

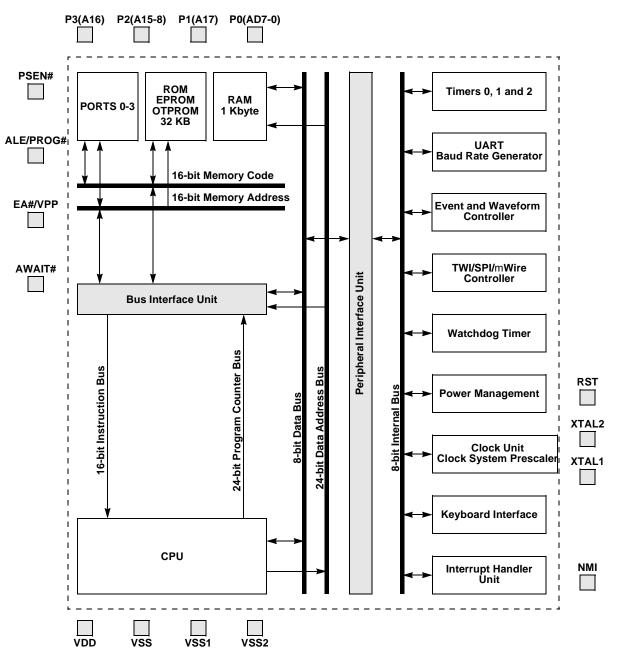
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	24MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	·
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	·
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIL
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at80251g2d-3csum

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

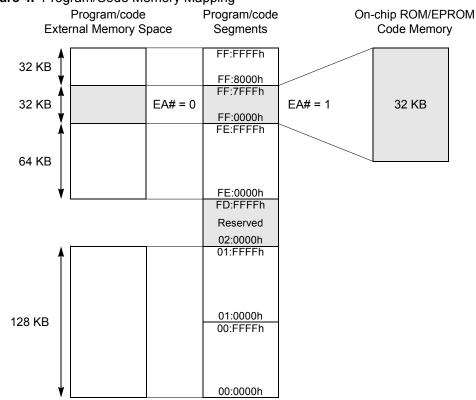
Table 1. TSC80251G2D Pin Assignment

DIP	PLCC	VQFP	Name	DIP	PLCC	VQFP	Name
	1	39	VSS1		23	17	VSS2
1	2	40	P1.0/T2	21	24	18	P2.0/A8
2	3	41	P1.1/T2EX	22	25	19	P2.1/A9
3	4	42	P1.2/ECI	23	26	20	P2.2/A10
4	5	43	P1.3/CEX0	24	27	21	P2.3/A11
5	6	44	P1.4/CEX1/SS#	25	28	22	P2.4/A12
6	7	1	P1.5/CEX2/MISO	26	29	23	P2.5/A13
7	8	2	P1.6/CEX3/SCL/SCK/WAIT#	27	30	24	P2.6/A14
8	9	3	P1.7/A17/CEX4/SDA/MOSI/WCLK	28	31	25	P2.7/A15
9	10	4	RST	29	32	26	PSEN#
10	11	5	P3.0/RXD	30	33	27	ALE/PROG#
	12	6	AWAIT#		34	28	NMI
11	13	7	P3.1/TXD	31	35	29	EA#/VPP
12	14	8	P3.2/INT0#	32	36	30	P0.7/AD7
13	15	9	P3.3/INT1#	33	37	31	P0.6/AD6
14	16	10	P3.4/T0	34	38	32	P0.5/AD5
15	17	11	P3.5/T1	35	39	33	P0.4/AD4
16	18	12	P3.6/WR#	36	40	34	P0.3/AD3
17	19	13	P3.7/A16/RD#	37	41	35	P0.2/AD2
18	20	14	XTAL2	38	42	36	P0.1/AD1
19	21	15	XTAL1	39	43	37	P0.0/AD0
20	22	16	VSS	40	44	38	VDD

Table 2.	Product Name Signal Description	(Continued)
----------	---------------------------------	-------------

Signal Name	Туре	Description	Alternate Function
XTAL2	ο	Output of the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, leave XTAL2 unconnected.	_

Note: The description of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the Non-Page mode chip configuration. If the chip is configured in Page mode operation, port 0 carries the lower address bits (A7:0) while port 2 carries the upper address bits (A15:8) and the data (D7:0).


