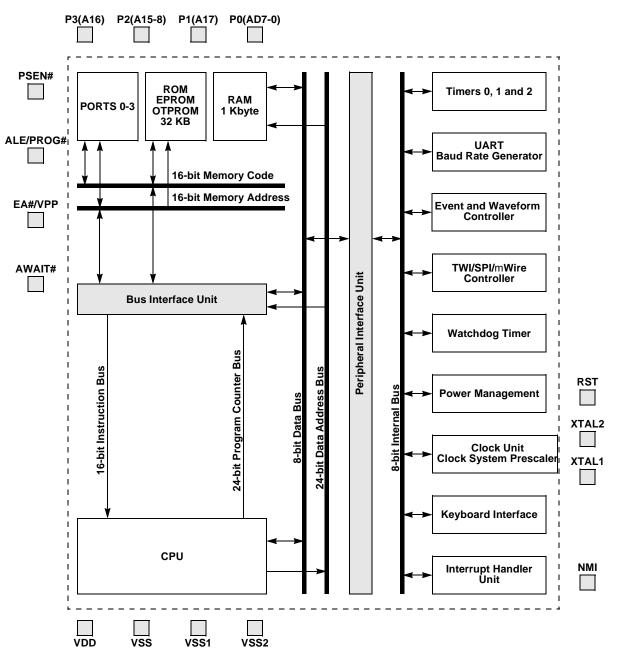


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	24MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at87251g2d-slsum

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

Table 2	Product Name	Signal Description	(Continued)
---------	--------------	--------------------	-------------

	Tiouu	ct Name Signal Description (Continued)				
Signal Name	Туре	Description	Alternate Function			
NMI	I	Non Maskable Interrupt Holding this pin high for 24 oscillator periods triggers an interrupt. When using the Product Name as a pin-for-pin replacement for a 8xC51 product, NMI can be unconnected without loss of compatibility or power consumption increase (on-chip pull-down). Not available on DIP package.	-			
P0.0:7	I/O	$\begin{array}{c} \mbox{Port 0} \\ \mbox{P0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s} \\ \mbox{I/O} & \mbox{written to them float and can be used as high impedance inputs. To avoid any paraitic current consumption, Floating P0 inputs must be polarized to V_{DD} or V_{SS}.} \end{array}$				
P1.0:7	I/O	I/O Port 1 P1 is an 8-bit bidirectional I/O port with internal pull-ups. P1 provides interrupt capability for a keyboard interface.				
P2.0:7	I/O	Port 2 P2 is an 8-bit bidirectional I/O port with internal pull-ups.	A15:8			
P3.0:7	I/O	Port 3 P3 is an 8-bit bidirectional I/O port with internal pull-ups.	_			
PROG#	I	Programming Pulse input The programming pulse is applied to this input for programming the on-chip EPROM/OTPROM.	Ι			
PSEN#	0	O PSEN# is asserted for a memory address range that depends on bits RD0 and RD1 in UCONFIG0 byte (see).				
RD#	0	Read or 17 th Address Bit (A16) O Read signal output to external data memory depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).				
RST	I	Reset input to the chip Holding this pin high for 64 oscillator periods while the oscillator is running resets the device. The Port pins are driven to their reset conditions when a voltage greater than V_{IH1} is applied, whether or not the oscillator is running. This pin has an internal pull-down resistor which allows the device to be reset by connecting a capacitor between this pin and VDD. Asserting RST when the chip is in Idle mode or Power-Down mode returns the chip to normal operation.	_			
RXD	I/O	Receive Serial Data RXD sends and receives data in serial I/O mode 0 and receives data in serial I/O modes 1, 2 and 3.	P3.0			
SCL	I/O	TWI Serial Clock When TWI controller is in master mode, SCL outputs the serial clock to slave peripherals. When TWI controller is in slave mode, SCL receives clock from the master controller.	P1.6			
SCK	I/O	SPI Serial Clock When SPI is in master mode, SCK outputs clock to the slave peripheral. When SPI is in slave mode, SCK receives clock from the master controller.	P1.6			
SDA	I/O	TWI Serial Data SDA is the bidirectional TWI data line.	P1.7			
SS#	I	SPI Slave Select Input When in Slave mode, SS# enables the slave mode.	P1.4			

