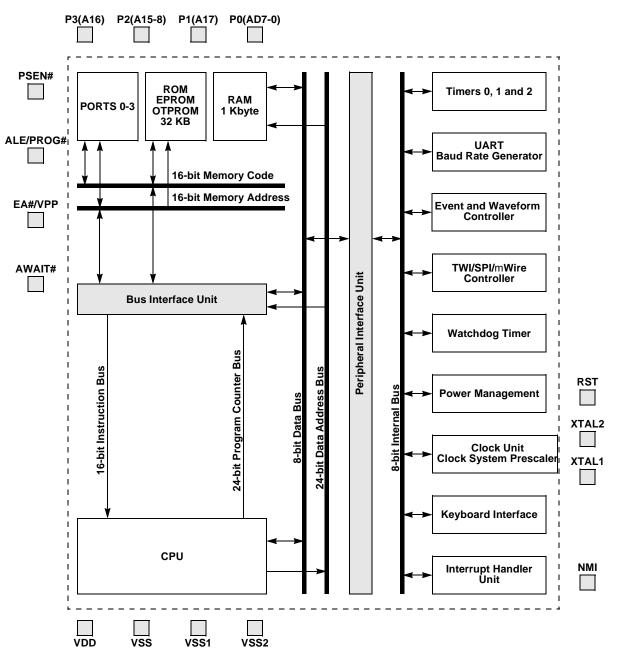


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	16MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at80251g2d-slsul

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

Table 2	Product Name	Signal Description	(Continued)
---------	--------------	--------------------	-------------

	2. Product Name Signal Description (Continued)				
Signal Name	Туре	Description	Alternate Function		
NMI	I	Non Maskable Interrupt Holding this pin high for 24 oscillator periods triggers an interrupt. When using the Product Name as a pin-for-pin replacement for a 8xC51 product, NMI can be unconnected without loss of compatibility or power consumption increase (on-chip pull-down). Not available on DIP package.	-		
P0.0:7	I/O	Port 0 P0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. To avoid any paraitic current consumption, Floating P0 inputs must be polarized to V_{DD} or V_{SS} .			
P1.0:7	I/O	Port 1 P1 is an 8-bit bidirectional I/O port with internal pull-ups. P1 provides interrupt capability for a keyboard interface.	_		
P2.0:7	I/O	Port 2 P2 is an 8-bit bidirectional I/O port with internal pull-ups.	A15:8		
P3.0:7	I/O	Port 3 P3 is an 8-bit bidirectional I/O port with internal pull-ups.	_		
PROG#	I	Programming Pulse input The programming pulse is applied to this input for programming the on-chip EPROM/OTPROM.	Ι		
PSEN#	0	Program Store Enable/Read signal output PSEN# is asserted for a memory address range that depends on bits RD0 and RD1 in UCONFIG0 byte (see).	_		
RD#	0	Read or 17 th Address Bit (A16) Read signal output to external data memory depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).	P3.7		
RST	I	Reset input to the chip Holding this pin high for 64 oscillator periods while the oscillator is running resets the device. The Port pins are driven to their reset conditions when a voltage greater than V_{IH1} is applied, whether or not the oscillator is running. This pin has an internal pull-down resistor which allows the device to be reset by connecting a capacitor between this pin and VDD. Asserting RST when the chip is in Idle mode or Power-Down mode returns the chip to normal operation.	_		
RXD	I/O	Receive Serial Data RXD sends and receives data in serial I/O mode 0 and receives data in serial I/O modes 1, 2 and 3.	P3.0		
SCL	I/O	TWI Serial Clock When TWI controller is in master mode, SCL outputs the serial clock to slave peripherals. When TWI controller is in slave mode, SCL receives clock from the master controller.	P1.6		
SCK	I/O	SPI Serial Clock When SPI is in master mode, SCK outputs clock to the slave peripheral. When SPI is in slave mode, SCK receives clock from the master controller.	P1.6		
SDA	I/O	TWI Serial Data SDA is the bidirectional TWI data line.	P1.7		
SS#	I	SPI Slave Select Input When in Slave mode, SS# enables the slave mode.	P1.4		

