.55	6.50	6.50	ns
	pins/banks closest to the BUFGs <i>without</i>	XC7S15	5.55	6.50	6.50	ns
		XC7S25	5.55	6.44	6.44	ns
		XC7S50	5.71	6.62	6.62	ns
		XC7S75	5.73	6.71	6.71	ns
		XC7S100	5.73	6.71	6.71	ns
		XA7S6	5.55	6.50	N/A	ns
		XA7S15	5.55	6.50	N/A	ns
		XA7S25	5.55	6.44	N/A	ns
		XA7S50	5.71	6.62	N/A	ns
		XA7S75	5.73	6.71	N/A	ns
		XA7S100	5.73	6.71	N/A	ns

Notes:

1. This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

2. Refer to the Die Level Bank Numbering Overview section of the 7 Series FPGA Packaging and Pinout Specification (UG475) [Ref 4].

Table 41: Clock-Capable Clock Input to Output Delay With MMCM⁽¹⁾

	Description		V _{CCINT} O			
Symbol		Device	1.	0V	0.95V	
			-2	-1	-1L	
SSTL15 Clock-Ca	pable Clock Input to Output Delay using Outpu	ut Flip-Flop, F	ast Slew Ra	te, with MM	ICM.	
TICKOFMMCMCC	Clock-capable clock input and OUTFF <i>with</i> MMCM. ⁽²⁾	XC7S6	1.03	1.03	1.03	ns
		XC7S15	1.03	1.03	1.03	ns
		XC7S25	1.00	1.00	1.00	ns
		XC7S50	1.00	1.00	1.00	ns
		XC7S75	1.00	1.00	1.00	ns
		XC7S100	1.00	1.00	1.00	ns
		XA7S6	1.03	1.03	N/A	ns
		XA7S15	1.03	1.03	N/A	ns
		XA7S25	1.00	1.00	N/A	ns
		XA7S50	1.00	1.00	N/A	ns
		XA7S75	1.00	1.00	N/A	ns
		XA7S100	1.00	1.00	N/A	ns

Notes:

1. This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

2. MMCM output jitter is already included in the timing calculation.

Device Pin-to-Pin Input Parameter Guidelines

All devices are 100% functionally tested. Values are expressed in nanoseconds unless otherwise noted.

Table 44: Global Clock Input Setup and Hold Without MMCM/PLL with ZHOLD_DELAY on HR I/O Banks

			V _{CCINT} Ope			
Symbol	Description	Device	1.)V 0.95V		Units
			-2	-1	-1L	
Input Setup and Hold Time Relative to Global Clock Input Signal for SSTL15 Standard. ⁽¹⁾						
T _{PSFD} /	 Full delay (legacy delay or default delay) global clock input and IFF⁽²⁾ without MMCM/PLL with ZHOLD_DELAY on HR I/O banks. 	XC7S6	2.76/-0.40	3.17/-0.40	3.17/-0.40	ns
T _{PHFD}		XC7S15	2.76/-0.40	3.17/-0.40	3.17/-0.40	ns
		XC7S25	2.67/-0.37	3.12/-0.37	3.12/-0.37	ns
		XC7S50	2.66/-0.28	3.11/-0.28	3.11/-0.28	ns
		XC7S75	2.91/-0.33	3.36/-0.33	3.36/-0.33	ns
		XC7S100	2.91/-0.33	3.36/-0.33	3.36/-0.33	ns
		XA7S6	2.76/-0.40	3.17/-0.40	N/A	ns
		XA7S15	2.76/-0.40	3.17/-0.40	N/A	ns
		XA7S25	2.67/-0.37	3.12/-0.37	N/A	ns
		XA7S50	2.66/-0.28	3.11/-0.28	N/A	ns
		XA7S75	2.91/-0.33	3.36/-0.33	N/A	ns
		XA7S100	2.91/-0.33	3.36/-0.33	N/A	ns

Notes:

1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.

