

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	24MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at80251g2d-rltum

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Typical Operating Current:11 mA at 3V
- Typical Power-down Current: 1 μA
- Temperature Ranges: Commercial (0°C to +70°C), Industrial (-40°C to +85°C), Automotive ((-40°C to +85°C) ROM only)
- Option: Extended Range (-55°C to +125°C)
- Packages: PDIL 40, PLCC 44 and VQFP 44
- Options: Known Good Dice and Ceramic Packages

Description

The TSC80251G2D products are derivatives of the Atmel Microcontroller family based on the 8/16-bit C251 Architecture. This family of products is tailored to 8/16-bit microcontroller applications requiring an increased instruction throughput, a reduced operating frequency or a larger addressable memory space. The architecture can provide a significant code size reduction when compiling C programs while fully preserving the legacy of C51 assembly routines.

The TSC80251G2D derivatives are pin and software compatible with standard 80C51/Fx/Rx/Rx+ with extended on-chip data memory (1 Kbyte RAM) and up to 256 kilobytes of external code and data. Additionally, the TSC83251G2D and TSC87251G2D provide on-chip code memory: 32 kilobytes ROM and 32 kilobytes EPROM/OTPROM respectively.

They provide transparent enhancements to Intel's xC251Sx family with an additional Synchronous Serial Link Controller (SSLC supporting TWI, μ Wire and SPI protocols), a Keyboard interrupt interface, a dedicated Baud Rate Generator for UART, and Power Management features.

TSC80251G2D derivatives are optimized for speed and for low power consumption on a wide voltage range.

Note: 1. This Datasheet provides the technical description of the TSC80251G2D derivatives. For further information on the device usage, please request the TSC80251 Programmer's Guide and the TSC80251G1D Design Guide and errata sheet.

Typical Applications • ISDN Terminals

- High-Speed Modems
- PABX (SOHO)
- Line Cards
- DVD ROM and Players
- Printers
- Plotters
- Scanners
- Banking Machines
- Barcode Readers
- Smart Cards Readers
- High-End Digital Monitors
- High-End Joysticks
- High-end TV's

Pin Description

Pinout

Figure 1. TSC80251G2D 40-pin DIP package

Table 2.	Product Name	Signal Description	(Continued)
----------	--------------	--------------------	-------------

Signal Name	Туре	Description	Alternate Function
NMI	I	Non Maskable Interrupt Holding this pin high for 24 oscillator periods triggers an interrupt. When using the Product Name as a pin-for-pin replacement for a 8xC51 product, NMI can be unconnected without loss of compatibility or power consumption increase (on-chip pull-down). Not available on DIP package.	_
P0.0:7	I/O	Port 0 P0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. To avoid any paraitic current consumption, Floating P0 inputs must be polarized to V_{DD} or V_{SS} .	AD7:0
P1.0:7	I/O	Port 1 P1 is an 8-bit bidirectional I/O port with internal pull-ups. P1 provides interrupt capability for a keyboard interface.	-
P2.0:7	I/O	Port 2 P2 is an 8-bit bidirectional I/O port with internal pull-ups.	A15:8
P3.0:7	I/O	Port 3 P3 is an 8-bit bidirectional I/O port with internal pull-ups.	-
PROG#	I	Programming Pulse input The programming pulse is applied to this input for programming the on-chip EPROM/OTPROM.	-
PSEN#	0	Program Store Enable/Read signal output PSEN# is asserted for a memory address range that depends on bits RD0 and RD1 in UCONFIG0 byte (see).	-
RD#	0	Read or 17 th Address Bit (A16) Read signal output to external data memory depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).	
RST	I	Reset input to the chip Holding this pin high for 64 oscillator periods while the oscillator is running resets the device. The Port pins are driven to their reset conditions when a voltage greater than V_{IH1} is applied, whether or not the oscillator is running. This pin has an internal pull-down resistor which allows the device to be reset by connecting a capacitor between this pin and VDD. Asserting RST when the chip is in Idle mode or Power-Down mode returns the chip to normal operation.	
RXD	I/O	Receive Serial Data RXD sends and receives data in serial I/O mode 0 and receives data in serial I/O modes 1, 2 and 3.	P3.0
SCL	I/O	TWI Serial Clock When TWI controller is in master mode, SCL outputs the serial clock to slave peripherals. When TWI controller is in slave mode, SCL receives clock from the master controller.	P1.6
SCK	I/O	SPI Serial Clock When SPI is in master mode, SCK outputs clock to the slave peripheral. When SPI is in slave mode, SCK receives clock from the master controller.	P1.6
SDA	I/O	TWI Serial Data SDA is the bidirectional TWI data line.	P1.7
SS#	I	SPI Slave Select Input When in Slave mode, SS# enables the slave mode.	P1.4

compatibility with the C51 Architecture). When PC increments beyond the end of seqment FE:, it continues at the reset address FF:0000h (linearity). When PC increments beyond the end of segment 01:, it loops to the beginning of segment 00: (this prevents from its going into the reserved area).