Address Spaces

The TSC80251G2D derivatives implement four different address spaces:

- On-chip ROM program/code memory (not present in ROMless devices)
- On-chip RAM data memory
- Special Function Registers (SFRs)
- Configuration array

Program/Code Memory The TSC83251G2D and TSC87251G2D implement 32 KB of on-chip program/code memory. Figure 4 shows the split of the internal and external program/code memory spaces. If EA# is tied to a high level, the 32-Kbyte on-chip program memory is mapped in the lower part of segment FF: where the C251 core jumps after reset. The rest of the program/code memory space is mapped to the external memory. If EA# is tied to a low level, the internal program/code memory is not used and all the accesses are directed to the external memory.

The TSC83251G2D products provide the internal program/code memory in a masked ROM memory while the TSC87251G2D products provide it in an EPROM memory. For the TSC80251G2D products, there is no internal program/code memory and EA# must be tied to a low level.

Note:

Special care should be taken when the Program Counter (PC) increments:

If the program executes exclusively from on-chip code memory (not from external memory), beware of executing code from the upper eight bytes of the on-chip ROM (FF:7FF8h-FF:7FFh). Because of its pipeline capability, the TSC80251G2D derivative may attempt to prefetch code from external memory (at an address above FF:7FFFh) and thereby disrupt I/O Ports 0 and 2. Fetching code constants from these 8 bytes does not affect Ports 0 and 2.

When PC reaches the end of segment FF:, it loops to the reset address FF:0000h (for

compatibility with the C51 Architecture). When PC increments beyond the end of seqment FE:, it continues at the reset address FF:0000h (linearity). When PC increments beyond the end of segment 01:, it loops to the beginning of segment 00: (this prevents from its going into the reserved area).

Data Memory The TSC80251G2D derivatives implement 1 Kbyte of on-chip data RAM. Figure 5 shows the split of the internal and external data memory spaces. This memory is mapped in the data space just over the 32 bytes of registers area (see TSC80251 Programmers' Guide). Hence, the part of the on-chip RAM located from 20h to FFh is bit addressable. This on-chip RAM is not accessible through the program/code memory space.

> For faster computation with the on-chip ROM/EPROM code of the TSC83251G2D/TSC87251G2D, its upper 16 KB are also mapped in the upper part of the region 00: if the On-Chip Code Memory Map configuration bit is cleared (EMAP# bit in UCONFIG1 byte, see Figure). However, if EA# is tied to a low level, the TSC80251G2D derivative is running as a ROMless product and the code is actually fetched in the corresponding external memory (i.e. the upper 16 KB of the lower 32 KB of the segment FF:). If EMAP# bit is set, the on-chip ROM is not accessible through the region 00:.

> All the accesses to the portion of the data space with no on-chip memory mapped onto are redirected to the external memory.

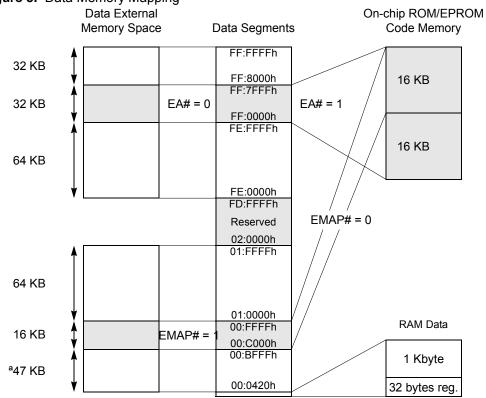


Figure 5. Data Memory Mapping

Table 7. System Management SFRs

Mnemonic	Name
PCON	Power Control
POWM	Power Management

Mnemonic	Name
CKRL	Clock Reload
WCON	Synchronous Real-Time Wait State Control

Table 8. Interrupt SFRs

Mnemonic	Name
IE0	Interrupt Enable Control 0
IE1	Interrupt Enable Control 1
IPH0	Interrupt Priority Control High 0

