
E·XFL

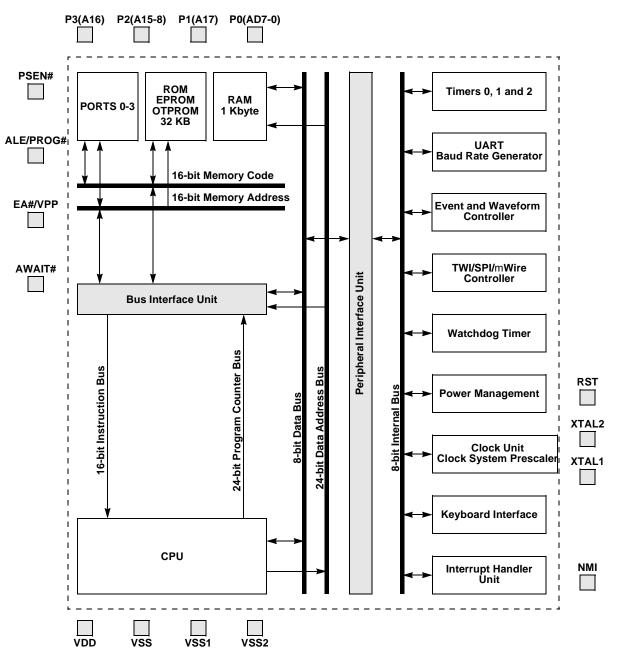
Atmel - AT80251G2D-SLRUM Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	24MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/at80251g2d-slrum

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

Table 2	Product Name	Signal Description	(Continued)
---------	--------------	--------------------	-------------

	Tiouu	ct Name Signal Description (Continued)	
Signal Name	Туре	Description	Alternate Function
NMI	I	Non Maskable Interrupt Holding this pin high for 24 oscillator periods triggers an interrupt. When using the Product Name as a pin-for-pin replacement for a 8xC51 product, NMI can be unconnected without loss of compatibility or power consumption increase (on-chip pull-down). Not available on DIP package.	-
P0.0:7	I/O	Port 0 P0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. To avoid any paraitic current consumption, Floating P0 inputs must be polarized to V_{DD} or V_{SS} .	AD7:0
P1.0:7	I/O	Port 1 P1 is an 8-bit bidirectional I/O port with internal pull-ups. P1 provides interrupt capability for a keyboard interface.	_
P2.0:7	I/O	Port 2 P2 is an 8-bit bidirectional I/O port with internal pull-ups.	A15:8
P3.0:7	I/O	Port 3 P3 is an 8-bit bidirectional I/O port with internal pull-ups.	_
PROG#	I	Programming Pulse input The programming pulse is applied to this input for programming the on-chip EPROM/OTPROM.	Ι
PSEN#	0	Program Store Enable/Read signal output PSEN# is asserted for a memory address range that depends on bits RD0 and RD1 in UCONFIG0 byte (see).	_
RD#	0	Read or 17 th Address Bit (A16) Read signal output to external data memory depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).	P3.7
RST	I	Reset input to the chip Holding this pin high for 64 oscillator periods while the oscillator is running resets the device. The Port pins are driven to their reset conditions when a voltage greater than V_{IH1} is applied, whether or not the oscillator is running. This pin has an internal pull-down resistor which allows the device to be reset by connecting a capacitor between this pin and VDD. Asserting RST when the chip is in Idle mode or Power-Down mode returns the chip to normal operation.	_
RXD	I/O	Receive Serial Data RXD sends and receives data in serial I/O mode 0 and receives data in serial I/O modes 1, 2 and 3.	P3.0
SCL	I/O	TWI Serial Clock When TWI controller is in master mode, SCL outputs the serial clock to slave peripherals. When TWI controller is in slave mode, SCL receives clock from the master controller.	P1.6
SCK	I/O	SPI Serial Clock When SPI is in master mode, SCK outputs clock to the slave peripheral. When SPI is in slave mode, SCK receives clock from the master controller.	P1.6
SDA	I/O	TWI Serial Data SDA is the bidirectional TWI data line.	P1.7
SS#	I	SPI Slave Select Input When in Slave mode, SS# enables the slave mode.	P1.4

Special Function Registers

The Special Function Registers (SFRs) of the TSC80251G2D derivatives fall into the categories detailed in Table 1 to Table 9.