Data Memory The TSC80251G2D derivatives implement 1 Kbyte of on-chip data RAM. Figure 5 shows the split of the internal and external data memory spaces. This memory is mapped in the data space just over the 32 bytes of registers area (see TSC80251 Programmers' Guide). Hence, the part of the on-chip RAM located from 20h to FFh is bit addressable. This on-chip RAM is not accessible through the program/code memory space.

> For faster computation with the on-chip ROM/EPROM code of the TSC83251G2D/TSC87251G2D, its upper 16 KB are also mapped in the upper part of the region 00: if the On-Chip Code Memory Map configuration bit is cleared (EMAP# bit in UCONFIG1 byte, see Figure). However, if EA# is tied to a low level, the TSC80251G2D derivative is running as a ROMless product and the code is actually fetched in the corresponding external memory (i.e. the upper 16 KB of the lower 32 KB of the segment FF:). If EMAP# bit is set, the on-chip ROM is not accessible through the region 00:.

> All the accesses to the portion of the data space with no on-chip memory mapped onto are redirected to the external memory.

Figure 5. Data Memory Mapping

AT/TSC8x251G2D

Table 12. Configuration Byte 1UCONFIG1

7	6	5	4	3	2	1	0	
CSIZE	-	-	INTR	WSB	WSB1#	WSB0#	EMAP#	
Bit Number	Bit Mnem	ionic [Description					
7	CSIZE TSC87251G2D TSC80251G2D TSC83251G2D		On-Chip Code Memory Size bit ⁽¹⁾ Clear to select 16 KB of on-chip code memory (TSC87251G1D product). Set to select 32 KB of on-chip code memory (TSC87251G2D product).					
			Reserved Set this bit when writing to UCONFIG1.					
6	-	F	Reserved Set this bit when	writing to UCC	DNFIG1.			
5	-	F	Reserved Set this bit when writing to UCONFIG1.					
4	INTF	۲ ۲ ۲ ۲	Interrupt Mode bit ⁽²⁾ Clear so that the interrupts push two bytes onto the stack (the two lower bytes of the PC register). Set so that the interrupts push four bytes onto the stack (the three bytes of the PC register and the PSW1 register).					
3	WSE	3	Wait State B bit Clear to generate Set for no wait st	3) e one wait state ates for memo	e for memory ory region 01:.	region 01:.		
2	WSB	1# \	Vait State B bits	5				
1	WSB)# () }	Select the number of wait states for RD#, WR# and PSEN# signals texternal memory accesses (only region 01:). <u>WSB1# WSB0# Number of Wait States</u> 0 0 3 0 1 2 1 0 1 1 0					
0	EMAF	2# F 5 F	On-Chip Code Memory Map bit Clear to map the upper 16 KB of on-chip code memory (at FF:4000h- FF:7FFFh) to the data space (at 00:C000h-00:FFFFh). Set not to map the upper 16 KB of on-chip code memory (at FF:4000 FF:7FFFh) to the data space.					

Notes: 1. The CSIZE is only available on EPROM/OTPROM products.

2. Two or four bytes are transparently popped according to INTR when using the RETI instruction. INTR must be set if interrupts are used with code executing outside region FF:.

3. Use only for Step A compatibility; set this bit when WSB1:0# are used.

Configuration Byte 1

Table 13. Address Ranges and Usage of RD#, WR# and PSEN# Signals

RD1	RD0	P1.7	P3.7/RD#	PSEN#	WR#	External Memory
0	0	A17	A16	Read signal for all external memory locations	Write signal for all external memory locations	256 KB
0	1	I/O pin	A16	Read signal for all external memory locations	Write signal for all external memory locations	128 KB
1	0	I/O pin	I/O pin	Read signal for all external memory locations	Write signal for all external memory locations	64 KB
1	1	I/O pin	Read signal for regions 00: and 01:	Read signal for regions FE: and FF:	Write signal for all external memory locations	2 × 64 KB ⁽¹⁾

Notes: 1. This selection provides compatibility with the standard 80C51 hardware which has separate external memory spaces for data and code.

4. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

Table 21.	Summar	of Increment and Decrement Instructions
-----------	--------	---

 $IncrementINC < dest>dest opnd \leftarrow dest opnd + 1$

IncrementINC <dest>, <src>dest opnd \leftarrow dest opnd + src opnd

 $DecrementDEC < dest>dest opnd \leftarrow dest opnd - 1$

 $\texttt{DecrementDEC <dest>, <src>dest opnd \leftarrow dest opnd - src opnd}$

<dest>,</dest>			Binary	Mode	Source Mode			
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States		
	А	ACC by 1	1	1	1	1		
INC DEC	Rn	Register by 1	1	1	2	2		
	dir8	Direct address (on-chip RAM or SFR) by 1	2	2 ⁽²⁾	2	2 ⁽²⁾		
	at Ri	Indirect address by 1	1	3	2	4		
Mnemonic <desi </desi <src>INC DECA Rn dir8 at Ri WRj,INC DECRm, # WRj,INC DECDRk, DRK,INC DECDRk, DRK,</br></src>	Rm, #short	Byte register by 1, 2, or 4	3	2	2	1		
DEC	AACC by 11111RnRegister by 111122dir8Direct address (on-chip RAM or SFR) by 12 $2^{(2)}$ 2 $2^{(2)}$ at RiIndirect address by 11324Rm, #shortByte register by 1, 2, or 43221WRj, #shortWord register by 1, 2, or 43423DRk, #shortDouble word register by 1, 2, or 43524DPTRData pointer by 111111							
INC	DRk, #short	Double word register by 1, 2, or 4	3	4	2	3		
DEC	DRk, #short	Double word register by 1, 2, or 4	3	5	2	4		
INC	DPTR	Data pointer by 1	1	1	1	1		

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

 $\texttt{Logical AND}^{(1)}\texttt{ANL <dest>, <src>dest opnd \leftarrow dest opnd \Lambda \ src opnd$ Logical OR⁽¹⁾ORL <dest>, <src>dest opnd \leftarrow dest opnd ς src opnd $\texttt{Logical Exclusive OR^{(1)}XRL <dest>, <src>dest opnd \leftarrow dest opnd \forall src opnd }$ Clear⁽¹⁾CLR A(A) \leftarrow 0 Complement⁽¹⁾CPL A(A) $\leftarrow \emptyset$ (A) Rotate LeftRL $A(A)_{n+1} \leftarrow (A)_n$, n = 0..6 $(\mathsf{A})_0 \gets (\mathsf{A})_7$ Rotate Left CarryRLC $A(A)_{n+1} \leftarrow (A)_n$, n = 0..6 $(CY) \leftarrow (A)_7$ $(A)_0 \leftarrow (CY)$ Rotate RightRR $A(A)_{n-1} \leftarrow (A)_n$, n = 7..1 $(A)_7 \leftarrow (A)_0$ Rotate Right CarryRRC $A(A)_{n-1} \leftarrow (A)_n$, n = 7..1 $(CY) \leftarrow (A)_0$ $(A)_7 \leftarrow (CY)$