Table 9. Keyb	oard Interface	SFRs
---------------	----------------	------

Mnemonic	Name
P1IE	Port 1 Input Interrupt Enable
P1F	Port 1 Flag

IPH1	Interrupt Priority Control High 1
IPL1	Interrupt Priority Control Low 1

Interrupt Priority Control Low 0

Mnemonic Name

IPL0

Mnemonic	Name
P1LS	Port 1 Level Selection

Register	Description	C251	C51
at Ri	A memory location (00h-FFh) addressed indirectly via byte registers R0 or R1	_	3
Rn n	Byte register R0-R7 of the currently selected register bank Byte register index: n = 0-7	_	3
Rm Rmd Rms m, md, ms	Byte register R0-R15 of the currently selected register file Destination register Source register Byte register index: m, md, ms = 0-15	3	-
WRj WRjd WRjs at WRj at WRj +dis16 j, jd, js	Word register WR0, WR2,, WR30 of the currently selected register file Destination register Source register A memory location (00:0000h-00:FFFFh) addressed indirectly through word register WR0-WR30, is the target address for jump instructions. A memory location (00:0000h-00:FFFFh) addressed indirectly through word register (WR0-WR30) + 16-bit signed (two's complement) displacement value Word register index: j, jd, js = 0-30	3	_
DRk DRkd DRks at DRk at DRk +dis16 k, kd, ks	Dword register DR0, DR4,, DR28, DR56, DR60 of the currently selected register file Destination register Source register A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register DR0-DR28, DR56 and DR60, is the target address for jump instruction A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register (DR0-DR28, DR56, DR60) + 16-bit (two's complement) signed displacement value Dword register index: k, kd, ks = 0, 4, 8, 28, 56, 60	3	_

Table 19. Notation for Register Operands

4. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

 $IncrementINC < dest>dest opnd \leftarrow dest opnd + 1$

IncrementINC <dest>, <src>dest opnd \leftarrow dest opnd + src opnd

 $DecrementDEC < dest>dest opnd \leftarrow dest opnd - 1$

 $\texttt{DecrementDEC <dest>, <src>dest opnd \leftarrow dest opnd - src opnd}$

			Binary	Mode	Source Mode	
<pre></pre>		Comments	Bytes	States	Bytes	States
A ACC b		ACC by 1	1	1	1	1
INC	Rn	Register by 1	1	1	2	2
DEC	dir8	Direct address (on-chip RAM or SFR) by 1	2	2 ⁽²⁾	2	2 ⁽²⁾
at Ri Indirect address by		Indirect address by 1	1	3	2	4
INC	Rm, #short	n, #short Byte register by 1, 2, or 4		2	2	1
DEC	WRj, #short	ort Word register by 1, 2, or 4		2	2	1
INC	DRk, #short	Double word register by 1, 2, or 4	3	4	2	3
DEC	DRk, #short	Double word register by 1, 2, or 4	3	5	2	4
INC	DPTR	Data pointer by 1	1	1	1	1

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Table 30. Summary of Conditional Jump Instructions (2	Table 30.	ummary of Conditional Jump Instructions (2/2)
---	-----------	---

Jump if bitJB <src>, rel(PC) \leftarrow (PC) + size (instr); IF [src opnd = 1] THEN (PC) \leftarrow (PC) + rel</src>
Jump if not bitJNB <src>, rel(PC) \leftarrow (PC) + size (instr); IF [src opnd = 0] THEN (PC) \leftarrow (PC) + rel</src>
Jump if bit and clearJBC <dest>, rel(PC) \leftarrow (PC) + size (instr); IF [dest opnd = 1] THEN dest opnd \leftarrow 0 (PC) \leftarrow (PC) + rel</dest>
Jump if accumulator is zeroJZ rel(PC) \leftarrow (PC) + size (instr); IF [(A) = 0] THEN (PC) \leftarrow (PC) + rel
Jump if accumulator is not zeroJNZ rel(PC) \leftarrow (PC) + size (instr);