Table 2. Product Name Signal Description (Continued)			
Signal Name	Туре	Description	Alternate Function
T1:0	I/O	Timer 1:0 External Clock Inputs When timer 1:0 operates as a counter, a falling edge on the T1:0 pin increments the count.	-
T2	I/O	Timer 2 Clock Input/Output For the timer 2 capture mode, T2 is the external clock input. For the Timer 2 clock-out mode, T2 is the clock output.	P1.0
T2EX	I	Timer 2 External Input In timer 2 capture mode, a falling edge initiates a capture of the timer 2 registers. In auto-reload mode, a falling edge causes the timer 2 register to be reloaded. In the up-down counter mode, this signal determines the count direction: 1 = up, 0 = down.	P1.1
тхр	0	Transmit Serial Data TXD outputs the shift clock in serial I/O mode 0 and transmits data in serial I/O modes 1, 2 and 3.	P3.1
VDD	PWR	Digital Supply Voltage Connect this pin to +5V or +3V supply voltage.	-
VPP	I	Programming Supply Voltage The programming supply voltage is applied to this input for programming the on-chip EPROM/OTPROM.	-
VSS	GND	Circuit Ground Connect this pin to ground.	-
VSS1	GND	Secondary Ground 1 This ground is provided to reduce ground bounce and improve power supply bypassing. Connection of this pin to ground is recommended. However, when using the TSC80251G2D as a pin-for-pin replacement for a 8xC51 product, VSS1 can be unconnected without loss of compatibility. Not available on DIP package.	Ι
VSS2	GND	Secondary Ground 2 This ground is provided to reduce ground bounce and improve power supply bypassing. Connection of this pin to ground is recommended. However, when using the TSC80251G2D as a pin-for-pin replacement for a 8xC51 product, VSS2 can be unconnected without loss of compatibility. Not available on DIP package.	_
WAIT#	I	Real-time Synchronous Wait States Input The real-time WAIT# input is enabled by setting RTWE bit in WCON (S:A7h). During bus cycles, the external memory system can signal 'system ready' to the microcontroller in real time by controlling the WAIT# input signal.	P1.6
WCLK	0	Wait Clock Output The real-time WCLK output is enabled by setting RTWCE bit in WCON (S:A7h). When enabled, the WCLK output produces a square wave signal with a period of one half the oscillator frequency.	P1.7
WR#	0	Write Write signal output to external memory.	P3.6
XTAL1	I	Input to the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, its output is connected to this pin. XTAL1 is the clock source for internal timing.	-

 Table 2.
 Product Name Signal Description (Continued)

Table 11.Configuration Byte 0UCONFIG0

7	6	5	4	3	2	1	0
-	WSA1#	WSA0#	XALE#	RD1	RD0	PAGE#	SRC
Bit Number	Bit Mnemonic	Descriptio	n				
7	-	Reserved Set this bit	when writing	to UCONFIG0).		
6	WSA1#	Wait State					fan ar fam al
5	WSA0#		cesses (all re <u>VSA0#</u> <u>Nu</u> 3 2 1	it states for RL gions except (<u>umber of Wait</u>	,	-SEN# signals	s for external
4	XALE#		tend the dura		E pulse from T E pulse to 1·T _o		
3	RD1	-	gnal Select				
2	RD0			s (see Table 1	al address bu 3).	s and the usag	ge of RD#,
1	PAGE#	Clear to sel Port 0.		Page mode v	vith A15:8/D7: h A15:8 on Po		
0	SRC	Clear to set	de/Binary M lect the binary ct the source		t		

Notes: 1. UCONFIG0 is fetched twice so it can be properly read both in Page or Non-Page modes. If P2.1 is cleared during the first data fetch, a Page mode configuration is used, otherwise the subsequent fetches are performed in Non-Page mode.

2. This selection provides compatibility with the standard 80C51 hardware which is multiplexing the address LSB and the data on Port 0.

	<dest>,</dest>	dest		Mode	Source Mode	
Mnemonic	<src>⁽²⁾</src>	Comments	Bytes	States	Bytes	States
	Rmd, Rms	Register with register	3	2	2	1
	WRjd, WRjs	Word register with word register	3	3	2	2
	DRkd, DRks	Dword register with dword register	3	5	2	4
	Rm, #data	Register with immediate data	4	3	3	2
	WRj, #data16	Word register with immediate 16-bit data	5	4	4	3
	DRk, #0data16	Dword register with zero-extended 16-bit immediate data	5	6	4	5
CMP	DRk, #1data16	Dword register with one-extended 16-bit immediate data	5	6	4	5
	Rm, dir8	Direct address (on-chip RAM or SFR) with byte register	4	3 ⁽¹⁾	3	2 ⁽¹⁾
	WRj, dir8	Direct address (on-chip RAM or SFR) with word register	4	4	3	3
	Rm, dir16	Direct address (64K) with byte register	5	3 ⁽²⁾	4	2 ⁽²⁾
	WRj, dir16	Direct address (64K) with word register	5	4 ⁽³⁾	4	3 ⁽³⁾
	Rm, at WRj	Indirect address (64K) with byte register	4	3 ⁽²⁾	3	2 ⁽²⁾
	Rm, at DRk	Indirect address (16M) with byte register	4	4 ⁽²⁾	3	3(2)