			Binary	Mode	Sourc	e Mode
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	States
	A, Rn	register to ACC	1	1	2	2
	A, dir8	Direct address (on-chip RAM or SFR) to ACC	2	1 ⁽³⁾	2	1 ⁽³⁾
	A, at Ri	Indirect address to ACC	1	2	2	3
	A, #data	Immediate data to ACC	2	1	2	1
	dir8, A	ACC to direct address	2	2 ⁽⁴⁾	2	2 ⁽⁴⁾
	dir8, #data	Binary ModeSoucdest>, <src>(1)CommentsBytesStatesBytesA, Rnregister to ACC112A, dir8Direct address (on-chip RAM or SFR) to ACC2$1^{(3)}$2A, at RiIndirect address to ACC122A, at RiIndirect address to ACC212A, #dataImmediate data to ACC212gif8, AACC to direct address22(4)2gif8, #dataImmediate 8-bit data to direct address33(4)3Rnd, RmsByte register to byte register322NRjd, WRjsWord register to word register332Rm, #dataImmediate 8-bit data to byte register433NRj, #data16Immediate 16-bit data to word register544Rm, dir8Direct address (on-chip RAM or SFR) to byte register43(3)3NRj, dir8Direct address (64K) to byte register5$3^{(6)}$4NRj, dir16Direct address (64K) to byte register5$4^{(6)}$4Rm, at WRjIndirect address (64K) to byte register4$3^{(5)}$3AClear ACC1111AComplement ACC1111ARotate ACC left1111ARotate ACC left through CY1111ARotate ACC left<td< td=""><td>3</td><td>3⁽⁴⁾</td></td<></src>	3	3 ⁽⁴⁾		
	Rmd, Rms	Byte register to byte register	3	Binary ModeSource ModeytesStatesBytesState11222 $1^{(3)}$ 2 $1^{(1)}$ 122321223 $3^{(4)}$ 3 $3^{(1)}$ 32213322433254435 $3^{(5)}$ 424 $3^{(5)}$ 324 $3^{(5)}$ 3211111111111111111111	1	
ΔΝΙ	WRjd, WRjs	Word register to word register	3	3	2	2
ORL	Rm, #data	Immediate 8-bit data to byte register	4	3	3	2
XRL	WRj, #data16	Immediate 16-bit data to word register	5	4	4	3
	Rm, dir8	Direct address (on-chip RAM or SFR) to byte register	4	3 ⁽³⁾	2 3 4 3 3 3 4	2 ⁽³⁾
	WRj, dir8	Direct address (on-chip RAM or SFR) to word register	4	4	3	3
	Rm, dir16	Direct address (64K) to byte register	5	3 ⁽⁵⁾	4	2 ⁽⁵⁾
	WRj, dir16	Direct address (64K) to word register	5	4 ⁽⁶⁾	4	3 ⁽⁶⁾
	Rm, at WRj	Indirect address (64K) to byte register	4	3 ⁽⁵⁾	3	2 ⁽⁵⁾
	Rm, at DRk	Indirect address (16M) to byte register	4	4 ⁽⁵⁾	3	3 ⁽⁵⁾
CLR	А	Clear ACC	1	1	1	1
CPL	А	Complement ACC	1	1	1	1
RL	А	Rotate ACC left	1	1	1	1
RLC	A	Rotate ACC left through CY	1	1	1	1
RR	A	Rotate ACC right	1	1	1	1
RRC	A	Rotate ACC right through CY	1	1	1	1

Table 25. Summary of Move Instructions (1/3)

Move to High wordMOVH <dest>, <src>dest opnd_{$31:16$} \leftarrow src opnd</src></dest>
Move with Sign extensionMOVS <dest>, <src>dest opnd \leftarrow src opnd with sign extend</src></dest>
Move with Zero extensionMOVZ <dest>, <src>dest opnd \leftarrow src opnd with zero extend</src></dest>
Move CodeMOVC A, $<$ src>(A) \leftarrow src opnd

Move eXtendedMOVX <dest>, <src>dest opnd \leftarrow src opnd

	<dest></dest>		Binary	Binary Mode		Source Mode		
Mnemonic	<src>⁽²⁾</src>	Comments	Bytes	States	Bytes	States		
MOVH	DRk, #data16	16-bit immediate data into upper word of dword register	5	3	4	2		
MOVS	WRj, Rm	Byte register to word register with sign extension	3	2	2	1		
MOVZ	WRj, Rm	Byte register to word register with zeros extension	3	2	2	1		
MOVC	A, at A +DPTR	Code byte relative to DPTR to ACC	1	6 ⁽³⁾	1	6 ⁽³⁾		
MOVC	A, at A +PC	Code byte relative to PC to ACC	1	6 ⁽³⁾	1	6 ⁽³⁾		
	A, at Ri	Extended memory (8-bit address) to ACC ⁽²⁾	1	4	1	5		
MOVX	A, at DPTR	Extended memory (16-bit address) to ACC ⁽²⁾	1	3 ⁽⁴⁾	1	3 ⁽⁴⁾		
	at Ri, A	ACC to extended memory (8-bit address) ⁽²⁾	1	4	1	4		
	at DPTR, A	ACC to extended memory (16-bit address) ⁽²⁾	1	4 ⁽³⁾	1	4 ⁽³⁾		

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. Extended memory addressed is in the region specified by DPXL (reset value = 01h).

- 3. If this instruction addresses external memory location, add N+1 to the number of states (N: number of wait states).
- 4. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).