IF [(A) \neq 0] THEN (PC) \leftarrow (PC) + rel

Compare and jump if not equalCJNE <src1>, <src2>, rel(PC) \leftarrow (PC) + size (instr);

IF [src opnd1 < src opnd2] THEN (CY) \leftarrow 1

IF [src opnd1 \geq src opnd2] THEN (CY) \leftarrow 0 IF [src opnd1 \neq src opnd2] THEN (PC) \leftarrow (PC) + rel

Decrement and jump if not zeroDJNZ <dest>, rel(PC) \leftarrow (PC) + size (instr); dest opnd \leftarrow dest opnd -1; IF $[\phi(Z)]$ THEN (PC) \leftarrow (PC) + rel

			Binary	Mode ⁽²⁾	Source	Mode ⁽²⁾
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	States
	bit51, rel	Jump if direct bit is set	3	2/5 ⁽³⁾⁽⁶⁾	3	2/5 ⁽³⁾⁽⁶⁾
JB	bit, rel	Jump if direct bit of 8-bit address location is set	5	4/7 ⁽³⁾⁽⁶⁾	4	3/6 ⁽³⁾⁽⁶⁾
	bit51, rel Jump if direct bit is not set		3	2/5 ⁽³⁾⁽⁶⁾	3	2/5 ⁽³⁾⁽⁶⁾
JNB	bit, rel	Jump if direct bit of 8-bit address location is not set	5	4/7 ⁽³⁾⁽⁶⁾	4	3/6 ⁽³⁾
	bit51, rel	Jump if direct bit is set & clear bit	3	4/7 ⁽⁵⁾⁽⁶⁾	3	4/7 ⁽⁵⁾⁽⁶⁾
JBC	bit, rel	Jump if direct bit of 8-bit address location is set and clear	5	7/10 ⁽⁵⁾⁽ 6)	4	6/9 ⁽⁵⁾⁽⁶⁾
JZ	rel	Jump if ACC is zero	2	2/5 ⁽⁶⁾	2	2/5 ⁽⁶⁾
JNZ	rel	Jump if ACC is not zero	2	2/5 ⁽⁶⁾	2	2/5 ⁽⁶⁾
	A, dir8, rel Compare direct address to ACC and jump if not equal		3	2/5 ⁽³⁾⁽⁶⁾	3	2/5 ⁽³⁾⁽⁶⁾
CJNE	A, #data, rel	Compare immediate to ACC and jump if not equal	3	2/5 ⁽⁶⁾	3	2/5 ⁽⁶⁾
CJINE	Rn, #data, rel	Compare immediate to register and jump if not equal	3	2/5 ⁽⁶⁾	4	3/6 ⁽⁶⁾
at Ri, #data, rel Compare immediate to indirect and jump if not equal		3	3/6 ⁽⁶⁾	4	4/7 ⁽⁶⁾	
DJNZ	Rn, rel	Decrement register and jump if not zero	2	2/5 ⁽⁶⁾	3	3/6 ⁽⁶⁾
DJINZ	dir8, rel	Decrement direct address and jump if not zero	3	3/6 ⁽⁴⁾⁽⁶⁾	3	3/6 ⁽⁴⁾⁽⁶⁾

1. A shaded cell denotes an instruction in the C51 Architecture. Notes:

2. States are given as jump not-taken/taken.

- 3. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
- 4. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states.

Table 32.	Summar	of Call and	Return	Instructions
-----------	--------	-------------	--------	--------------