Table 22. Summary of Compare Instructions

Notes: 1. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

- 2. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
- 3. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

- Notes: 1. Logical instructions that affect a bit are in Table 27.
 - 2. A shaded cell denotes an instruction in the C51 Architecture.
 - 3. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
 - 4. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.
 - 5. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
 - 6. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

Table 23.	Summar	of Logical	Instructions	(2/2)

(CY) ← <des Shift Right Arithme <dest>_{n-1} ← (CY) ← <des Shift Right Logical</des </dest></des 	<dest>_n, n = tt>_{msb} eticSRA <des <dest>_n, n = n tt>₀ SRL <dest>< <dest>_n, n = n tt>₀</dest></dest></dest></des </dest>	0msb-1 t> <dest>_{msb} ← <dest>_{msb} msb1 dest>_{msb} ← 0</dest></dest>				
	<dest>,</dest>		Binary	Mode	Source	e Mode
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
	Rm	Shift byte register left through the MSB	3	2	2	1
SLL	WRj	Shift word register left through the MSB	3	2	2	1
SRA	Rm	Shift byte register right	3	2	2	1
SKA	WRj	Shift word register right 3 2 2		1		
SRL	Rm	Shift byte register left	3	2	2	1
JRL	WRj	Shift word register left	3	2	2	1
SWAP	А	Swap nibbles within ACC	1	2	1	2

Note: 1. A shaded cell denotes an instruction in the C51 Architecture.

				Binary Mode		Source Mode	
		Comments	Bytes	States	Bytes	States	
MOV	Rmd, Rms	Byte register to byte register	3	2	2	1	
MOV	WRjd, WRjs	Word register to word register	3	2	2	1	
MOV	DRkd, DRks	Dword register to dword register	3	3	2	2	
MOV	Rm, #data	Immediate 8-bit data to byte register	4	3	3	2	
MOV	WRj, #data16	Immediate 16-bit data to word register	5	3	4	2	
MOV	DRk, #0data16	zero-ext 16bit immediate data to dword register	5	5	4	4	
MOV	DRk, #1data16	one-ext 16bit immediate data to dword register	5	5	4	4	
MOV	Rm, dir8	Direct address (on-chip RAM or SFR) to byte register	4	3 ⁽³⁾	3	2 ⁽³⁾	
MOV	WRj, dir8	Direct address (on-chip RAM or SFR) to word register	4	4	3	3	
MOV	DRk, dir8	Direct address (on-chip RAM or SFR) to dword register	4	6	3	5	
MOV	Rm, dir16	Direct address (64K) to byte register	5	3 ⁽⁴⁾	4	2 ⁽⁴⁾	
MOV	WRj, dir16	Direct address (64K) to word register	5	4 ⁽⁵⁾	4	3 ⁽⁵⁾	
MOV	DRk, dir16	Direct address (64K) to dword register	5	6 ⁽⁶⁾	4	5 ⁽⁶⁾	
MOV	Rm, at WRj	Indirect address (64K) to byte register	4	3 ⁽⁴⁾	3	2(4)	
MOV	Rm, at DRk	Indirect address (16M) to byte register	4	4 ⁽⁴⁾	3	3(4)	
MOV	WRjd, at WRjs	Indirect address (64K) to word register	4	4 ⁽⁵⁾	3	3 ⁽⁵⁾	
MOV	WRj, at DRk	Indirect address (16M) to word register	4	5 ⁽⁵⁾	3	4 ⁽⁵⁾	
MOV	dir8, Rm	Byte register to direct address (on-chip RAM or SFR)	4	4 ⁽³⁾	3	3 ⁽³⁾	
MOV	dir8, WRj	Word register to direct address (on-chip RAM or SFR)	4	5	3	4	
MOV	dir8, DRk	Dword register to direct address (on-chip RAM or SFR)	4	7	3	6	
MOV	dir16, Rm	Byte register to direct address (64K)	5	4 ⁽⁴⁾	4	3(4)	
MOV	dir16, WRj	Word register to direct address (64K)	5	5 ⁽⁵⁾	4	4 ⁽⁵⁾	
MOV	dir16, DRk	Dword register to direct address (64K)	5	7 ⁽⁶⁾	4	6 ⁽⁶⁾	
MOV	at WRj, Rm	Byte register to indirect address (64K)	4	4 ⁽⁴⁾	3	3(4)	
MOV	at DRk, Rm	Byte register to indirect address (16M)	4	5 ⁽⁴⁾	3	4 ⁽⁴⁾	
MOV	at WRjd, WRjs	Word register to indirect address (64K)	4	5 ⁽⁵⁾	3	4 ⁽⁵⁾	
MOV	at DRk, WRj	Word register to indirect address (16M)	4	6 ⁽⁵⁾	3	5 ⁽⁵⁾	
MOV	Rm, at WRj +dis16	Indirect with 16-bit displacement (64K) to byte register	5	6 ⁽⁴⁾	4	5 ⁽⁴⁾	
MOV	WRj, at WRj +dis16	Indirect with 16-bit displacement (64K) to word register	5	7 ⁽⁵⁾	4	6 ⁽⁵⁾	
MOV	Rm, at DRk +dis24	Indirect with 16-bit displacement (16M) to byte register	5	7 ⁽⁴⁾	4	6 ⁽⁴⁾	