Table 2. Product Name Signal Description (Continued)						
Signal Name	Туре	Description	Alternate Function			
T1:0	I/O	Timer 1:0 External Clock Inputs When timer 1:0 operates as a counter, a falling edge on the T1:0 pin increments the count.	-			
T2	I/O	Timer 2 Clock Input/Output For the timer 2 capture mode, T2 is the external clock input. For the Timer 2 clock-out mode, T2 is the clock output.	P1.0			
T2EX	 Timer 2 External Input In timer 2 capture mode, a falling edge initiates a capture of the timer 2 X I registers. In auto-reload mode, a falling edge causes the timer 2 register to be reloaded. In the up-down counter mode, this signal determines the count direction: 1 = up, 0 = down. 					
тхр	O Transmit Serial Data TXD outputs the shift clock in serial I/O mode 0 and transmits data in serial I/O modes 1, 2 and 3.					
VDD	PWR	Digital Supply Voltage Connect this pin to +5V or +3V supply voltage.				
VPP	VPP I Programming Supply Voltage The programming supply voltage is applied to this input for programming the on-chip EPROM/OTPROM.					
VSS	S GND Circuit Ground Connect this pin to ground.					
VSS1	GND	Secondary Ground 1 This ground is provided to reduce ground bounce and improve power supply bypassing. Connection of this pin to ground is recommended. However, when using the TSC80251G2D as a pin-for-pin replacement for a 8xC51 product, VSS1 can be unconnected without loss of compatibility. Not available on DIP package.	Ι			
VSS2	Secondary Ground 2 This ground is provided to reduce ground bounce and improve power supply bypassing. Connection of this pin to ground is recommended.		_			
WAIT#	I	Real-time Synchronous Wait States Input The real-time WAIT# input is enabled by setting RTWE bit in WCON (S:A7h). During bus cycles, the external memory system can signal 'system ready' to the microcontroller in real time by controlling the WAIT# input signal.	P1.6			
WCLK	0	Wait Clock Output The real-time WCLK output is enabled by setting RTWCE bit in WCON (S:A7h). When enabled, the WCLK output produces a square wave signal with a period of one half the oscillator frequency.	P1.7			
WR#	0	Write Write signal output to external memory.	P3.6			
XTAL1	I	Input to the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, its output is connected to this pin. XTAL1 is the clock source for internal timing.	-			

 Table 2.
 Product Name Signal Description (Continued)

Table 2.	Product Name Signal Description	(Continued)
----------	---------------------------------	-------------

Signal Name	Туре	Description	Alternate Function
XTAL2	ο	Output of the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, leave XTAL2 unconnected.	_

Note: The description of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the Non-Page mode chip configuration. If the chip is configured in Page mode operation, port 0 carries the lower address bits (A7:0) while port 2 carries the upper address bits (A15:8) and the data (D7:0).

Configuration Bytes

The TSC80251G2D derivatives provide user design flexibility by configuring certain operating features at device reset. These features fall into the following categories:

- external memory interface (Page mode, address bits, programmed wait states and the address range for RD#, WR#, and PSEN#)
- source mode/binary mode opcodes
- selection of bytes stored on the stack by an interrupt
- mapping of the upper portion of on-chip code memory to region 00:

Two user configuration bytes UCONFIG0 (see Table 11) and UCONFIG1 (see Table 12) provide the information.

When EA# is tied to a low level, the configuration bytes are fetched from the external address space. The TSC80251G2D derivatives reserve the top eight bytes of the memory address space (FF:FFF8h-FF:FFFh) for an external 8-byte configuration array. Only two bytes are actually used: UCONFIG0 at FF:FFF8h and UCONFIG1 at FF:FFF9h.

For the mask ROM devices, configuration information is stored in on-chip memory (see ROM Verifying). When EA# is tied to a high level, the configuration information is retrieved from the on-chip memory instead of the external address space and there is no restriction in the usage of the external memory.

Table 11. Configuration Byte 0UCONFIG0

7	6	5	4	3	2	1	0
-	WSA1#	WSA0#	XALE#	RD1	RD0	PAGE#	SRC
Bit Number	Bit Mnemonic	Descriptio	n				
7	-	Reserved Set this bit	when writing	to UCONFIG0).		
6	WSA1#	Wait State					fan ar fam al
5	WSA0#		cesses (all re <u>VSA0#</u> <u>Nu</u> 3 2 1	it states for RL gions except (<u>umber of Wait</u>	,	-SEN# signals	s for external
4	XALE#		tend the dura		E pulse from T E pulse to 1·T _o		
3	RD1	-	gnal Select				
2	RD0			s (see Table 1	al address bu 3).	s and the usag	ge of RD#,
1	PAGE#	Clear to sel Port 0.		Page mode v	vith A15:8/D7: h A15:8 on Po		
0	SRC	Clear to set	de/Binary M lect the binary ct the source		t		

Notes: 1. UCONFIG0 is fetched twice so it can be properly read both in Page or Non-Page modes. If P2.1 is cleared during the first data fetch, a Page mode configuration is used, otherwise the subsequent fetches are performed in Non-Page mode.