2. IFF = Input flip-flop or latch.

TUDIE 45. CIOCK-Capable Clock Input Setup and Hold With WiviCivi
--

			V _{CCINT} Ope			
Symbol	Description	Device	1.	0V	0.95V	Units
			-2	-1	-1L	
Input Setup and Hold Time Relative to Global Clock Input Signal for SSTL15 Standard. ⁽¹⁾⁽²⁾						
T _{PSMMCMCC} /	No delay clock-capable clock input and	XC7S6	2.73/-0.59	3.27/-0.59	3.27/-0.59	ns
ТРНММСМСС	IFF ⁽³⁾ with MMCM.	XC7S15	2.73/-0.59	3.27/-0.59	3.27/-0.59	ns
		XC7S25	2.69/-0.61	3.21/-0.61	3.21/-0.61	ns
		XC7S50	2.81/-0.62	3.35/-0.62	3.35/-0.62	ns
		XC7S75	2.81/-0.62	3.36/-0.62	3.36/-0.62	ns
		XC7S100	2.81/-0.62	3.36/-0.62	3.36/-0.62	ns
		XA7S6	2.73/-0.59	3.27/-0.59	N/A	ns
		XA7S15	2.73/-0.59	3.27/-0.59	N/A	ns
		XA7S25	2.69/-0.61	3.21/-0.61	N/A	ns
		XA7S50	2.81/-0.62	3.35/-0.62	N/A	ns
		XA7S75	2.81/-0.62	3.36/-0.62	N/A	ns
		XA7S100	2.81/-0.62	3.36/-0.62	N/A	ns

Notes:

1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.

2. Use IBIS to determine any duty-cycle distortion incurred using various standards.

3. IFF = Input flip-flop or latch.

XADC Specifications

The 7 Series FPGAs Overview (DS180) [Ref 1] and XA Spartan-7 Automotive FPGA Data Sheet: Overview (DS171) [Ref 2] list the devices that contain a 7 series XADC dual 12-Bit 1 MSPS analog-to-digital converter.

Table 50: XADC Specifications

Parameter	Symbol	Comments/Conditions	Min	Тур	Max	Units				
$V_{CCADC} = 1.8V \pm 5\%$, $V_{REFP} = 1.25V$, $V_{REFN} = 0V$, ADCCLK = 26 MHz, $-55^{\circ}C \le T_j \le 125^{\circ}C$. Typical values at $T_j = +40^{\circ}C$.										
ADC Accuracy ⁽¹⁾										
Resolution			12	_	_	Bits				
Integral poplingarity ⁽²⁾		$-40^{\circ}C \le T_j \le 100^{\circ}C$	-	_	±2	LSBs				
They al norminearity	INL	$-55^{\circ}C \le T_j < -40^{\circ}C; 100^{\circ}C < T_j \le 125^{\circ}C$	_	_	±3	LSBs				
Differential nonlinearity	DNL	No missing codes, guaranteed monotonic.	-	-	±1	LSBs				
	Uninglar	$-40^{\circ}C \le T_j \le 100^{\circ}C$	-	_	±8	LSBs				
Offset error	Unipolai	$-55^{\circ}C \le T_j < -40^{\circ}C; 100^{\circ}C < T_j \le 125^{\circ}C$	-	_	±12	LSBs				
	Bipolar	$-55^{\circ}C \le T_{j} \le 125^{\circ}C$	-	_	±4	LSBs				
Gain error			_	_	±0.5	%				
Offset matching			_	_	4	LSBs				
Gain matching			_	_	0.3	%				
Sample rate			_	_	1	MS/s				
Signal to noise ratio ⁽²⁾	SNR	$F_{SAMPLE} = 500 \text{ KS/s}, F_{IN} = 20 \text{ kHz}$	60	_	_	dB				
		External 1.25V reference.	-	_	2	LSBs				
RMS code noise		On-chip reference.	-	3	_	LSBs				
Total harmonic distortion ⁽²⁾	THD	$F_{SAMPLE} = 500 \text{ KS/s}, F_{IN} = 20 \text{ kHz}$	70	_	_	dB				
Analog Inputs ⁽³⁾					1					
		Unipolar operation.	0	-	1	V				
ADC input ranges		Bipolar operation.	-0.5	_	+0.5	V				
ADC input ranges		Unipolar common mode range (FS input).	0	_	+0.5	V				
		Bipolar common mode range (FS input).	+0.5	-	+0.6	V				
Maximum external channel ranges	input	Adjacent analog channels set within these ranges should not corrupt measurements on adjacent channels.	-0.1	_	V _{CCADC}	V				
Full-resolution bandwidth	FRBW	Auxiliary channel full resolution bandwidth.	250	_	-	kHz				
On-chip Sensors										
		$-40^{\circ}C \le T_j \le 100^{\circ}C$	_	_	±4	°C				
remperature sensor error		$-55^{\circ}C \le T_j < -40^{\circ}C; 100^{\circ}C < T_j \le 125^{\circ}C$	_	-	±6	°C				
		$-40^{\circ}C \le T_j \le 100^{\circ}C$	-	_	±1	%				
		$-55^{\circ}C \le T_j < -40^{\circ}C; \ 100^{\circ}C < T_j \le 125^{\circ}C$	_	-	±2	%				