Table 32.	Summar	of Call and	Return	Instructions
-----------	--------	-------------	--------	--------------

	ACALL <src> \leftarrow src opnd</src>	$(PC) \leftarrow (PC)$ +2; push $(PC)_{15:0}$;				
Extended ca		$P(PC) \leftarrow (PC) + size (instr); push (PC)_2$	3:0,			
Long callLCA) \leftarrow (PC) + size (instr); push (PC) _{15:0} ;				
Return from	subroutineRE	Tpop (PC) _{15:0}				
		outineERETpop(PC) _{23:0}				
		IF [INTR = 0] THEN pop (PC) _{15:0} pop (PC) _{23:0} ; pop (PSW1)				
Trap interrup IF [INTF	tTRAP(PC) ← R = 0] THEN p	- (PC) + size (instr);				
			Binary	/ Mode	Source	e Mode
	<dest>,</dest>				.	_
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
Mnemonic ACALL	<src>(") addr11</src>	Comments Absolute subroutine call	Bytes 2	9 ⁽²⁾⁽³⁾	Bytes 2	
ACALL			-		,	States 9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³
ACALL	addr11	Absolute subroutine call	2	9 ⁽²⁾⁽³⁾	2	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³
ACALL	addr11 at DRk	Absolute subroutine call Extended subroutine call (indirect)	2 3	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾	2 2	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 13 ⁽²⁾⁽³
ACALL	addr11 at DRk addr24	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call	2 3 5	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾	2 2 4	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 9 ⁽²⁾⁽³
ACALL	addr11 at DRk addr24 at WRj	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect)	2 3 5 3	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾ 10 ⁽²⁾⁽³⁾	2 2 4 2	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 9 ⁽²⁾⁽³
ACALL ECALL LCALL RET	addr11 at DRk addr24 at WRj	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call	2 3 5 3 3	$\begin{array}{c} 9^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \\ 9^{(2)(3)} \end{array}$	2 2 4 2 3	$9^{(2)(3)}$ $13^{(2)(3)}$ $13^{(2)(3)}$ $9^{(2)(3)}$ $9^{(2)(3)}$
ACALL ECALL LCALL	addr11 at DRk addr24 at WRj	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call Return from subroutine	2 3 5 3 3 1	$\begin{array}{c} 9^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \\ 9^{(2)(3)} \\ 7^{(2)} \end{array}$	2 2 4 2 3 1	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 13 ⁽²⁾⁽³⁾ 9 ⁽²⁾⁽³⁾ 9 ⁽²⁾⁽³⁾ 7 ⁽²⁾

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. In internal execution only, add 1 to the number of states if the destination/return address is internal and odd.

- 3. Add 2 to the number of states if the destination address is external.
- 4. Add 5 to the number of states if INTR = 1.

AC Characteristics - Commercial & Industrial

AC Characteristics - External Bus Cycles

Definition of Symbols

Table 38. External Bus Cycles Timing Symbol Definitions

Signals
Address
Data In
ALE
Data Out
RD#/PSEN#
WR#

Conditions				
High				
Low				
Valid				
No Longer Valid				
Floating				

Timings

Test conditions: capacitive load on all pins = 50 pF.

Table 39 and Table 40 list the AC timing parameters for the TSC80251G2D derivatives with no wait states. External wait states can be added by extending PSEN#/RD#/WR# and or by extending ALE. In these tables, Note 2 marks parameters affected by one ALE wait state, and Note 3 marks parameters affected by PSEN#/RD#/WR# wait states.