Move ⁽¹⁾ MOV <dest>, <src>dest opnd \leftarrow src opnd</src></dest>							
			Binary	Mode	Source	e Mode	
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	States	
MOV	Rmd, Rms	Byte register to byte register	3	2	2	1	
MOV	WRjd, WRjs	Word register to word register	3	2	2	1	
MOV	DRkd, DRks	Dword register to dword register	3	3	2	2	
MOV	Rm, #data	Immediate 8-bit data to byte register	4	3	3	2	
MOV	WRj, #data16	Immediate 16-bit data to word register	5	3	4	2	
MOV	DRk, #0data16	zero-ext 16bit immediate data to dword register	5	5	4	4	
MOV	DRk, #1data16	one-ext 16bit immediate data to dword register	5	5	4	4	
MOV	Rm, dir8	Direct address (on-chip RAM or SFR) to byte register	4	3 ⁽³⁾	3	2 ⁽³⁾	
MOV	WRj, dir8	Direct address (on-chip RAM or SFR) to word register	4	4	3	3	
MOV	DRk, dir8	Direct address (on-chip RAM or SFR) to dword register	4	6	3	5	
MOV	Rm, dir16	Direct address (64K) to byte register	5	3 ⁽⁴⁾	4	2 ⁽⁴⁾	
MOV	WRj, dir16	Direct address (64K) to word register	5	4 ⁽⁵⁾	4	3 ⁽⁵⁾	
MOV	DRk, dir16	Direct address (64K) to dword register	5	6 ⁽⁶⁾	4	5 ⁽⁶⁾	
MOV	Rm, at WRj	Indirect address (64K) to byte register	4	3(4)	3	2 ⁽⁴⁾	
MOV	Rm, at DRk	Indirect address (16M) to byte register	4	4 ⁽⁴⁾	3	3 ⁽⁴⁾	
MOV	WRjd, at WRjs	Indirect address (64K) to word register	4	4 ⁽⁵⁾	3	3 ⁽⁵⁾	
MOV	WRj, at DRk	Indirect address (16M) to word register	4	5 ⁽⁵⁾	3	4 ⁽⁵⁾	
MOV	dir8, Rm	Byte register to direct address (on-chip RAM or SFR)	4	4 ⁽³⁾	3	3 ⁽³⁾	
MOV	dir8, WRj	Word register to direct address (on-chip RAM or SFR)	4	5	3	4	
MOV	dir8, DRk	Dword register to direct address (on-chip RAM or SFR)	4	7	3	6	
MOV	dir16, Rm	Byte register to direct address (64K)	5	4 ⁽⁴⁾	4	3 ⁽⁴⁾	
MOV	dir16, WRj	Word register to direct address (64K)	5	5 ⁽⁵⁾	4	4 ⁽⁵⁾	
MOV	dir16, DRk	Dword register to direct address (64K)	5	7 ⁽⁶⁾	4	6 ⁽⁶⁾	
MOV	at WRj, Rm	Byte register to indirect address (64K)	4	4 ⁽⁴⁾	3	3 ⁽⁴⁾	
MOV	at DRk, Rm	Byte register to indirect address (16M)	4	5 ⁽⁴⁾	3	4 ⁽⁴⁾	
MOV	at WRjd, WRjs	Word register to indirect address (64K)	4	5 ⁽⁵⁾	3	4 ⁽⁵⁾	
MOV	at DRk, WRj	Word register to indirect address (16M)	4	6 ⁽⁵⁾	3	5 ⁽⁵⁾	
MOV	Rm, at WRj +dis16	Indirect with 16-bit displacement (64K) to byte register	5	6 ⁽⁴⁾	4	5 ⁽⁴⁾	
MOV	WRj, at WRj +dis16	Indirect with 16-bit displacement (64K) to word register	5	7 ⁽⁵⁾	4	6 ⁽⁵⁾	
MOV	Rm, at DRk +dis24	Indirect with 16-bit displacement (16M) to byte register	5	7 ⁽⁴⁾	4	6 ⁽⁴⁾	

Table 29.	Summary	/ of	Conditional Jump	Instructions ((1/2)
-----------	---------	------	------------------	----------------	-------

Jump conditional on statusJcc rel(PC) \leftarrow (PC) + size (instr); IF [cc] THEN (PC) \leftarrow (PC) + rel							
	-dosta		Binary	Mode	Source Mode		
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States	
JC	rel	Jump if carry	2	1/4 ⁽³⁾	2	1/4 ⁽³⁾	
JNC	rel	Jump if not carry	2	1/4 ⁽³⁾	2	1/4 ⁽³⁾	
JE	rel	Jump if equal	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JNE	rel	Jump if not equal	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JG	rel	Jump if greater than	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JLE	rel	Jump if less than, or equal	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JSL	rel	Jump if less than (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JSLE	rel	Jump if less than, or equal (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JSG	rel	Jump if greater than (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JSGE	rel	Jump if greater than or equal (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. States are given as jump not-taken/taken.

3. In internal execution only, add 1 to the number of states of the 'jump taken' if the destination address is internal and odd.

Add 3 if it addresses a Peripheral SFR.