Configuration Switching Characteristics

Table 51: Configuration Switching Characteristics

		V _{CCINT} Oper				
Symbol	Description	1.	0V	0.95V	Units	
		-2	-1	-1L		
Power-up Tin	ning Characteristics	1	<u> </u>	1		
T _{PL} ⁽¹⁾	Program latency.	5.00	5.00	5.00	ms, Max	
T (2)	Power-on reset (50 ms ramp rate time).	10/50	10/50	10/50	ms, Min/Max	
POR ⁽²⁾	Power-on reset (1 ms ramp rate time).	10/35	10/35	10/35	ms, Min/Max	
T _{PROGRAM}	Program pulse width.	250.00	250.00	250.00	ns, Min	
CCLK Output	(Master Mode)	I	I	I	I	
Т _{ІССК}	Master CCLK output delay.	150.00	150.00	150.00	ns, Min	
T _{MCCKL}	Master CCLK clock Low time duty cycle.	40/60	40/60	40/60	%, Min/Max	
Т _{МССКН}	Master CCLK clock High time duty cycle.	40/60	40/60	40/60	%, Min/Max	
F	Master CCLK frequency.	100.00	100.00	100.00	MHz, Max	
FMCCK	Master CCLK frequency for AES encrypted x16. ⁽²⁾	50.00	50.00	50.00	MHz, Max	
F _{MCCK_START}	Master CCLK frequency at start of configuration.	3.00	3.00	3.00	MHz, Typ	
F _{MCCKTOL}	Frequency tolerance, master mode with respect to nominal CCLK.	±50	±50	±50	%, Max	
CCLK Input (S	lave Modes)	I	L	I	1	
T _{SCCKL}	Slave CCLK clock minimum Low time.	2.50	2.50	2.50	ns, Min	
Т _{SCCKH}	Slave CCLK clock minimum High time.	2.50	2.50	2.50	ns, Min	
F _{SCCK}	Slave CCLK frequency.	100.00	100.00	100.00	MHz, Max	
EMCCLK Inpu	t (Master Mode)	1	L	L	1	
T _{EMCCKL}	External master CCLK Low time.	2.50	2.50	2.50	ns, Min	
ТЕМССКН	External master CCLK High time.	2.50	2.50	2.50	ns, Min	
F _{EMCCK}	External master CCLK frequency.	100.00	100.00	100.00	MHz, Max	
Internal Conf	iguration Access Port	l	L	I	1	
FICAPCK	Internal configuration access port (ICAPE2) clock frequency.	100.00	100.00	100.00	MHz, Max	
Master/Slave	Serial Mode Programming Switching					
Т _{DCCK} / Т _{CCKD}	D _{IN} setup/hold.	4.00/0.00	4.00/0.00	4.00/0.00	ns, Min	
T _{CCO}	D _{OUT} clock to out.	8.00	8.00	8.00	ns, Max	
SelectMAP M	ode Programming Switching					
Т _{SMDCCK} / Т _{SMCCKD}	D[31:00] setup/hold.	4.00/0.00	4.00/0.00	4.00/0.00	ns, Min	

Table 51: Configuration Switching Characteristics (Cont'd)