Figure 8 to Figure 13 show the bus cycles with the timing parameters.

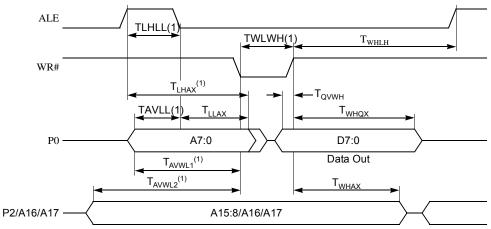
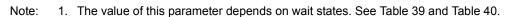
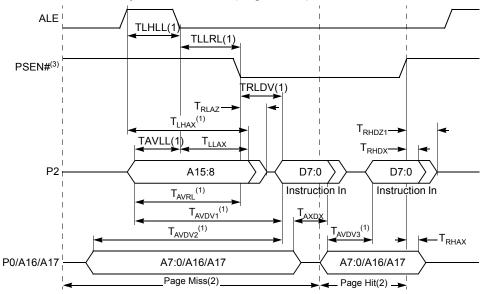




Figure 10. External Bus Cycle: Data Write (Non-Page Mode)

Waveforms in Page Mode

Figure 11. External Bus Cycle: Code Fetch (Page Mode)

- Note: 1. The value of this parameter depends on wait states. See Table 39 and Table 40.
 - A page hit (i.e., a code fetch to the same 256-byte "page" as the previous code fetch) requires one state (2·T_{OSC});

a page miss requires two states ($4 \cdot T_{OSC}$).

During a sequence of page hits, PSEN# remains low until the end of the last page-hit cycle.

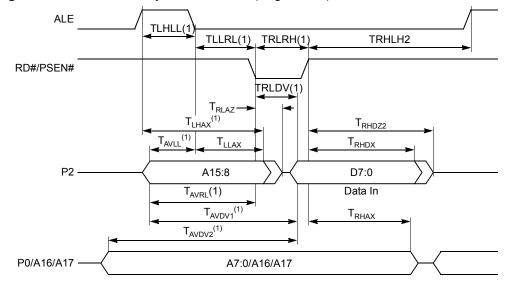
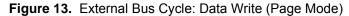
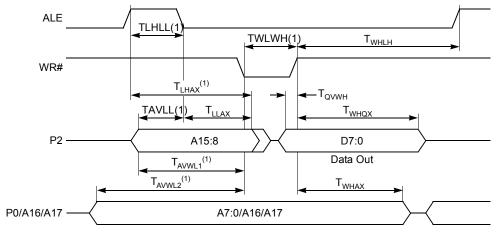
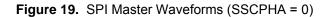
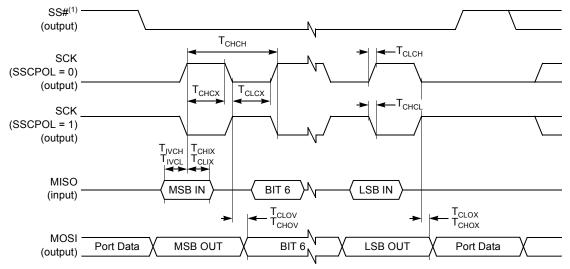





Figure 12. External Bus Cycle: Data Read (Page Mode)

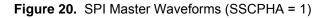
AC Characteristics - Real-Time Synchronous Wait State

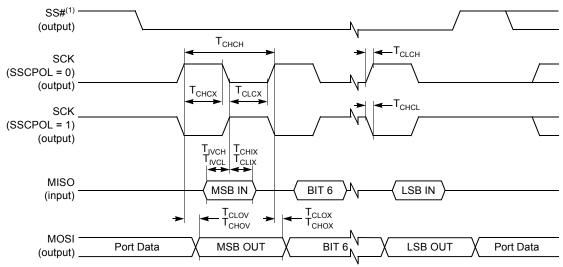
Definition of Symbols


Table 41. Real-Time Synchronous Wait Timing Symbol Definitions


Signals				
С	WCLK			
R	RD#/PSEN#			
W	WR#			
Y	WAIT#			

Conditions				
L	Low			
V	Valid			
Х	No Longer Valid			


50 AT/TSC8x251G2D



Note: 1. SS# handled by software.



Note: 1. Not Defined but normally MSB of character just received.