- 5. If this instruction addresses an I/O Port (Px, x = 0-3), add 3 to the number of states. Add 5 if it addresses a Peripheral SFR.
- 6. In internal execution only, add 1 to the number of states of the 'jump taken' if the destination address is internal and odd.

Table 31. Summary of Unconditional Jump Instructions

Absolute jumpAJMP <src>(PC) \leftarrow (PC) +2; (PC)_{10:0} \leftarrow src opnd Extended jumpEJMP <src>(PC) \leftarrow (PC) + size (instr); (PC)_{23:0} \leftarrow src opnd Long jumpLJMP <src>(PC) \leftarrow (PC) + size (instr); (PC)_{15:0} \leftarrow src opnd Short jumpSJMP rel(PC) \leftarrow (PC) +2; (PC) \leftarrow (PC) +rel Jump indirectJMP at A +DPTR(PC)_{23:16} \leftarrow FFh; (PC)_{15:0} \leftarrow (A) + (DPTR) No operationNOP(PC) \leftarrow (PC) +1

	-dest>		Binary	Mode	Source	Mode
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
AJMP	addr11	Absolute jump	2	3 ⁽²⁾⁽³⁾	2	3 ⁽²⁾⁽³⁾
	addr24	Extended jump	5	6 ⁽²⁾⁽⁴⁾	4	5 ⁽²⁾⁽⁴⁾
EJIVIE	at DRk	Extended jump (indirect)	3	7 ⁽²⁾⁽⁴⁾	2	6 ⁽²⁾⁽⁴⁾
	at WRj	Long jump (indirect)	3	6 ⁽²⁾⁽⁴⁾	2	5 ⁽²⁾⁽⁴⁾
LJIVIF	addr16	Long jump (direct address)	3	5 ⁽²⁾⁽⁴⁾	3	5 ⁽²⁾⁽⁴⁾
SJMP	rel	Short jump (relative address)	2	4 ⁽²⁾⁽⁴⁾	2	4 ⁽²⁾⁽⁴⁾
JMP	at A +DPTR	Jump indirect relative to the DPTR	1	5 ⁽²⁾⁽⁴⁾	1	5 ⁽²⁾⁽⁴⁾
NOP		No operation (Jump never)	1	1	1	1

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

- 2. In internal execution only, add 1 to the number of states if the destination address is internal and odd.
- 3. Add 2 to the number of states if the destination address is external.
- 4. Add 3 to the number of states if the destination address is external.

• PSEN# and the other control signals have to be released to complete a sequence of programming operations or a sequence of programming and verifying operations.

 Table 36.
 Programming Modes

ROM Area ⁽¹⁾	RST	EA#/VPP	PSEN #	ALE/PROG# ⁽²⁾	P0	P2	P1(MSB) P3(LSB)
On-chip Code Memory	1	V _{PP}	0	1 Pulse	68h	Data	16-bit Address 0000h-7FFFh (32 kilobytes)
Configuration Bytes	1	V _{PP}	0	1 Pulse	69h	Data	CONFIG0: FFF8h CONFIG1: FFF9h
Lock Bits	1	V _{PP}	0	1 Pulse	6Bh	x	LB0: 0001h LB1: 0002h LB2: 0003h
Encryption Array	1	V _{PP}	0	1 Pulse	6Ch	Data	0000h-007Fh

Notes: 1. Signature Bytes are not user-programmable.

2. The ALE/PROG# pulse waveform is shown in Figure 23 page 59.

Verify Algorithm

Figure 7 shows the hardware setup needed to verify the TSC87251G2D EPROM/OTPROM or TSC83251G2D ROM areas:

- The chip has to be put under reset and maintained in this state until the completion of the verifying sequence.
- PSEN# and the other control signals (ALE and Port 0) have to be set to a high level.
- Then PSEN# has to be to forced to a low level after two clock cycles or more and it
 has to be maintained in this state until the completion of the verifying sequence (see
 below).
- The voltage on the EA# pin must be set to V_{DD} and ALE must be set to a high level.
- The Verifying Mode is selected according to the code applied on Port 0. It has to be applied until the completion of this verifying operation.
- The verifying address is applied on Ports 1 and 3 which are respectively the MSB and the LSB of the address.

- Then device is driving the data on Port 2.
- It is possible to alternate programming and verification operation (see Paragraph Programming Algorithm). Please make sure the voltage on the EA# pin has actually been lowered to V_{DD} before performing the verifying operation.
- PSEN# and the other control signals have to be released to complete a sequence of verifying operations or a sequence of programming and verifying operations.