	ACALL <src> \leftarrow src opnd</src>	$(PC) \leftarrow (PC)$ +2; push $(PC)_{15:0}$;				
Extended ca		$P(PC) \leftarrow (PC) + size (instr); push (PC)_2$	3:0,			
Long callLCA) \leftarrow (PC) + size (instr); push (PC) _{15:0} ;				
Return from	subroutineRE	Tpop (PC) _{15:0}				
		outineERETpop(PC) _{23:0}				
		IF [INTR = 0] THEN pop (PC) _{15:0} pop (PC) _{23:0} ; pop (PSW1)				
Trap interrup IF [INTF	tTRAP(PC) ← R = 0] THEN p	- (PC) + size (instr);				
			Binary	/ Mode	Source	e Mode
	<dest>,</dest>				.	_
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
Mnemonic ACALL	<src>(") addr11</src>	Comments Absolute subroutine call	Bytes 2	9 ⁽²⁾⁽³⁾	Bytes 2	
ACALL			-		,	States 9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³
ACALL	addr11	Absolute subroutine call	2	9 ⁽²⁾⁽³⁾	2	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³
ACALL	addr11 at DRk	Absolute subroutine call Extended subroutine call (indirect)	2 3	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾	2 2	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 13 ⁽²⁾⁽³
ACALL	addr11 at DRk addr24	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call	2 3 5	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾	2 2 4	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 9 ⁽²⁾⁽³
ACALL	addr11 at DRk addr24 at WRj	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect)	2 3 5 3	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾ 10 ⁽²⁾⁽³⁾	2 2 4 2	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 9 ⁽²⁾⁽³
ACALL ECALL LCALL RET	addr11 at DRk addr24 at WRj	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call	2 3 5 3 3	$\begin{array}{c} 9^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \\ 9^{(2)(3)} \end{array}$	2 2 4 2 3	$9^{(2)(3)}$ $13^{(2)(3)}$ $13^{(2)(3)}$ $9^{(2)(3)}$ $9^{(2)(3)}$
ACALL ECALL LCALL	addr11 at DRk addr24 at WRj	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call Return from subroutine	2 3 5 3 3 1	$\begin{array}{c} 9^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \\ 9^{(2)(3)} \\ 7^{(2)} \end{array}$	2 2 4 2 3 1	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 13 ⁽²⁾⁽³⁾ 9 ⁽²⁾⁽³⁾ 9 ⁽²⁾⁽³⁾ 7 ⁽²⁾

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. In internal execution only, add 1 to the number of states if the destination/return address is internal and odd.

- 3. Add 2 to the number of states if the destination address is external.
- 4. Add 5 to the number of states if INTR = 1.

Lock Bit System

The TSC87251G2D products implement 3 levels of security for User's program as described in Table 33. The TSC83251G2D products implement only the first level of security.

Level 0 is the level of an erased part and does not enable any security features.

Level 1 locks the programming of the User's internal Code Memory, the Configuration Bytes and the Encryption Array.

Level 2 locks the verifying of the User's internal Code Memory. It is always possible to verify the Configuration Bytes and the Lock Bits. It is not possible to verify the Encryption Array.

Level 3 locks the external execution.

Level	Lock bits LB[2:0]	Internal Execution	External Execution	Verification	Programming	External PROM read (MOVC)
0	000	Enable	Enable	Enable ⁽¹⁾	Enable	Enable ⁽²⁾
1	001	Enable	Enable	Enable ⁽¹⁾	Disable	Disable
2	01x ⁽³⁾	Enable	Enable	Disable	Disable	Disable
3	1xx ⁽³⁾	Enable	Disable	Disable	Disable	Disable

Table 33. Lock Bits Programming

Notes: 1. Returns encrypted data if Encryption Array is programmed.

2. Returns non encrypted data.

3. x means don't care. Level 2 always enables level 1, and level 3 always enables levels 1 and 2.

The security level may be verified according to Table 34.

Table 34. Lock Bits Verifying

Level	Lock bits Data ⁽¹⁾
0	xxxxx000
1	xxxxx001
2	xxxxx01x
3	xxxxx1xx

Note: 1. x means don't care.

Encryption Array

The TSC83251G2D and TSC87251G2D products include a 128-byte Encryption Array located in non-volatile memory outside the memory address space. During verification of the on-chip code memory, the seven low-order address bits also address the Encryption Array. As the byte of the code memory is read, it is exclusive-NOR'ed (XNOR) with the key byte from the Encryption Array. If the Encryption Array is not programmed (still all 1s), the user program code is placed on the data bus in its original, unencrypted form. If the Encryption Array is programmed with key bytes, the user program code is encrypted and cannot be used without knowledge of the key byte sequence.