SFRs are placed in a reserved on-chip memory region S: which is not represented in the data memory mapping (Figure 5). The relative addresses within S: of these SFRs are provided together with their reset values in Table . They are upward compatible with the SFRs of the standard 80C51 and the Intel's 80C251Sx family. In this table, the C251 core registers are identified by Note 1 and are described in the TSC80251 Programmer's Guide. The other SFRs are described in the TSC80251G1D Design Guide. All the SFRs are bit-addressable using the C251 instruction set.

Table 1. C251 Core SFRs

Mnemonic	Name
ACC ⁽¹⁾	Accumulator
B ⁽¹⁾	B Register
PSW	Program Status Word
PSW1	Program Status Word 1
SP ⁽¹⁾	Stack Pointer - LSB of SPX

Mnemonic	Name
SPH ⁽¹⁾	Stack Pointer High - MSB of SPX
DPL ⁽¹⁾	Data Pointer Low byte - LSB of DPTR
DPH ⁽¹⁾	Data Pointer High byte - MSB of DPTR
DPXL ⁽¹⁾	Data Pointer Extended Low byte of DPX - Region number

Note: 1. These SFRs can also be accessed by their corresponding registers in the register file.

Table 2. I/O Port SFRs

Mnemonic	Name
P0	Port 0
P1	Port 1

MnemonicNameP2Port 2P3Port 3

Table 3. Timers SFRs

Mnemonic	Name
TL0	Timer/Counter 0 Low Byte
TH0	Timer/Counter 0 High Byte
TL1	Timer/Counter 1 Low Byte
TH1	Timer/Counter 1 High Byte
TL2	Timer/Counter 2 Low Byte
TH2	Timer/Counter 2 High Byte
TCON	Timer/Counter 0 and 1 Control

Mnemonic	Name
TMOD	Timer/Counter 0 and 1 Modes
T2CON	Timer/Counter 2 Control
T2MOD	Timer/Counter 2 Mode
RCAP2L	Timer/Counter 2 Reload/Capture Low Byte
RCAP2H	Timer/Counter 2 Reload/Capture High Byte
WDTRST	WatchDog Timer Reset

Table 7. System Management SFRs

Mnemonic	Name
PCON	Power Control
POWM	Power Management

Mnemonic	Name
CKRL	Clock Reload
WCON	Synchronous Real-Time Wait State Control

Table 8. Interrupt SFRs

Mnemonic	Name
IE0	Interrupt Enable Control 0
IE1	Interrupt Enable Control 1
IPH0	Interrupt Priority Control High 0

Table 9. Keyb	oard Interface	SFRs
---------------	----------------	------

Mnemonic	Name
P1IE	Port 1 Input Interrupt Enable
P1F	Port 1 Flag

IPH1	Interrupt Priority Control High 1
IPL1 Interrupt Priority Control Low 1	

Interrupt Priority Control Low 0

Mnemonic Name

IPL0

Mnemonic	Name
P1LS	Port 1 Level Selection

Configuration Bytes

The TSC80251G2D derivatives provide user design flexibility by configuring certain operating features at device reset. These features fall into the following categories:

- external memory interface (Page mode, address bits, programmed wait states and the address range for RD#, WR#, and PSEN#)
- source mode/binary mode opcodes
- selection of bytes stored on the stack by an interrupt
- mapping of the upper portion of on-chip code memory to region 00:

Two user configuration bytes UCONFIG0 (see Table 11) and UCONFIG1 (see Table 12) provide the information.

When EA# is tied to a low level, the configuration bytes are fetched from the external address space. The TSC80251G2D derivatives reserve the top eight bytes of the memory address space (FF:FFF8h-FF:FFFh) for an external 8-byte configuration array. Only two bytes are actually used: UCONFIG0 at FF:FFF8h and UCONFIG1 at FF:FFF9h.

For the mask ROM devices, configuration information is stored in on-chip memory (see ROM Verifying). When EA# is tied to a high level, the configuration information is retrieved from the on-chip memory instead of the external address space and there is no restriction in the usage of the external memory.

Configuration Byte 1

Table 13. Address Ranges and Usage of RD#, WR# and PSEN# Signals

RD1	RD0	P1.7	P3.7/RD#	PSEN#	WR#	External Memory
0	0	A17	A16	Read signal for all external memory locations	Write signal for all external memory locations	256 KB
0	1	I/O pin	A16	Read signal for all external memory locations	Write signal for all external memory locations	128 KB
1	0	I/O pin	I/O pin	Read signal for all external memory locations	Write signal for all external memory locations	64 KB
1	1	I/O pin	Read signal for regions 00: and 01:	Read signal for regions FE: and FF:	Write signal for all external memory locations	2 × 64 KB ⁽¹⁾

Notes: 1. This selection provides compatibility with the standard 80C51 hardware which has separate external memory spaces for data and code.