2. This selection provides compatibility with the standard 80C51 hardware which is multiplexing the address LSB and the data on Port 0.

Configuration Byte 1

Table 13. Address Ranges and Usage of RD#, WR# and PSEN# Signals

RD1	RD0	P1.7	P3.7/RD#	PSEN#	WR#	External Memory
0	0	A17	A16	Read signal for all external memory locations	Write signal for all external memory locations	256 KB
0	1	I/O pin	A16	Read signal for all external memory locations	Write signal for all external memory locations	128 KB
1	0	I/O pin	I/O pin	Read signal for all external memory locations	Write signal for all external memory locations	64 KB
1	1	I/O pin	Read signal for regions 00: and 01:	Read signal for regions FE: and FF:	Write signal for all external memory locations	2 × 64 KB ⁽¹⁾

Notes: 1. This selection provides compatibility with the standard 80C51 hardware which has separate external memory spaces for data and code.

Size and Execution Time for Instruction Families

Table 20. Summary of Add and Subtract Instructions

AddADD <dest>, <src>dest opnd \leftarrow dest opnd + src opnd</src></dest>
SubtractSUB <dest>, <src>dest opnd \leftarrow dest opnd - src opnd</src></dest>
Add with CarryADDC <dest>, <src>(A) \leftarrow (A) + src opnd + (CY)</src></dest>
Subtract with BorrowSUBB <dest>, <src>(A) \leftarrow (A) - src opnd - (CY)</src></dest>

	-dost>		Binary	Mode	Source	e Mode
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	States
	A, Rn	Register to ACC	1	1	2	2
	A, dir8	Direct address to ACC	2	1 ⁽²⁾	2	1 ⁽²⁾
ADD	A, at Ri	Indirect address to ACC	1	2	2	3
	A, #data	Immediate data to ACC	2	1	2	1
	Rmd, Rms	Byte register to/from byte register	3	2	2	1
	WRjd, WRjs	Word register to/from word register	3	3	2	2
	DRkd, DRks	Dword register to/from dword register	3	5	2	4
	Rm, #data	Immediate 8-bit data to/from byte register	4	3	3	2
	WRj, #data16	Immediate 16-bit data to/from word register	5	4	4	3
	DRk, #0data16	16-bit unsigned immediate data to/from dword register	5	6	4	5
ADD/SUB	Rm, dir8	Direct address (on-chip RAM or SFR) to/from byte register	4	3 ⁽²⁾	3	2 ⁽²⁾
	WRj, dir8	Direct address (on-chip RAM or SFR) to/from word register	4	4	3	3
	Rm, dir16	Direct address (64K) to/from byte register	5	3 ⁽³⁾	4	2 ⁽³⁾
	WRj, dir16	Direct address (64K) to/from word register	5	4 ⁽⁴⁾	4	3 ⁽⁴⁾
	Rm, at WRj	Indirect address (64K) to/from byte register	4	3 ⁽³⁾	3	2 ⁽³⁾
	Rm, at DRk	k Indirect address (16M) to/from byte register		4 ⁽³⁾	3	3 ⁽³⁾
	A, Rn	Register to/from ACC with carry	1	1	2	2
	A, dir8	Direct address (on-chip RAM or SFR) to/from ACC with carry	2	1 ⁽²⁾	2	1 ⁽²⁾
ADDC/SU BB	A, at Ri	Indirect address to/from ACC with carry	1	2	2	3
	A, #data	Immediate data to/from ACC with carry	2	1	2	1

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

3. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).