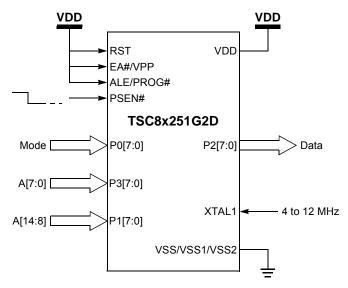

- Then device is driving the data on Port 2.
- It is possible to alternate programming and verification operation (see Paragraph Programming Algorithm). Please make sure the voltage on the EA# pin has actually been lowered to V_{DD} before performing the verifying operation.
- PSEN# and the other control signals have to be released to complete a sequence of verifying operations or a sequence of programming and verifying operations.

Table 37.	Verifying	Modes
-----------	-----------	-------

ROM Area ⁽¹⁾	RST	EA#/VPP	PSEN#	ALE/PROG#	P0	P2	P1(MSB) P3(LSB)
On-chip code memory	1	1	0	1	28h	Data	16-bit Address 0000h-7FFFh (32 kilobytes)
Configuration Bytes	1	1	0	1	29h	Data	CONFIG0: FFF8h CONFIG1: FFF9h
Lock Bits	1	1	0	1	2Bh	Data	0000h
Signature Bytes	1	1	0	1	29h	Data	0030h, 0031h, 0060h, 0061h

Notes: 1. To preserve the secrecy of on-chip code memory when encrypted, the Encryption Array can not be verified.

AC Characteristics - Commercial & Industrial

AC Characteristics - External Bus Cycles

Definition of Symbols

Table 38. External Bus Cycles Timing Symbol Definitions

Signals					
Address					
Data In					
ALE					
Data Out					
RD#/PSEN#					
WR#					

Conditions			
High			
Low			
Valid			
No Longer Valid			
Floating			

Timings

Test conditions: capacitive load on all pins = 50 pF.

Table 39 and Table 40 list the AC timing parameters for the TSC80251G2D derivatives with no wait states. External wait states can be added by extending PSEN#/RD#/WR# and or by extending ALE. In these tables, Note 2 marks parameters affected by one ALE wait state, and Note 3 marks parameters affected by PSEN#/RD#/WR# wait states.

Figure 8 to Figure 13 show the bus cycles with the timing parameters.

AC Characteristics - SSLC: SPI Interface

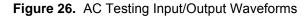
Definition of Symbols

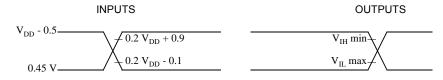
Table 48. SPI Interface Timing Symbol Definitions

Signals		
С	Clock	
I	Data In	
0	Data Out	
S	SS#	

	Conditions			
Н	High			
L	Low			
V	Valid			
Х	No Longer Valid			
Z	Floating			

Timings


Table 49. SPI Interface AC Timing; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C


Symbol	Parameter	Min	Max	Unit
	Slave Mode ⁽	1)		1
Тснсн	Clock Period	8		T _{OSC}
T _{CHCX}	Clock High Time	3.2		T _{osc}
T _{CLCX}	Clock Low Time	3.2		T _{osc}
T _{SLCH} , T _{SLCL}	SS# Low to Clock edge	200		ns
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	100		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	100		ns
T _{CLOV,} T _{CHOV}	Output Data Valid after Clock Edge		100	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns
T _{CLSH} , T _{CHSH}	SS# High after Clock Edge	0		ns
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	100		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	100		ns
T _{SLOV}	SS# Low to Output Data Valid		130	ns
Т _{знох}	Output Data Hold after SS# High		130	ns
T _{SHSL}	SS# High to SS# Low	(2)		
T _{ILIH}	Input Rise Time		2	μs
T _{IHIL}	Input Fall Time		2	μs
T _{OLOH} Output Rise time			100	ns
Т _{оног}	Output Fall Time		100	ns
	Master Mode	(3)		
T _{CHCH} Clock Period		4		T _{osc}
Т _{снсх}	Clock High Time	1.6		T _{osc}
T _{CLCX}	Clock Low Time	1.6		T _{osc}
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	50		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	50		ns
T _{CLOV,} T _{CHOV}	Output Data Valid after Clock Edge		65	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns
T _{ILIH}	Input Data Rise Time		2	μs
T _{IHIL}	Input Data Fall Time		2	μs
T _{OLOH}	Output Data Rise time		50	ns
T _{OHOL}	Output Data Fall Time		50	ns

Notes: 1. Capacitive load on all pins = 200 pF in slave mode.