Register	Description	C251	C51
at Ri	A memory location (00h-FFh) addressed indirectly via byte registers R0 or R1	_	3
Rn n	Byte register R0-R7 of the currently selected register bank Byte register index: n = 0-7	_	3
Rm Rmd Rms m, md, ms	Byte register R0-R15 of the currently selected register file Destination register Source register Byte register index: m, md, ms = 0-15		-
WRj WRjd WRjs at WRj at WRj +dis16 j, jd, js	Word register WR0, WR2,, WR30 of the currently selected register file Destination register Source register A memory location (00:0000h-00:FFFFh) addressed indirectly through word register WR0-WR30, is the target address for jump instructions. A memory location (00:0000h-00:FFFFh) addressed indirectly through word register (WR0-WR30) + 16-bit signed (two's complement) displacement value Word register index: j, jd, js = 0-30	3	_
DRk DRkd DRks at DRk at DRk +dis16 k, kd, ks	Dword register DR0, DR4,, DR28, DR56, DR60 of the currently selected register file Destination register Source register A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register DR0-DR28, DR56 and DR60, is the target address for jump instruction A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register (DR0-DR28, DR56, DR60) + 16-bit (two's complement) signed displacement value Dword register index: k, kd, ks = 0, 4, 8, 28, 56, 60	3	_

Table 19. Notation for Register Operands

Size and Execution Time for Instruction Families

Table 20. Summary of Add and Subtract Instructions

AddADD <dest>, <src>dest opnd \leftarrow dest opnd + src opnd</src></dest>
SubtractSUB <dest>, <src>dest opnd \leftarrow dest opnd - src opnd</src></dest>
Add with CarryADDC <dest>, <src>(A) \leftarrow (A) + src opnd + (CY)</src></dest>
Subtract with BorrowSUBB <dest>, <src>(A) \leftarrow (A) - src opnd - (CY)</src></dest>

	-dost>		Binary	Mode	Source Mode	
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	States
	A, Rn	Register to ACC	1	1	2	2
	A, dir8	Direct address to ACC	2	1 ⁽²⁾	2	1 ⁽²⁾
ADD	A, at Ri	Indirect address to ACC	1	2	2	3
	A, #data	Immediate data to ACC	2	1	2	1
	Rmd, Rms	Byte register to/from byte register	3	2	2	1
	WRjd, WRjs	Word register to/from word register	3	3	2	2
	DRkd, DRks	Dword register to/from dword register	3	5	2	4
	Rm, #data	Immediate 8-bit data to/from byte register	4	3	3	2
	WRj, #data16	Immediate 16-bit data to/from word register	5	4	4	3
	DRk, #0data16	16-bit unsigned immediate data to/from dword register	5	6	4	5
ADD/SUB	Rm, dir8	Direct address (on-chip RAM or SFR) to/from byte register	4	3 ⁽²⁾	3	2 ⁽²⁾
	WRj, dir8	Direct address (on-chip RAM or SFR) to/from word register	4	4	3	3
	Rm, dir16	Direct address (64K) to/from byte register	5	3 ⁽³⁾	4	2 ⁽³⁾
	WRj, dir16	Direct address (64K) to/from word register	5	4 ⁽⁴⁾	4	3 ⁽⁴⁾
	Rm, at WRj	Indirect address (64K) to/from byte register	4	3 ⁽³⁾	3	2 ⁽³⁾
	Rm, at DRk	Indirect address (16M) to/from byte register	4	4 ⁽³⁾	3	3 ⁽³⁾
	A, Rn	Register to/from ACC with carry	1	1	2	2
ADDC/SU BB	A, dir8	Direct address (on-chip RAM or SFR) to/from ACC with carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	A, at Ri	Indirect address to/from ACC with carry	1	2	2	3
	A, #data	Immediate data to/from ACC with carry	2	1	2	1

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

3. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).

4. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

 $IncrementINC < dest>dest opnd \leftarrow dest opnd + 1$

IncrementINC <dest>, <src>dest opnd \leftarrow dest opnd + src opnd

 $DecrementDEC < dest>dest opnd \leftarrow dest opnd - 1$

 $\texttt{DecrementDEC <dest>, <src>dest opnd \leftarrow dest opnd - src opnd}$

			Binary Mode		Source Mode	
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	States
	A	ACC by 1	1	1	1	1
	Rn	Register by 1	1	1	2	2
INC DEC	dir8	Direct address (on-chip RAM or SFR) by 1	2	2 ⁽²⁾	2	2 ⁽²⁾
	at Ri	Indirect address by 1	1	3	2	4
INC	Rm, #short	Byte register by 1, 2, or 4	3	2	2	1
DEC	WRj, #short	Word register by 1, 2, or 4	3	2	2	1
INC	DRk, #short	Double word register by 1, 2, or 4	3	4	2	3
DEC	DRk, #short	Double word register by 1, 2, or 4	3	5	2	4
INC	DPTR	Data pointer by 1	1	1	1	1

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

 $\texttt{Logical AND}^{(1)}\texttt{ANL <dest>, <src>dest opnd \leftarrow dest opnd \Lambda \ src opnd$ Logical OR⁽¹⁾ORL <dest>, <src>dest opnd \leftarrow dest opnd ς src opnd $\texttt{Logical Exclusive OR^{(1)}XRL <dest>, <src>dest opnd \leftarrow dest opnd \forall src opnd }$ Clear⁽¹⁾CLR A(A) \leftarrow 0 Complement⁽¹⁾CPL A(A) $\leftarrow \emptyset$ (A) Rotate LeftRL $A(A)_{n+1} \leftarrow (A)_n$, n = 0..6 $(\mathsf{A})_0 \gets (\mathsf{A})_7$ Rotate Left CarryRLC $A(A)_{n+1} \leftarrow (A)_n$, n = 0..6 $(CY) \leftarrow (A)_7$ $(A)_0 \leftarrow (CY)$ Rotate RightRR $A(A)_{n-1} \leftarrow (A)_n$, n = 7..1 $(A)_7 \leftarrow (A)_0$ Rotate Right CarryRRC $A(A)_{n-1} \leftarrow (A)_n$, n = 7..1 $(CY) \leftarrow (A)_0$ $(A)_7 \leftarrow (CY)$

			Binary	Mode	Source Mode		
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	States	
	A, Rn	register to ACC	1	1	2	2	
	A, dir8	Direct address (on-chip RAM or SFR) to ACC	2	1 ⁽³⁾	2	1 ⁽³⁾	
	A, at Ri	Indirect address to ACC	1	2	2	3	
	A, #data	Immediate data to ACC	2	1	2	1	
	dir8, A	ACC to direct address	2	2 ⁽⁴⁾	2	2 ⁽⁴⁾	
	dir8, #data	Immediate 8-bit data to direct address	3	3(4)	3	3(4)	
	Rmd, Rms	Byte register to byte register	3	2	2	1	
ANL	WRjd, WRjs	Word register to word register	3	3	2	2	
ORL	Rm, #data	Immediate 8-bit data to byte register	4	3	3	2	
XRL	WRj, #data16	Immediate 16-bit data to word register	5	4	4	3	
	Rm, dir8	Direct address (on-chip RAM or SFR) to byte register	4	3 ⁽³⁾	3	2 ⁽³⁾	
	WRj, dir8	Direct address (on-chip RAM or SFR) to word register	4	4	3	3	
	Rm, dir16	Direct address (64K) to byte register	5	3 ⁽⁵⁾	4	2 ⁽⁵⁾	
	WRj, dir16	Direct address (64K) to word register	5	4 ⁽⁶⁾	4	3 ⁽⁶⁾	
	Rm, at WRj	Indirect address (64K) to byte register	4	3 ⁽⁵⁾	3	2 ⁽⁵⁾	
	Rm, at DRk	Indirect address (16M) to byte register	4	4 ⁽⁵⁾	3	3 ⁽⁵⁾	
CLR	А	Clear ACC	1	1	1	1	
CPL	A	Complement ACC	1	1	1	1	
RL	A	Rotate ACC left	1	1	1	1	
RLC	A	Rotate ACC left through CY	1	1	1	1	
RR	A	Rotate ACC right	1	1	1	1	
RRC	A	Rotate ACC right through CY	1	1	1	1	

5

5

11

10

10

20

1

Table 24.	Summary of Multiply	y, Divide and Decimal-adjust Instructions
-----------	---------------------	---