- Notes: 1. Logical instructions that affect a bit are in Table 27.
 - 2. A shaded cell denotes an instruction in the C51 Architecture.
 - 3. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
 - 4. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.
 - 5. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
 - 6. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

Table 23.	Summar	of Logical	Instructions	(2/2)

$ \begin{array}{l} \text{Shift Left LogicalSLL _{0} \leftarrow 0 \\ < dest>_{n+1} \leftarrow < dest>_{n}, n = 0msb-1 \\ (CY) \leftarrow < dest>_{msb} \end{array} \\ \text{Shift Right ArithmeticSRA _{msb} \leftarrow _{msb} \\ < dest>_{n-1} \leftarrow _{n}, n = msb1 \\ (CY) \leftarrow _{0} \end{array} \\ \text{Shift Right LogicalSRL _{msb} \leftarrow 0 \\ _{n-1} \leftarrow _{n}, n = msb1 \\ (CY) \leftarrow _{0} \end{array} \\ \text{SwapSWAP AA}_{3:0} A_{7:4} \end{array} $							
<pre><dest>,</dest></pre> Binary Mode Source Mode							
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States	
	Rm	Shift byte register left through the MSB	3	2	2	1	
SLL	WRj	Shift word register left through the MSB	3	2	2	1	
CDA	Rm	Shift byte register right	3	2	2	1	
SRA WRj		Shift word register right	3	2	2	1	
SRL	Rm	Shift byte register left	3	2	2	1	
JRL	WRj	Shift word register left	3	2	2	1	
SWAP	А	Swap nibbles within ACC	1	2	1	2	

Note: 1. A shaded cell denotes an instruction in the C51 Architecture.

			Binary Mode Source Mod			
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	State
	A, Rn	ACC and register	1	3	2	4
ХСН	A, dir8	ACC and direct address (on-chip RAM or SFR)	2	3 ⁽³⁾	2	3 ⁽³⁾
	A, at Ri	ACC and indirect address	1	4	2	5
XCHD	A, at Ri	ACC low nibble and indirect address (256 bytes)	1	4	2	5
	dir8	Push direct address onto stack	2	2 ⁽²⁾	2	2(2
	#data	Push immediate data onto stack	4	4	3	3
PUSH	#data16	Push 16-bit immediate data onto stack	5	5	4	5
F 0311	Rm	Push byte register onto stack	3	4	2	3
	WRj	Push word register onto stack	3	5	2	4
	DRk	Push double word register onto stack	3	9	2	8
	dir8	Pop direct address (on-chip RAM or SFR) from stack	2	3 ⁽²⁾	2	3(2
POP	Rm	Pop byte register from stack	3	3	2	2
	WRj	Pop word register from stack	3	5	2	4
	DRk	Pop double word register from stack	3	9	2	8

Table 28. Summary of Exchange, Push and Pop Instructions

Exchange bytesXCH A, <src>(A) \leftrightarrow src opnd

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

3. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Table 29.	Summar	of Conditional Jump Instructions ((1/2)
-----------	--------	------------------------------------	-------

	onal on statu HEN (PC) ←	sJcc rel(PC) \leftarrow (PC) + size (instr); - (PC) + rel				
	<dest>,</dest>		Binary	Mode	Source	e Mode
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
JC	rel	Jump if carry	2	1/4 ⁽³⁾	2	1/4 ⁽³⁾
JNC	rel	Jump if not carry	2	1/4 ⁽³⁾	2	1/4 ⁽³⁾
JE	rel	Jump if equal	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾
JNE	rel	Jump if not equal	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾
JG	rel	Jump if greater than	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾
JLE	rel	Jump if less than, or equal	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾
JSL	rel	Jump if less than (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾
JSLE	rel	Jump if less than, or equal (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾
JSG	rel	Jump if greater than (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾
JSGE	rel	Jump if greater than or equal (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. States are given as jump not-taken/taken.

3. In internal execution only, add 1 to the number of states of the 'jump taken' if the destination address is internal and odd.

Add 3 if it addresses a Peripheral SFR.

- 5. If this instruction addresses an I/O Port (Px, x = 0-3), add 3 to the number of states. Add 5 if it addresses a Peripheral SFR.
- 6. In internal execution only, add 1 to the number of states of the 'jump taken' if the destination address is internal and odd.