2. The value of this parameter depends on software.


3. Capacitive load on all pins = 100 pF in master mode.

Note: For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loading V_{OH}/V_{OL} level occurs with $I_{OL}/I_{OH} = \pm 20$ mA.

Figure 27. Float Waveforms

Low Voltage Versions - Commercial & Industrial

Table 56.	DC Characteristics;	V _{DD} = 2.7 to	5.5 V, T _A :	= -40 to +85°C
-----------	---------------------	--------------------------	-------------------------	----------------

Symbol	Parameter	Min	Typical ⁽⁴⁾	Max	Units	Test Conditions
V _{IL}	Input Low Voltage (except EA#, SCL, SDA)	-0.5		0.2·V _{DD} - 0.1	V	
$V_{IL1}^{(5)}$	Input Low Voltage (SCL, SDA)	-0.5		0.3·V _{DD}	v	
V _{IL2}	Input Low Voltage (EA#)	0		0.2·V _{DD} - 0.3	V	
V _{IH}	Input high Voltage (except XTAL1, RST, SCL, SDA)	0.2·V _{DD} + 0.9		V _{DD} + 0.5	V	
$V_{\rm IH1}^{(5)}$	Input high Voltage (XTAL1, RST, SCL, SDA)	0.7·V _{DD}		V _{DD} + 0.5	v	
V _{OL}	Output Low Voltage (Ports 1, 2, 3)			0.45	v	$I_{OL} = 0.8 \text{ mA}^{(1)(2)}$
V _{OL1}	Output Low Voltage (Ports 0, ALE, PSEN#, Port 2 in Page Mode during External Address)			0.45	v	I _{OL} = 1.6 mA ⁽¹⁾⁽²⁾
V _{OH}	Output high Voltage (Ports 1, 2, 3, ALE, PSEN#)	0.9·V _{DD}			V	I _{OH} = -10 μA ⁽³⁾
V _{OH1}	Output high Voltage (Port 0, Port 2 in Page Mode during External Address)	0.9·V _{DD}			v	Ι _{ΟΗ} = -40 μΑ
V_{RET}	V _{DD} data retention limit			1.8	V	
I _{ILO}	Logical 0 Input Current (Ports 1, 2, 3 - AWAIT#)			- 50	μA	V _{IN} = 0.45 V
I _{IL1}	Logical 1 Input Current (NMI)			+ 50	μA	V _{IN} = V _{DD}
I _{LI}	Input Leakage Current (Port 0)			± 10	μΑ	0.45 V < V _{IN} < V _{DD}
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3)			- 650	μA	V _{IN} = 2.0 V
R _{RST}	RST Pull-Down Resistor	40	110	225	kΩ	
C _{IO}	Pin Capacitance		10		pF	T _A = 25°C
I _{DD}	Operating Current		4 8 9 11	8 11 12 14	mA	$\begin{array}{l} 5 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 10 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 12 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 16 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \end{array}$
I _{DL}	Idle Mode Current		0.5 1.5 2 3	1 4 5 7	mA	$\begin{array}{c} 5 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 10 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 12 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 16 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \end{array}$
I _{PD}	Power-Down Current		1	10	μA	V _{RET} < V _{DD} < 3.6 V

Notes: 1. Under steady-state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum IOL per port pin: 10 mA