MultiplyMUL AB(B:A) \leftarrow (A)×(B) MUL <dest>, <src>extended dest opnd \leftarrow dest opnd \times src opnd DivideDIV AB(A) \leftarrow Quotient ((A)/(B)) (B) \leftarrow Remainder ((A)/(B)) DivideDIV <dest>, <src>ext. dest opnd high ← Quotient (dest opnd / src opnd) ext. dest opnd low ← Remainder (dest opnd / src opnd) Decimal-adjust ACCDA AIF [[(A)_{3:0} > 9] \vee [(AC) = 1]] for Addition (BCD) THEN $(A)_{3:0} \leftarrow (A)_{3:0} + 6$ laffects CY; $\mathsf{IF} [[(A)_{7:4} > 9] \lor [(CY) = 1]]$ THEN $(A)_{7:4} \leftarrow (A)_{7:4} + 6$ **Binary Mode** Source Mode <dest>, <src>(1) Bytes Mnemonic Comments Bytes States States AB Multiply A and B 1 5 1 MUL Rmd, Rms Multiply byte register and byte register 3 6 2 WRjd, WRjs Multiply word register and word register 3 12 2 AB 1 10 1 Divide A and B DIV Rmd, Rms Divide byte register and byte register 3 11 2 WRjd, WRjs 3 21 2 Divide word register and word register DA А Decimal adjust ACC 1 1 1

1. A shaded cell denotes an instruction in the C51 Architecture. Note:

Table 25. Summary of Move Instructions (1/3)

Move to High wordMOVH <dest>, <src>dest opnd_{$31:16 \leftarrow src opnd$}</src></dest>
Move with Sign extensionMOVS <dest>, <src>dest opnd \leftarrow src opnd with sign extend</src></dest>
Move with Zero extensionMOVZ <dest>, <src>dest opnd \leftarrow src opnd with zero extend</src></dest>
Move CodeMOVC A, $<$ src>(A) \leftarrow src opnd

Move eXtendedMOVX <dest>, <src>dest opnd \leftarrow src opnd

	dosta		Binary	Mode	Source Mode	
Mnemonic	<dest>, <src>⁽²⁾</src></dest>	Comments	Bytes	States	Bytes	States
MOVH	DRk, #data16	16-bit immediate data into upper word of dword register	5	3	4	2
MOVS	WRj, Rm	Byte register to word register with sign extension	3	2	2	1
MOVZ	WRj, Rm	Byte register to word register with zeros extension	3	2	2	1
MOVC	A, at A +DPTR	Code byte relative to DPTR to ACC	1	6 ⁽³⁾	1	6 ⁽³⁾
	A, at A +PC	Code byte relative to PC to ACC	1	6 ⁽³⁾	1	6 ⁽³⁾
	A, at Ri	Extended memory (8-bit address) to ACC ⁽²⁾	1	4	1	5
MOVX	A, at DPTR	Extended memory (16-bit address) to ACC ⁽²⁾	1	3 ⁽⁴⁾	1	3 ⁽⁴⁾
	at Ri, A	ACC to extended memory (8-bit address) ⁽²⁾	1	4	1	4
	at DPTR, A	ACC to extended memory (16-bit address) ⁽²⁾	1	4 ⁽³⁾	1	4 ⁽³⁾

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. Extended memory addressed is in the region specified by DPXL (reset value = 01h).

- 3. If this instruction addresses external memory location, add N+1 to the number of states (N: number of wait states).
- 4. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).

MOV	WRj, at WRj +dis24	Indirect with 16-bit displacement (16M) to word register	5	8 ⁽⁵⁾	4	7 ⁽⁵⁾
MOV	at WRj +dis16, Rm	Byte register to indirect with 16-bit displacement (64K)	5	6 ⁽⁴⁾	4	5(4)
MOV	at WRj +dis16, WRj	Word register to indirect with 16-bit displacement (64K)	5	7 ⁽⁵⁾	4	6 ⁽⁵⁾
MOV	at DRk +dis24, Rm	Byte register to indirect with 16-bit displacement (16M)	5	7 ⁽⁴⁾	4	6 ⁽⁴⁾
MOV	at DRk +dis24, WRj	Word register to indirect with 16-bit displacement (16M)	5	8(5)	4	7 ⁽⁵⁾

Notes: 1. Instructions that move bits are in Table 27.

2. Move instructions unique to the C251 Architecture.

3. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

4. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).

5. If this instruction addresses external memory location, add 2(N+1) to the number of states (N: number of wait states).

6. If this instruction addresses external memory location, add 4(N+2) to the number of states (N: number of wait states).