ROM Area ⁽¹⁾	RST	EA#/VPP	PSEN#	ALE/PROG#	P0	P2	P1(MSB) P3(LSB)	
On-chip code memory	1	1	0	1	28h	Data	16-bit Address 0000h-7FFFh (32 kilobytes)	
Configuration Bytes	1	1	0	1	29h	Data	CONFIG0: FFF8h CONFIG1: FFF9h	
Lock Bits	1	1	0	1	2Bh	Data	0000h	
Signature Bytes	1	1	0	1	29h	Data	0030h, 0031h, 0060h, 0061h	

Notes: 1. To preserve the secrecy of on-chip code memory when encrypted, the Encryption Array can not be verified.

		12	MHz	16	MHz	24		
Symbol	Parameter	Min	Мах	Min	Max	Min	Max	Unit
T _{OSC}	1/F _{OSC}	83		62		41		ns
T _{LHLL}	ALE Pulse Width	78		58		38		ns ⁽²⁾
T _{AVLL}	Address Valid to ALE Low	78		58		37		ns ⁽²⁾
T _{LLAX}	Address hold after ALE Low	19		11		3		ns
T _{RLRH} ⁽¹⁾	RD#/PSEN# Pulse Width	162		121		78		ns ⁽³⁾
T _{WLWH}	WR# Pulse Width	165		124		81		ns ⁽³⁾
T _{LLRL} ⁽¹⁾	ALE Low to RD#/PSEN# Low	22		14		6		ns
T _{LHAX}	ALE High to Address Hold	99		70		40		ns ⁽²⁾
T _{RLDV} ⁽¹⁾	RD#/PSEN# Low to Valid Data		146		104		61	ns ⁽³⁾
T _{RHDX} ⁽¹⁾	Data Hold After RD#/PSEN# High	0		0		0		ns
T _{RHAX} ⁽¹⁾	Address Hold After RD#/PSEN# High	0		0		0		ns
T _{RLAZ} ⁽¹⁾	RD#/PSEN# Low to Address Float		0		0		0	ns
T _{RHDZ1}	Instruction Float After RD#/PSEN# High		45		40		30	ns
T _{RHDZ2}	Data Float After RD#/PSEN# High		215		165		115	ns
T _{RHLH1}	RD#/PSEN# high to ALE High (Instruction)	49		43		31		ns
T _{RHLH2}	RD#/PSEN# high to ALE High (Data)	215		169		115		ns
T _{WHLH}	WR# High to ALE High	215		169		115		ns
T _{AVDV1}	Address (P0) Valid to Valid Data In		250		175		105	ns ⁽²⁾⁽³⁾
T _{AVDV2}	Address (P2) Valid to Valid Data In		306		223		140	ns ⁽²⁾⁽³⁾
T _{AVDV3}	Address (P0) Valid to Valid Instruction In		150		109		68	ns ⁽³⁾
T _{AXDX}	Data Hold after Address Hold	0		0		0		ns
T _{AVRL} ⁽¹⁾	Address Valid to RD# Low	100		70		40		ns ⁽²⁾
T _{AVWL1}	Address (P0) Valid to WR# Low	100		70		40		ns ⁽²⁾
T _{AVWL2}	Address (P2) Valid to WR# Low	158		115		74		ns ⁽²⁾
T _{WHQX}	Data Hold after WR# High	90		69		32		ns
T _{QVWH}	Data Valid to WR# High	133		102		72		ns ⁽³⁾
T _{WHAX}	WR# High to Address Hold	167		125		84		ns

Table 39.	Bus Cycles AC	Timings; V _D	_D = 4.5 to 5.5	V, T _A =	-40 to 85°C
-----------	---------------	-------------------------	---------------------------	---------------------	-------------

Notes: 1. Specification for PSEN# are identical to those for RD#.

2. If a wait state is added by extending ALE, add $2 \cdot T_{OSC}$. 3. If wait states are added by extending RD#/PSEN#/WR#, add $2N \cdot T_{OSC}$ (N = 1..3).