Table 31. Summary of Unconditional Jump Instructions

Absolute jumpAJMP <src>(PC) \leftarrow (PC) +2; (PC)_{10:0} \leftarrow src opnd Extended jumpEJMP <src>(PC) \leftarrow (PC) + size (instr); (PC)_{23:0} \leftarrow src opnd Long jumpLJMP <src>(PC) \leftarrow (PC) + size (instr); (PC)_{15:0} \leftarrow src opnd Short jumpSJMP rel(PC) \leftarrow (PC) +2; (PC) \leftarrow (PC) +rel Jump indirectJMP at A +DPTR(PC)_{23:16} \leftarrow FFh; (PC)_{15:0} \leftarrow (A) + (DPTR) No operationNOP(PC) \leftarrow (PC) +1

	<dest>,</dest>		Binary	Mode	Source	e Mode
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
AJMP	addr11	Absolute jump	2	3 ⁽²⁾⁽³⁾	2	3 ⁽²⁾⁽³⁾
EJMP	addr24	Extended jump	5	6 ⁽²⁾⁽⁴⁾	4	5 ⁽²⁾⁽⁴⁾
EJIVIP	at DRk	Extended jump (indirect)	3	7 ⁽²⁾⁽⁴⁾	2	6 ⁽²⁾⁽⁴⁾
LJMP	at WRj	Long jump (indirect)	3	6 ⁽²⁾⁽⁴⁾	2	5 ⁽²⁾⁽⁴⁾
LJIMP	addr16	Long jump (direct address)	3	5 ⁽²⁾⁽⁴⁾	3	5 ⁽²⁾⁽⁴⁾
SJMP	rel	Short jump (relative address)	2	4 ⁽²⁾⁽⁴⁾	2	4 ⁽²⁾⁽⁴⁾
JMP	at A +DPTR	Jump indirect relative to the DPTR	1	5 ⁽²⁾⁽⁴⁾	1	5 ⁽²⁾⁽⁴⁾
NOP		No operation (Jump never)	1	1	1	1

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

- 2. In internal execution only, add 1 to the number of states if the destination address is internal and odd.
- 3. Add 2 to the number of states if the destination address is external.
- 4. Add 3 to the number of states if the destination address is external.

Table 32.	Summar	of Call and	Return	Instructions
-----------	--------	-------------	--------	--------------

	ACALL <src> \leftarrow src opnd</src>	$(PC) \leftarrow (PC)$ +2; push $(PC)_{15:0}$;				
Extended ca		$P(PC) \leftarrow (PC) + size (instr); push (PC)_2$	3:0,			
Long callLCA) \leftarrow (PC) + size (instr); push (PC) _{15:0} ;				
Return from	subroutineRE	Tpop (PC) _{15:0}				
		outineERETpop(PC) _{23:0}				
		IF [INTR = 0] THEN pop (PC) _{15:0} pop (PC) _{23:0} ; pop (PSW1)				
Trap interrup IF [INTF	tTRAP(PC) ← R = 0] THEN p	- (PC) + size (instr);				
			Binary	/ Mode	Source	e Mode
	<dest>,</dest>				.	_
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
Mnemonic ACALL	<src>(") addr11</src>	Comments Absolute subroutine call	Bytes 2	9 ⁽²⁾⁽³⁾	Bytes 2	
ACALL			-		-	States 9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³
ACALL	addr11	Absolute subroutine call	2	9 ⁽²⁾⁽³⁾	2	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³
ACALL	addr11 at DRk	Absolute subroutine call Extended subroutine call (indirect)	2 3	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾	2 2	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 13 ⁽²⁾⁽³
ACALL	addr11 at DRk addr24	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call	2 3 5	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾	2 2 4	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 9 ⁽²⁾⁽³
ACALL	addr11 at DRk addr24 at WRj	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect)	2 3 5 3	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾ 10 ⁽²⁾⁽³⁾	2 2 4 2	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 9 ⁽²⁾⁽³
ACALL ECALL LCALL RET	addr11 at DRk addr24 at WRj	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call	2 3 5 3 3	$\begin{array}{c} 9^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \\ 9^{(2)(3)} \end{array}$	2 2 4 2 3	$9^{(2)(3)}$ $13^{(2)(3)}$ $13^{(2)(3)}$ $9^{(2)(3)}$ $9^{(2)(3)}$
ACALL ECALL LCALL	addr11 at DRk addr24 at WRj	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call Return from subroutine	2 3 5 3 3 1	$\begin{array}{c} 9^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \\ 9^{(2)(3)} \\ 7^{(2)} \end{array}$	2 2 4 2 3 1	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 13 ⁽²⁾⁽³⁾ 9 ⁽²⁾⁽³⁾ 9 ⁽²⁾⁽³⁾ 7 ⁽²⁾

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. In internal execution only, add 1 to the number of states if the destination/return address is internal and odd.

- 3. Add 2 to the number of states if the destination address is external.
- 4. Add 5 to the number of states if INTR = 1.