Table 30. Summary of Conditional Jump Instructions (2	Table 30.	Summary	f Conditiona	I Jump	Instructions	(2/2)
---	-----------	---------	--------------	--------	--------------	-------

Jump if bitJB <src>, rel(PC) \leftarrow (PC) + size (instr); IF [src opnd = 1] THEN (PC) \leftarrow (PC) + rel</src>
Jump if not bitJNB <src>, rel(PC) ← (PC) + size (instr); IF [src opnd = 0] THEN (PC) ← (PC) + rel</src>
Jump if bit and clearJBC <dest>, rel(PC) ← (PC) + size (instr); IF [dest opnd = 1] THEN dest opnd ← 0 (PC) ← (PC) + rel</dest>
Jump if accumulator is zeroJZ rel(PC) \leftarrow (PC) + size (instr); IF [(A) = 0] THEN (PC) \leftarrow (PC) + rel
Jump if accumulator is not zeroJNZ rel(PC) ← (PC) + size (instr); IF [(A) \neq 0] THEN (PC) ← (PC) + rel
$\begin{array}{l} \mbox{Compare and jump if not equalCJNE , , rel(PC) \leftarrow (PC) + size (instr);} \\ \mbox{IF [src opnd1 < src opnd2] THEN (CY) \leftarrow 1} \\ \mbox{IF [src opnd1 \geq src opnd2] THEN (CY) \leftarrow 0} \\ \mbox{IF [src opnd1 \neq src opnd2] THEN (PC) \leftarrow (PC) + rel} \end{array}$
Decrement and jump if not zero $NZ < dect > rel(PC) < (PC) + size (instr); dect or$

Decrement and jump if not zeroDJNZ <dest>, rel(PC) \leftarrow (PC) + size (instr); dest opnd \leftarrow dest opnd -1; IF [ϕ (Z)] THEN (PC) \leftarrow (PC) + rel

			Binary	Mode ⁽²⁾	Source	Mode ⁽²⁾
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	States
	bit51, rel	Jump if direct bit is set	3	2/5 ⁽³⁾⁽⁶⁾	3	2/5 ⁽³⁾⁽⁶⁾
JB	bit, rel	Jump if direct bit of 8-bit address location is set	5	4/7 ⁽³⁾⁽⁶⁾	4	3/6 ⁽³⁾⁽⁶⁾
	bit51, rel	Jump if direct bit is not set	3	2/5 ⁽³⁾⁽⁶⁾	3	2/5 ⁽³⁾⁽⁶⁾
JNB	bit, rel	Jump if direct bit of 8-bit address location is not set	5	4/7 ⁽³⁾⁽⁶⁾	4	3/6 ⁽³⁾
	bit51, rel	Jump if direct bit is set & clear bit	3	4/7 ⁽⁵⁾⁽⁶⁾	3	4/7 ⁽⁵⁾⁽⁶⁾
JBC	bit, rel	Jump if direct bit of 8-bit address location is set and clear	5	7/10 ⁽⁵⁾⁽ 6)	4	6/9 ⁽⁵⁾⁽⁶⁾
JZ	rel	Jump if ACC is zero	2	2/5 ⁽⁶⁾	2	2/5 ⁽⁶⁾
JNZ	rel	Jump if ACC is not zero	2	2/5 ⁽⁶⁾	2	2/5 ⁽⁶⁾
	A, dir8, rel	Compare direct address to ACC and jump if not equal	3	2/5 ⁽³⁾⁽⁶⁾	3	2/5 ⁽³⁾⁽⁶⁾
CJNE	A, #data, rel	Compare immediate to ACC and jump if not equal	3	2/5 ⁽⁶⁾	3	2/5 ⁽⁶⁾
CONC	Rn, #data, rel	Compare immediate to register and jump if not equal	3	2/5 ⁽⁶⁾	4	3/6 ⁽⁶⁾
	at Ri, #data, rel	Compare immediate to indirect and jump if not equal	3	3/6 ⁽⁶⁾	4	4/7 ⁽⁶⁾
DJNZ	Rn, rel	Decrement register and jump if not zero	2	2/5 ⁽⁶⁾	3	3/6 ⁽⁶⁾
DJINZ	dir8, rel	Decrement direct address and jump if not zero	3	3/6 ⁽⁴⁾⁽⁶⁾	3	3/6 ⁽⁴⁾⁽⁶⁾

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. States are given as jump not-taken/taken.

- 3. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
- 4. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states.

• PSEN# and the other control signals have to be released to complete a sequence of programming operations or a sequence of programming and verifying operations.