Figure 24. EPROM Verifying Waveforms

AC Characteristics - External Clock Drive and Logic Level References

Definition of Symbols

Table 53. External Clock Timing Symbol Definitions

	Signals			
С	Clock			

Conditions				
Н	High			
L	Low			
Х	No Longer Valid			

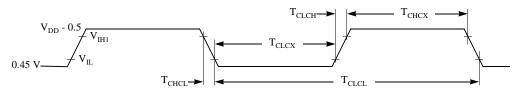

Timings

Table 54. External Clock AC Timings; V_{DD} = 4.5 to 5.5 V, T_A = -40 to +85°C

Symbol	Parameter	Min	Max	Unit
F _{OSC} Oscillator Frequency			24	MHz
T _{CHCX}	High Time	10		ns
T _{CLCX}	Low Time	10		ns
T _{CLCH}	Rise Time	3		ns
T _{CHCL}	Fall Time	3		ns

Waveforms

Figure 25. External Clock Waveform

- Notes: 1. During AC testing, all inputs are driven at V_{DD} -0.5 V for a logic 1 and 0.45 V for a logic 0.
 - 2. Timing measurements are made on all outputs at $V_{\rm IH}$ min for a logic 1 and $V_{\rm IL}$ max for a logic 0.

DC Characteristics

High Speed Versions - Commercial, Industrial, and Automotive

Symbol	Parameter	Min	Typical ⁽⁴⁾	Max	Units	Test Conditions
V _{IL}	Input Low Voltage (except EA#, SCL, SDA)	-0.5		0.2·V _{DD} - 0.1	V	
$V_{IL1}^{(5)}$	Input Low Voltage (SCL, SDA)	-0.5		0.3·V _{DD}	V	
V_{IL2}	Input Low Voltage (EA#)	0		0.2·V _{DD} - 0.3	V	
V _{IH}	Input high Voltage (except XTAL1, RST, SCL, SDA)	0.2·V _{DD} + 0.9		V _{DD} + 0.5	V	
$V_{IH1}^{(5)}$	Input high Voltage (XTAL1, RST, SCL, SDA)	0.7·V _{DD}		V _{DD} + 0.5	V	
V _{OL}	Output Low Voltage (Ports 1, 2, 3)			0.3 0.45 1.0	V	$I_{OL} = 100 \ \mu A^{(1)(2)}$ $I_{OL} = 1.6 \ m A^{(1)(2)}$ $I_{OL} = 3.5 \ m A^{(1)(2)}$
V _{OL1}	Output Low Voltage (Ports 0, ALE, PSEN#, Port 2 in Page Mode during External Address)			0.3 0.45 1.0	V	$I_{OL} = 200 \ \mu A^{(1)(2)}$ $I_{OL} = 3.2 \ m A^{(1)(2)}$ $I_{OL} = 7.0 \ m A^{(1)(2)}$
V _{OH}	Output high Voltage (Ports 1, 2, 3, ALE, PSEN#)	V _{DD} - 0.3 V _{DD} - 0.7 V _{DD} - 1.5			V	$\begin{split} I_{OH} &= -10 \ \mu A^{(3)} \\ I_{OH} &= -30 \ \mu A^{(3)} \\ I_{OH} &= -60 \ \mu A^{(3)} \end{split}$
V _{OH1}	Output high Voltage (Port 0, Port 2 in Page Mode during External Address)	V _{DD} - 0.3 V _{DD} - 0.7 V _{DD} - 1.5			V	I _{OH} = -200 μA I _{OH} = -3.2 mA I _{OH} = -7.0 mA
V_{RET}	V _{DD} data retention limit			1.8	V	
I _{IL0}	Logical 0 Input Current (Ports 1, 2, 3)			- 50	μA	V _{IN} = 0.45 V
I _{IL1}	Logical 1 Input Current (NMI)			+ 50	μA	V _{IN} = V _{DD}
I _{LI}	Input Leakage Current (Port 0)			± 10	μA	0.45 V < V _{IN} < V _{DD}
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3 - AWAIT#)			- 650	μA	V _{IN} = 2.0 V
R _{RST}	RST Pull-Down Resistor	40	110	225	kΩ	
CIO	Pin Capacitance		10		pF	T _A = 25°C
I _{DD}	Operating Current		20 25 35	25 30 40	mA	F_{OSC} = 12 MHz F_{OSC} = 16 MHz F_{OSC} = 24 MHz
I _{DL}	Idle Mode Current		5 6.5 9.5	8 10 14	mA	F_{OSC} = 12 MHz F_{OSC} = 16 MHz F_{OSC} = 24 MHz
I _{PD}	Power-Down Current		2	20	μA	$V_{RET} < V_{DD} < 5.5 V$
V_{PP}	Programming supply voltage	12.5		13	V	$T_A = 0$ to +40°C
I _{PP}	Programming supply current	1		75	mA	T _A = 0 to +40°C