Programming and Verifying Non-volatile Memory

Internal Features

The internal non-volatile memory of the TSC80251G2D derivatives contains five different areas:

- Code Memory
- Configuration Bytes
- Lock Bits
- Encryption Array
- Signature Bytes

EPROM/OTPROM Devices All the internal non-volatile memory but the Signature Bytes of the TSC87251G2D products are made of EPROM cells. The Signature Bytes of the TSC87251G2D products are made of Mask ROM.

The TSC87251G2D products are programmed and verified in the same manner as Atmel's TSC87251G1A, using a SINGLE-PULSE algorithm, which programs at V_{PP} = 12.75V using only one 100µs pulse per byte. This results in a programming time of less than 10 seconds for the 32 kilobytes on-chip code memory.

The EPROM of the TSC87251G2D products in Window package is erasable by Ultra-Violet radiation⁽¹⁾ (UV). UV erasure set all the EPROM memory cells to one and allows reprogramming. The quartz window must be covered with an opaque label⁽²⁾ when the device is in operation. This is not so much to protect the EPROM array from inadvertent erasure, as to protect the RAM and other on-chip logic. Allowing light to impinge on the silicon die during device operation may cause a logical malfunction.

The TSC87251G2D products in plastic packages are One Time Programmable (OTP). An EPROM cell cannot be reset by UV once programmed to zero.

- Notes: 1. The recommended erasure procedure is exposure to ultra-violet light (at 2537 Å) to an integrated dose of at least 20 W-sec/cm². Exposing the EPROM to an ultra-violet lamp of 12000 μW/cm² rating for 30 minutes should be sufficient.
 - 2. Erasure of the EPROM begins to occur when the chip is exposed to light wavelength shorter than 4000 Å. Since sunlight and fluorescent light have wavelength in this range, exposure to these light sources over an extended time (1 week in sunlight or 3 years in room-level fluorescent lighting) could cause inadvertent erasure.
- Mask ROM DevicesAll the internal non-volatile memory of TSC83251G2D products is made of Mask ROM
cells. They can only be verified by the user, using the same algorithm as the
EPROM/OTPROM devices.

ROMIess DevicesThe TSC80251G2D products do not include on-chip Configuration Bytes, Code Memory
and Encryption Array. They only include Signature Bytes made of Mask ROM cells
which can be read using the same algorithm as the EPROM/OTPROM devices.

- **Security Features** In some microcontroller applications, it is desirable that the user's program code be secured from unauthorized access. The TSC83251G2D and TSC87251G2D offer two kinds of protection for program code stored in the on-chip array:
 - Program code in the on-chip Code Memory is encrypted when read out for verification if the Encryption Array isprogrammed.
 - A three-level lock bit system restricts external access to the on-chip code memory.

Lock Bit System

The TSC87251G2D products implement 3 levels of security for User's program as described in Table 33. The TSC83251G2D products implement only the first level of security.

Level 0 is the level of an erased part and does not enable any security features.

Level 1 locks the programming of the User's internal Code Memory, the Configuration Bytes and the Encryption Array.

Level 2 locks the verifying of the User's internal Code Memory. It is always possible to verify the Configuration Bytes and the Lock Bits. It is not possible to verify the Encryption Array.

Level 3 locks the external execution.

Level	Lock bits LB[2:0]	Internal Execution	External Execution	Verification	Programming	External PROM read (MOVC)
0	000	Enable	Enable	Enable ⁽¹⁾	Enable	Enable ⁽²⁾
1	001	Enable	Enable	Enable ⁽¹⁾	Disable	Disable
2	01x ⁽³⁾	Enable	Enable	Disable	Disable	Disable
3	1xx ⁽³⁾	Enable	Disable	Disable	Disable	Disable

Table 33. Lock Bits Programming

Notes: 1. Returns encrypted data if Encryption Array is programmed.

2. Returns non encrypted data.

3. x means don't care. Level 2 always enables level 1, and level 3 always enables levels 1 and 2.

The security level may be verified according to Table 34.

Table 34. Lock Bits Verifying

Level	Lock bits Data ⁽¹⁾
0	xxxxx000
1	xxxxx001
2	xxxxx01x
3	xxxxx1xx

Note: 1. x means don't care.

Encryption Array

The TSC83251G2D and TSC87251G2D products include a 128-byte Encryption Array located in non-volatile memory outside the memory address space. During verification of the on-chip code memory, the seven low-order address bits also address the Encryption Array. As the byte of the code memory is read, it is exclusive-NOR'ed (XNOR) with the key byte from the Encryption Array. If the Encryption Array is not programmed (still all 1s), the user program code is placed on the data bus in its original, unencrypted form. If the Encryption Array is programmed with key bytes, the user program code is encrypted and cannot be used without knowledge of the key byte sequence.