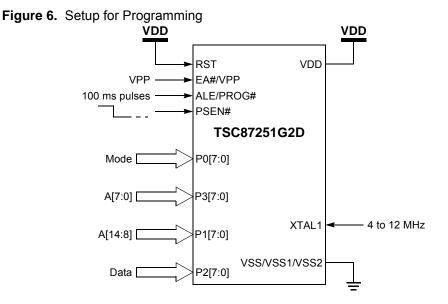


 Table 36.
 Programming Modes

ROM Area ⁽¹⁾	RST	EA#/VPP	PSEN #	ALE/PROG# ⁽²⁾	P0	P2	P1(MSB) P3(LSB)
On-chip Code Memory	1	V _{PP}	0	1 Pulse	68h	Data	16-bit Address 0000h-7FFFh (32 kilobytes)
Configuration Bytes	1	V _{PP}	0	1 Pulse	69h	Data	CONFIG0: FFF8h CONFIG1: FFF9h
Lock Bits	1	V _{PP}	0	1 Pulse	6Bh	х	LB0: 0001h LB1: 0002h LB2: 0003h
Encryption Array	1	V _{PP}	0	1 Pulse	6Ch	Data	0000h-007Fh

Notes: 1. Signature Bytes are not user-programmable.

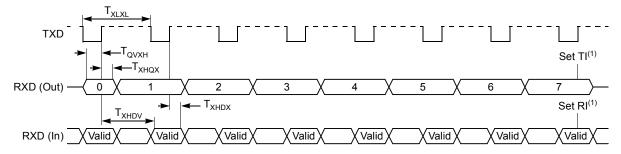
2. The ALE/PROG# pulse waveform is shown in Figure 23 page 59.

Verify Algorithm

Figure 7 shows the hardware setup needed to verify the TSC87251G2D EPROM/OTPROM or TSC83251G2D ROM areas:

- The chip has to be put under reset and maintained in this state until the completion of the verifying sequence.
- PSEN# and the other control signals (ALE and Port 0) have to be set to a high level.
- Then PSEN# has to be to forced to a low level after two clock cycles or more and it
 has to be maintained in this state until the completion of the verifying sequence (see
 below).
- The voltage on the EA# pin must be set to V_{DD} and ALE must be set to a high level.
- The Verifying Mode is selected according to the code applied on Port 0. It has to be applied until the completion of this verifying operation.
- The verifying address is applied on Ports 1 and 3 which are respectively the MSB and the LSB of the address.

Timings


Table 46. Serial Port AC Timing -Shift Register Mode; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C

		12 MHz		16 MHz		24 MHz ⁽¹⁾		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
T _{XLXL}	Serial Port Clock Cycle Time	998		749		500		ns
T _{QVXH}	Output Data Setup to Clock Rising Edge	833		625		417		ns
T _{XHQX}	Output Data hold after Clock Rising Edge	165		124		82		ns
T _{XHDX}	Input Data Hold after Clock Rising Edge	0		0		0		ns
T _{XHDV}	Clock Rising Edge to Input Data Valid		974		732		482	ns

Note: 1. For high speed versions only.

Waveforms

Note: 1. TI and RI are set during S1P1 of the peripheral cycle following the shift of the eight bit.

AC Characteristics - SSLC: SPI Interface

Definition of Symbols

Table 48. SPI Interface Timing Symbol Definitions

	Signals
С	Clock
I	Data In
0	Data Out
S	SS#

	Conditions
Н	High
L	Low
V	Valid
Х	No Longer Valid
Z	Floating

Absolute Maximum Rating and Operating Conditions

Absolute Maximum Ratings

Storage Temperature65 to +150°C	*NOTICE: Stressing the device beyond the "Absolute Maxi- mum Ratings" may cause permanent damage.
Voltage on any other Pin to VSS0.5 to +6.5 V	These are stress ratings only. Operation beyond
I _{OL} per I/O Pin 15 mA	the "operating conditions" is not recommended and extended exposure beyond the "Operating
Power Dissipation 1.5 W	Conditions" may affect device reliability.
Ambient Temperature Under Bias	
Commercial0 to +70°C	
Industrial40 to +85°C	
Automotive40 to +85°C	
V _{DD}	
High Speed versions	
Low Voltage versions 2.7 to 5.5 V	