Low Voltage Versions - Commercial & Industrial

Table 56.	DC Characteristics;	V _{DD} = 2.7 to	5.5 V, T _A	= -40 to +85°C
-----------	---------------------	--------------------------	-----------------------	----------------

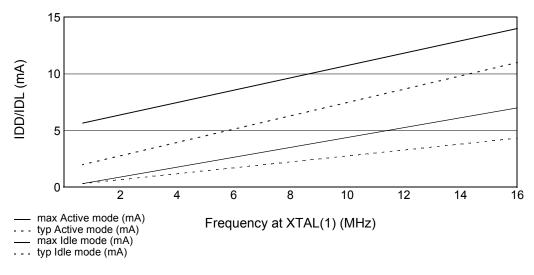
Symbol	Parameter	Min	Typical ⁽⁴⁾	Max	Units	Test Conditions
V _{IL}	Input Low Voltage (except EA#, SCL, SDA)	-0.5		0.2·V _{DD} - 0.1	V	
$V_{IL1}^{(5)}$	Input Low Voltage (SCL, SDA)	-0.5		0.3·V _{DD}	v	
V _{IL2}	Input Low Voltage (EA#)	0		0.2·V _{DD} - 0.3	V	
V _{IH}	Input high Voltage (except XTAL1, RST, SCL, SDA)	0.2·V _{DD} + 0.9		V _{DD} + 0.5	V	
$V_{\rm IH1}^{(5)}$	Input high Voltage (XTAL1, RST, SCL, SDA)	0.7·V _{DD}		V _{DD} + 0.5	v	
V _{OL}	Output Low Voltage (Ports 1, 2, 3)			0.45	v	$I_{OL} = 0.8 \text{ mA}^{(1)(2)}$
V _{OL1}	Output Low Voltage (Ports 0, ALE, PSEN#, Port 2 in Page Mode during External Address)			0.45	v	I _{OL} = 1.6 mA ⁽¹⁾⁽²⁾
V _{OH}	Output high Voltage (Ports 1, 2, 3, ALE, PSEN#)	0.9·V _{DD}			V	I _{OH} = -10 μA ⁽³⁾
V _{OH1}	Output high Voltage (Port 0, Port 2 in Page Mode during External Address)	0.9·V _{DD}			v	Ι _{ΟΗ} = -40 μΑ
V_{RET}	V _{DD} data retention limit			1.8	V	
I _{ILO}	Logical 0 Input Current (Ports 1, 2, 3 - AWAIT#)			- 50	μA	V _{IN} = 0.45 V
I _{IL1}	Logical 1 Input Current (NMI)			+ 50	μA	V _{IN} = V _{DD}
I _{LI}	Input Leakage Current (Port 0)			± 10	μA	0.45 V < V _{IN} < V _{DD}
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3)			- 650	μA	V _{IN} = 2.0 V
R _{RST}	RST Pull-Down Resistor	40	110	225	kΩ	
C _{IO}	Pin Capacitance		10		pF	T _A = 25°C
I _{DD}	Operating Current		4 8 9 11	8 11 12 14	mA	$\begin{array}{l} 5 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 10 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 12 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 16 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \end{array}$
I _{DL}	Idle Mode Current		0.5 1.5 2 3	1 4 5 7	mA	$\begin{array}{c} 5 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 10 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 12 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 16 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \end{array}$
I _{PD}	Power-Down Current		1	10	μA	V _{RET} < V _{DD} < 3.6 V

Notes: 1. Under steady-state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum IOL per port pin: 10 mA

Maximum IOL per 8-bit port: Port 0 26 mA

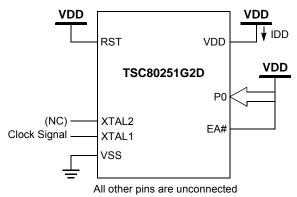
Ports 1-315 mA



Maximum Total IOL for all:Output Pins71 mA

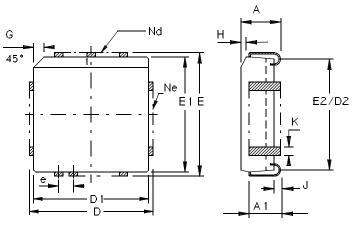
If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 2. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low-level outputs of ALE and Ports 1, 2, and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from high to low. In applications where capacitive loading exceeds 100 pF, the noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify ALE or other signals with a Schmitt Trigger or CMOS-level input logic.
- Capacitive loading on Ports 0 and 2 causes the V_{OH} on ALE and PSEN# to drop below the specification when the address lines are stabilizing.
- 4. Typical values are obtained using V_{DD} = 3 V and T_A = 25°C. They are not tested and there is not guarantee on these values.
- The input threshold voltage of SCL and SDA meets the TWI specification, so an input voltage below 0.3 V_{DD} will be recognized as a logic 0 while an input voltage above 0.7 V_{DD} will be recognized as a logic 1.