• PSEN# and the other control signals have to be released to complete a sequence of programming operations or a sequence of programming and verifying operations.

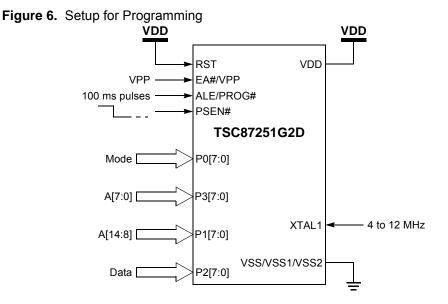


 Table 36.
 Programming Modes

ROM Area ⁽¹⁾	RST	EA#/VPP	PSEN #	ALE/PROG# ⁽²⁾	P0	P2	P1(MSB) P3(LSB)
On-chip Code Memory	1	V _{PP}	0	1 Pulse	68h	Data	16-bit Address 0000h-7FFFh (32 kilobytes)
Configuration Bytes	1	V _{PP}	0	1 Pulse	69h	Data	CONFIG0: FFF8h CONFIG1: FFF9h
Lock Bits	1	V _{PP}	0	1 Pulse	6Bh	х	LB0: 0001h LB1: 0002h LB2: 0003h
Encryption Array	1	V _{PP}	0	1 Pulse	6Ch	Data	0000h-007Fh

Notes: 1. Signature Bytes are not user-programmable.

2. The ALE/PROG# pulse waveform is shown in Figure 23 page 59.

Verify Algorithm

Figure 7 shows the hardware setup needed to verify the TSC87251G2D EPROM/OTPROM or TSC83251G2D ROM areas:

- The chip has to be put under reset and maintained in this state until the completion of the verifying sequence.
- PSEN# and the other control signals (ALE and Port 0) have to be set to a high level.
- Then PSEN# has to be to forced to a low level after two clock cycles or more and it
 has to be maintained in this state until the completion of the verifying sequence (see
 below).
- The voltage on the EA# pin must be set to V_{DD} and ALE must be set to a high level.
- The Verifying Mode is selected according to the code applied on Port 0. It has to be applied until the completion of this verifying operation.
- The verifying address is applied on Ports 1 and 3 which are respectively the MSB and the LSB of the address.

		12	MHz	16	MHz	24 1	MHz	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
T _{OSC}	1/F _{osc}	83		62		41		ns
T _{LHLL}	ALE Pulse Width	78		58		38		ns ⁽²⁾
T _{AVLL}	Address Valid to ALE Low	78		58		37		ns ⁽²⁾
T_{LLAX}	Address hold after ALE Low	19		11		3		ns
$T_{RLRH}^{(1)}$	RD#/PSEN# Pulse Width	162		121		78		ns ⁽³⁾
T _{WLWH}	WR# Pulse Width	165		124		81		ns ⁽³⁾
$T_{LLRL}^{(1)}$	ALE Low to RD#/PSEN# Low	22		14		6		ns
T _{LHAX}	ALE High to Address Hold	99		70		40		ns ⁽²⁾
T _{RLDV} ⁽¹⁾	RD#/PSEN# Low to Valid Data		146		104		61	ns ⁽³⁾
$T_{RHDX}^{(1)}$	Data Hold After RD#/PSEN# High	0		0		0		ns
T _{RHAX} ⁽¹⁾	Address Hold After RD#/PSEN# High	0		0		0		ns
T _{RLAZ} ⁽¹⁾	RD#/PSEN# Low to Address Float		0		0		0	ns
T _{RHDZ1}	Instruction Float After RD#/PSEN# High		45		40		30	ns
T _{RHDZ2}	Data Float After RD#/PSEN# High		215		165		115	ns
T _{RHLH1}	RD#/PSEN# high to ALE High (Instruction)	49		43		31		ns
T _{RHLH2}	RD#/PSEN# high to ALE High (Data)	215		169		115		ns
T _{WHLH}	WR# High to ALE High	215		169		115		ns
T _{AVDV1}	Address (P0) Valid to Valid Data In		250		175		105	ns ⁽²⁾⁽³
T _{AVDV2}	Address (P2) Valid to Valid Data In		306		223		140	ns ⁽²⁾⁽³
T _{AVDV3}	Address (P0) Valid to Valid Instruction In		150		109		68	ns ⁽³⁾
T _{AXDX}	Data Hold after Address Hold	0		0		0		ns
T _{AVRL} ⁽¹⁾	Address Valid to RD# Low	100		70		40		ns ⁽²
T _{AVWL1}	Address (P0) Valid to WR# Low	100		70		40		ns ⁽²
T _{AVWL2}	Address (P2) Valid to WR# Low	158		115		74		ns ⁽²
T _{WHQX}	Data Hold after WR# High	90		69		32		ns
T _{QVWH}	Data Valid to WR# High	133		102		72		ns ⁽³
T _{WHAX}	WR# High to Address Hold	167		125		84		ns