DC Characteristics

High Speed Versions - Commercial, Industrial, and Automotive

Symbol	Parameter	Min	Typical ⁽⁴⁾	Max	Units	Test Conditions
V _{IL}	Input Low Voltage (except EA#, SCL, SDA)	-0.5		0.2·V _{DD} - 0.1	V	
$V_{IL1}^{(5)}$	Input Low Voltage (SCL, SDA)	-0.5		0.3·V _{DD}	V	
V_{IL2}	Input Low Voltage (EA#)	0		0.2·V _{DD} - 0.3	V	
V _{IH}	Input high Voltage (except XTAL1, RST, SCL, SDA)	0.2·V _{DD} + 0.9		V _{DD} + 0.5	V	
$V_{IH1}^{(5)}$	Input high Voltage (XTAL1, RST, SCL, SDA)	0.7·V _{DD}		V _{DD} + 0.5	V	
V _{OL}	Output Low Voltage (Ports 1, 2, 3)			0.3 0.45 1.0	V	$I_{OL} = 100 \ \mu A^{(1)(2)}$ $I_{OL} = 1.6 \ m A^{(1)(2)}$ $I_{OL} = 3.5 \ m A^{(1)(2)}$
V _{OL1}	Output Low Voltage (Ports 0, ALE, PSEN#, Port 2 in Page Mode during External Address)			0.3 0.45 1.0	V	$I_{OL} = 200 \ \mu A^{(1)(2)}$ $I_{OL} = 3.2 \ m A^{(1)(2)}$ $I_{OL} = 7.0 \ m A^{(1)(2)}$
V _{OH}	Output high Voltage (Ports 1, 2, 3, ALE, PSEN#)	V _{DD} - 0.3 V _{DD} - 0.7 V _{DD} - 1.5			V	$\begin{split} I_{OH} &= -10 \; \mu A^{(3)} \\ I_{OH} &= -30 \; \mu A^{(3)} \\ I_{OH} &= -60 \; \mu A^{(3)} \end{split}$
V _{OH1}	Output high Voltage (Port 0, Port 2 in Page Mode during External Address)	V _{DD} - 0.3 V _{DD} - 0.7 V _{DD} - 1.5			V	I _{OH} = -200 μA I _{OH} = -3.2 mA I _{OH} = -7.0 mA
V_{RET}	V _{DD} data retention limit			1.8	V	
I _{IL0}	Logical 0 Input Current (Ports 1, 2, 3)			- 50	μA	V _{IN} = 0.45 V
I _{IL1}	Logical 1 Input Current (NMI)			+ 50	μA	V _{IN} = V _{DD}
I _{LI}	Input Leakage Current (Port 0)			± 10	μA	0.45 V < V _{IN} < V _{DD}
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3 - AWAIT#)			- 650	μA	V _{IN} = 2.0 V
R _{RST}	RST Pull-Down Resistor	40	110	225	kΩ	
CIO	Pin Capacitance		10		pF	T _A = 25°C
I _{DD}	Operating Current		20 25 35	25 30 40	mA	F_{OSC} = 12 MHz F_{OSC} = 16 MHz F_{OSC} = 24 MHz
I _{DL}	Idle Mode Current		5 6.5 9.5	8 10 14	mA	F_{OSC} = 12 MHz F_{OSC} = 16 MHz F_{OSC} = 24 MHz
I _{PD}	Power-Down Current		2	20	μA	$V_{RET} < V_{DD} < 5.5 V$
V_{PP}	Programming supply voltage	12.5		13	V	$T_A = 0$ to +40°C
I _{PP}	Programming supply current	1		75	mA	T _A = 0 to +40°C

CDIL 40 with Window -Mechanical Outline

Figure 34. Ceramic Dual In Line

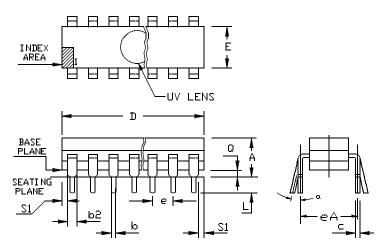


Table 58. CDIL Package Size

	ММ		Inch	
	Min	Max	Min	Мах
A	-	5.71	-	.225
b	0.36	0.58	.014	.023
b2	1.14	1.65	.045	.065
с	0.20	0.38	.008	.015
D	-	53.47	-	2.105
E	13.06	15.37	.514	.605
e	2.54 B.S.C.		.100 B.S.C.	
eA	15.24 B.S.C.		.600 B.S.C.	
L	3.18	5.08	.125	.200
Q	0.38	1.40	.015	.055
S1	0.13	-	.005	-
а	0 - 15		0 - 15	
Ν	40			