Note: 1.The clock prescaler is not used: $F_{OSC} = F_{XTAL}$.

I_{DD} , I_{DL} and I_{PD} Test Conditions



PLCC 44 - Mechanical Outline

Table 59. PLCC Package Size

	м	М	Inc	ch
	Min	Max	Min	Max
А	4.20	4.57	.165	.180
A1	2.29	3.04	.090	.120
D	17.40	17.65	.685	.695
D1	16.44	16.66	.647	.656
D2	14.99	16.00	.590	.630
E	17.40	17.65	.685	.695
E1	16.44	16.66	.647	.656
E2	14.99	16.00	.590	.630
е	1.27	BSC	.050 BSC	
G	1.07	1.22	.042	.048
Н	1.07	1.42	.042	.056
J	0.51	-	.020	-
К	0.33	0.53	.013	.021
Nd	11		1	1
Ne	11		1	1

Part Number ⁽¹⁾	ROM	Description			
Low Voltage Versions 2.7 to 5.5 V					
TSC251G2Dxxx-L16CB	32K MaskROM	16 MHz, Commercial 0° to 70°C, PLCC 44			
TSC251G2Dxxx-L16CE	32K MaskROM	16 MHz, Commercial 0° to 70°C, VQFP 44			
AT251G2Dxxx-SLSUL	32K MaskROM	16 MHz, Industrial & Green, PLCC 44			
AT251G2Dxxx-RLTUL	32K MaskROM	16 MHz, Industrial & Green, VQFP 44			

Note: 1. xxx: means ROM code, is Cxxx in case of encrypted code.

AT/TSC87251G2D OTPROM

Part Number	ROM	Description
High Speed Versions 4.5 to 5.5 V, Commercial and Industrial		
TSC87251G2D-16CB	32K OTPROM	16 MHz, Commercial 0° to 70°C, PLCC 44
TSC87251G2D-24CB	32K OTPROM	24 MHz, Commercial 0° to 70°C, PLCC 44
TSC87251G2D-24CED	32K OTPROM	24 MHz, Commercial 0° to 70°C, VQFP 44
TSC87251G2D-24IA	32K OTPROM	24 MHz, Industrial -40° to 85°C, PDIL 40
TSC87251G2D-24IB	32K OTPROM	24 MHz, Industrial -40° to 85°C, PLCC 44
AT87251G2D-SLSUM	32K OTPROM	24 MHz, Industrial & Green -40° to 85°C, PLCC 44
AT87251G2D-3CSUM	32K OTPROM	24 MHz, Industrial & Green -40° to 85°C, PDIL 40
AT87251G2D-RLTUM	32K OTPROM	24 MHz, Industrial & Green -40° to 85°C, VQFP 44
Low Voltage Versions 2.7 to 5.5 V		
TSC87251G2D-L16CB	32K OTPROM	16 MHz, Commercial 0° to 70°C, PLCC 44
TSC87251G2D-L16CED	32K OTPROM	16 MHz, Commercial 0° to 70°C, VQFP 44
AT87251G2D-SLSUL	32K OTPROM	16 MHz, Industrial & Green, 0° to 70°C, PLCC 44
AT87251G2D-RLTUL	32K OTPROM	16 MHz, Industrial & Green, 0° to 70°C, VQFP 44

Document Revision History

Changes from 1. Added automotive qualification, and ordering information for ROM product version.

- 4135D to 4135E
- 1. Absolute Maximum Ratings added for automotive product version.

Changes from 4135E to 4135F

AIMEL

Options (Please

- ROM code encryption • consult Atmel sales)
 - Tape & Reel or Dry Pack ٠
 - Known good dice ٠
 - Extended temperature range: -55°C to +125°C •

Product Markings

ROMIess versions

ATMEL Part number Mask ROM versions

ATMEL Customer Part number Part Number YYWW . Lot Number

OTP versions

ATMEL Part number

YYWW . Lot Number

YYWW . Lot Number