AC Characteristics - SSLC: TWI Interface

Timings

Table 47. TWI Interface AC Timing; V_{DD} = 2.7 to 5.5 V, T_{A} = -40 to 85°C

Symbol	Parameter	INPUT Min Max	OUTPUT Min Max
Тнр; STA	Start condition hold time	14·Tclcl ⁽⁴⁾	4.0 μs ⁽¹⁾
TLOW	SCL low time	16·Tclcl ⁽⁴⁾	4.7 μs ⁽¹⁾
Тнідн	SCL high time	14·Tclcl ⁽⁴⁾	4.0 μs ⁽¹⁾
Trc	SCL rise time	1 μs	_(2)
TFC	SCL fall time	0.3 μs	0.3 μs ⁽³⁾
Tsu; DAT1	Data set-up time	250 ns	20. TCLCL ⁽⁴⁾ - TRD
Tsu; DAT2	SDA set-up time (before repeated START condition)	250 ns	1 μs ⁽¹⁾
Tsu; DAT3	SDA set-up time (before STOP condition)	250 ns	8.TCLCL ⁽⁴⁾
THD; DAT	Data hold time	0 ns	8·Tclcl ⁽⁴⁾ - Tfc
Tsu; STA	Repeated START set-up time	14·Tclcl ⁽⁴⁾	4.7 μs ⁽¹⁾
Tsu; STO	STOP condition set-up time	14·Tclcl ⁽⁴⁾	4.0 μs ⁽¹⁾
TBUF	Bus free time	14·Tclcl ⁽⁴⁾	4.7 μs ⁽¹⁾
Trd	SDA rise time	1 μs	_(2)
TFD	SDA fall time	0.3 μs	0.3 μs ⁽³⁾

Notes: 1. At 100 kbit/s. At other bit-rates this value is inversely proportional to the bit-rate of 100 kbit/s.

- 2. Determined by the external bus-line capacitance and the external bus-line pull-up resistor, this must be < 1 $\mu s.$
- Spikes on the SDA and SCL lines with a duration of less than 3. TCLCL will be filtered out. Maximum capacitance on bus-lines SDA and SCL = 400 pF.
- 4. TCLCL = T_{OSC} = one oscillator clock period.

Waveforms

Figure 18. TWI Waveforms

54 AT/TSC8x251G2D

AT/TSC8x251G2D

Note: 1. SS# handled by software.

Note: 1. Not Defined but normally MSB of character just received.

Timings

Symbol	Parameter	Min	Мах	Unit
T _{osc}	XTAL1 Period	83.5	250	ns
T _{AVGL}	Address Setup to PROG# low	48		T _{osc}
T _{GHAX}	Address Hold after PROG# low	48		T _{osc}
T _{DVGL}	Data Setup to PROG# low	48		T _{osc}
T _{GHDX}	Data Hold after PROG#	48		T _{osc}
T _{ELSH}	ENABLE High to V _{PP}	48		T _{osc}
T _{SHGL}	V _{PP} Setup to PROG# low	10		μs
T _{GHSL}	V _{PP} Hold after PROG#	10		μs
T _{SLEH}	ENABLE Hold after V _{PP}	0		ns
T _{GLGH}	PROG# Width	90	110	μs

Table 51. EPROM Programming AC timings; V_{DD} = 4.5 to 5.5 V, T_A = 0 to 40°C

Table 52. EPROM Verifying AC timings; V_{DD} = 4.5 to 5.5 V, V_{DD} = 2.7 to 5.5 V, T_A = 0 to 40°C

Symbol	Parameter	Min	Max	Unit
T _{OSC}	XTAL1 Period	83.5	250	ns
T _{AVQV}	Address to Data Valid		48	T _{osc}
T _{AXQX}	Address to Data Invalid	0		ns
T _{ELQV}	ENABLE low to Data Valid	0	48	T _{osc}
T _{EHQZ}	Data Float after ENABLE	0	48	T _{osc}

Waveforms

Notes: 1. Under steady-state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum IOL per port pin: 10 mA

Maximum IOL per 8-bit port:Port 0 26 mA

Ports 1-3 15 mA

Maximum Total IOL for all: Output Pins 71 mA

If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 2. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low-level outputs of ALE and Ports 1, 2, and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from high to low. In applications where capacitive loading exceeds 100 pF, the noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify ALE or other signals with a Schmitt Trigger or CMOS-level input logic.
- Capacitive loading on Ports 0 and 2 causes the V_{OH} on ALE and PSEN# to drop below the specification when the address lines are stabilizing.
- 4. Typical values are obtained using V_{DD} = 5 V and T_A = 25°C. They are not tested and there is not guarantee on these values.
- The input threshold voltage of SCL and SDA meets the TWI specification, so an input voltage below 0.3 V_{DD} will be recognized as a logic 0 while an input voltage above 0.7 V_{DD} will be recognized as a logic 1.

Note: 1. The clock prescaler is not used: $F_{OSC} = F_{XTAL}$.

Figure 31. I_{DL} Test Condition, Idle Mode

Figure 32. I_{PD} Test Condition, Power-Down Mode