Maximum IOL per 8-bit port: Port 0 26 mA

Ports 1-315 mA

CDIL 40 with Window -Mechanical Outline

Figure 34. Ceramic Dual In Line

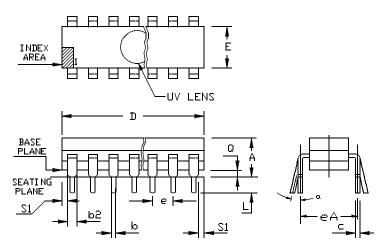
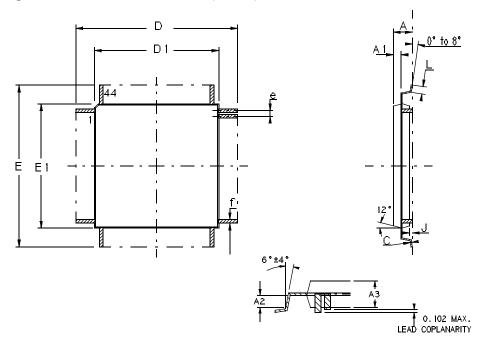


Table 58. CDIL Package Size


	ММ		In	ch
	Min	Max	Min	Мах
A	-	5.71	-	.225
b	0.36	0.58	.014	.023
b2	1.14	1.65	.045	.065
с	0.20	0.38	.008	.015
D	-	53.47	-	2.105
E	13.06	15.37	.514	.605
e	2.54 B.S.C.		.100 B.S.C.	
eA	15.24 B.S.C.		.600	B.S.C.
L	3.18	5.08	.125	.200
Q	0.38	1.40	.015	.055
S1	0.13	-	.005	-
а	0 - 15		0 -	15
Ν			40	

VQFP 44 (10x10) -Mechanical Outline

Figure 37. Shrink Quad Flat Pack (Plastic)

Table 61.	VQFP	Package Size
-----------	------	--------------

	М	М	In	ch
	Min	Мах	Min	Max
A	-	1.60	-	.063
A1	0.64	REF	.025	REF
A2	0.64	REF	.025	iREF
A3	1.35	1.45	.053	.057
D	11.90	12.10	.468	.476
D1	9.90	10.10	.390	.398
E	11.90	12.10	.468	.476
E1	9.90	10.10	.390	.398
J	0.05	-	.002	6
L	0.45	0.75	.018	.030
е	0.80 BSC		.0315	5 BSC
f	0.35 BSC		.014	BSC

AT/TSC87251G2D OTPROM

Part Number	ROM	Description			
High	High Speed Versions 4.5 to 5.5 V, Commercial and Industrial				
TSC87251G2D-16CB	32K OTPROM	16 MHz, Commercial 0° to 70°C, PLCC 44			
TSC87251G2D-24CB	32K OTPROM	24 MHz, Commercial 0° to 70°C, PLCC 44			
TSC87251G2D-24CED	32K OTPROM	24 MHz, Commercial 0° to 70°C, VQFP 44			
TSC87251G2D-24IA	32K OTPROM	24 MHz, Industrial -40° to 85°C, PDIL 40			
TSC87251G2D-24IB	32K OTPROM	24 MHz, Industrial -40° to 85°C, PLCC 44			
AT87251G2D-SLSUM	32K OTPROM	24 MHz, Industrial & Green -40° to 85°C, PLCC 44			
AT87251G2D-3CSUM	32K OTPROM	24 MHz, Industrial & Green -40° to 85°C, PDIL 40			
AT87251G2D-RLTUM	32K OTPROM	24 MHz, Industrial & Green -40° to 85°C, VQFP 44			
	Low Volta	ge Versions 2.7 to 5.5 V			
TSC87251G2D-L16CB	32K OTPROM	16 MHz, Commercial 0° to 70°C, PLCC 44			
TSC87251G2D-L16CED	32K OTPROM	16 MHz, Commercial 0° to 70°C, VQFP 44			
AT87251G2D-SLSUL	32K OTPROM	16 MHz, Industrial & Green, 0° to 70°C, PLCC 44			
AT87251G2D-RLTUL	32K OTPROM	16 MHz, Industrial & Green, 0° to 70°C, VQFP 44			

Document Revision History

Changes from 1. Added automotive qualification, and ordering information for ROM product version.

- 4135D to 4135E
- 1. Absolute Maximum Ratings added for automotive product version.

Changes from 4135E to 4135F

AIMEL