Symbol	Description	V _{CCINT} Operating Voltage and Speed Grade					
		1.0V		0.95V	Units		
		-2	-1	-1L]		
T _{SMCSCCK} / T _{SMCCKCS}	CSI_B setup/hold.	4.00/0.00	4.00/0.00	4.00/0.00	ns, Min		
Т _{SMWCCK} / Т _{SMCCKW}	RDWR_B setup/hold.	10.00/0.00	10.00/0.00	10.00/0.00	ns, Min		
T _{SMCKCSO}	CSO_B clock to out (330 Ω pull-up resistor required).	7.00	7.00	7.00	ns, Max		
T _{SMCO}	D[31:00] clock to out in readback.	8.00	8.00	8.00	ns, Max		
F _{RBCCK}	Readback frequency.	100.00	100.00	100.00	MHz, Max		
Boundary-Sca	an Port Timing Specifications						
T _{TAPTCK} / T _{TCKTAP}	TMS and TDI setup/hold.	3.00/2.00	3.00/2.00	3.00/2.00	ns, Min		
T _{TCKTDO}	TCK falling edge to TDO output.	7.00	7.00	7.00	ns, Max		
F _{TCK}	TCK frequency.	66.00	66.00	66.00	MHz, Max		
SPI Flash Mas	ster Mode Programming Switching						
T _{SPIDCC} / T _{SPICCD}	D[03:00] setup/hold.	3.00/0.00	3.00/0.00	3.00/0.00	ns, Min		
T _{SPICCM}	MOSI clock to out.	8.00	8.00	8.00	ns, Max		
T _{SPICCFC}	FCS_B clock to out.	8.00	8.00	8.00	ns, Max		
STARTUPE2 P	orts						
T _{USRCCLKO}	STARTUPE2 USRCCLKO input to CCLK output.	0.50/6.70	0.50/7.50	0.50/7.50	ns, Min/Max		
F _{CFGMCLK}	STARTUPE2 CFGMCLK output frequency.	65.00	65.00	65.00	MHz, Typ		
F _{CFGMCLKTOL}	STARTUPE2 CFGMCLK output frequency tolerance.	±50	±50	±50	%, Max		
Device DNA Access Port							
F _{DNACK}	DNA access port (DNA_PORT).	100.00	100.00	100.00	MHz, Max		

Notes:

1. To support longer delays in configuration, use the design solutions described in the 7 Series FPGA Configuration User Guide (UG470) [Ref 10].

2. See the 7 Series FPGAs Overview (DS180) [Ref 1] and XA Spartan-7 Automotive FPGA Data Sheet: Overview (DS171) [Ref 2] for a list of devices that support bitstream encryption.

eFUSE Programming Conditions

Table 52 lists the programming conditions specifically for eFUSE. For more information, see the 7 Series FPGA Configuration User Guide (UG470) [Ref 10].

Table 52: eFUSE Programming Conditions⁽¹⁾

Symbol	Description	Min	Тур	Max	Units
I _{FS}	V _{CCAUX} supply current	—	—	115	mA
Тj	Temperature range	15	_	125	°C

Notes:

1. The FPGA must not be configured during eFUSE programming.

References

- 1. 7 Series FPGAs Overview (DS180)
- 2. XA Spartan-7 Automotive FPGA Data Sheet: Overview (DS171)
- 3. 7 Series FPGAs SelectIO Resources User Guide (UG471)
- 4. 7 Series FPGA Packaging and Pinout Specification (UG475)
- 5. 7 Series FPGAs PCB Design Guide (UG483)
- 6. Xilinx Power Estimator spreadsheet tool (XPE)
- 7. Zynq-7000 AP SoC and 7 Series FPGAs Memory Interface Solutions User Guide (UG586)
- 8. See the <u>Clocking Wizard</u> in Vivado software.
- 9. 7 Series FPGAs and Zynq-7000 AP SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital Converter User Guide (<u>UG480</u>)
- 10. 7 Series FPGA Configuration User Guide (UG470)

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at www.xilinx.com/legal.htm#tos.

© Copyright 2016–2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Automotive Applications Disclaimer

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.