Table 39. Bus Cycles AC Timings;	V_{DD} = 4.5 to 5.5 V, T_A = -40 to 85°C
----------------------------------	--

Notes: 1. Specification for PSEN# are identical to those for RD#.

2. If a wait state is added by extending ALE, add $2 \cdot T_{OSC}$. 3. If wait states are added by extending RD#/PSEN#/WR#, add $2N \cdot T_{OSC}$ (N = 1..3).

		12	MHz	16 I	MHz	
Symbol	Parameter	Min	Max	Min	Max	Unit
T _{osc}	1/F _{osc}	83		62		ns
T _{LHLL}	ALE Pulse Width	72		52		ns ⁽²⁾
T _{AVLL}	Address Valid to ALE Low	71		51		ns ⁽²⁾
T _{LLAX}	Address hold after ALE Low	14		6		ns
T _{RLRH} ⁽¹⁾	RD#/PSEN# Pulse Width	163		121		ns ⁽³⁾
T _{WLWH}	WR# Pulse Width	165		124		ns ⁽³⁾
T _{LLRL} ⁽¹⁾	ALE Low to RD#/PSEN# Low	17		11		ns
T _{LHAX}	ALE High to Address Hold	90		57		ns ⁽²⁾
T _{RLDV} ⁽¹⁾	RD#/PSEN# Low to Valid Data		133		92	ns ⁽³⁾
T _{RHDX} ⁽¹⁾	Data Hold After RD#/PSEN# High	0		0		ns
T _{RHAX} ⁽¹⁾	Address Hold After RD#/PSEN# High	0		0		ns
T _{RLAZ} ⁽¹⁾	RD#/PSEN# Low to Address Float		0		0	ns
T _{RHDZ1}	Instruction Float After RD#/PSEN# High		59		48	ns
T _{RHDZ2}	Data Float After RD#/PSEN# High		225		175	ns
T _{RHLH1}	RD#/PSEN# high to ALE High (Instruction)	60		47		ns
T _{RHLH2}	RD#/PSEN# high to ALE High (Data)	226		172		ns
T _{WHLH}	WR# High to ALE High	226		172		ns
T _{AVDV1}	Address (P0) Valid to Valid Data In		289		160	ns ⁽²⁾⁽³⁾
T _{AVDV2}	Address (P2) Valid to Valid Data In		296		211	ns ⁽²⁾⁽³⁾
T _{AVDV3}	Address (P0) Valid to Valid Instruction In		144		98	ns ⁽³⁾
T _{AXDX}	Data Hold after Address Hold	0		0		ns
T _{AVRL} ⁽¹⁾	Address Valid to RD# Low	111		64		ns ⁽²⁾
T _{AVWL1}	Address (P0) Valid to WR# Low	111		64		ns ⁽²⁾
T _{AVWL2}	Address (P2) Valid to WR# Low	158		116		ns ⁽²⁾
T _{WHQX}	Data Hold after WR# High	82		66		ns
T _{QVWH}	Data Valid to WR# High	135		103		ns ⁽³⁾
T _{WHAX}	WR# High to Address Hold	168		125		ns

Table 40. Bus Cycles AC Timings; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C

Notes: 1. Specification for PSEN# are identical to those for RD#.

2. If a wait state is added by extending ALE, add $2 \cdot T_{OSC}$. 3. If wait states are added by extending RD#/PSEN#/WR#, add $2N \cdot T_{OSC}$ (N = 1..3).

AC Characteristics - Real-Time Asynchronous Wait State

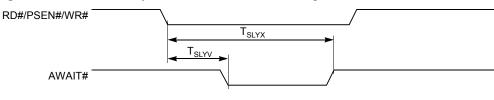
Definition of Symbols

Table 43. Real-Time Asynchronous Wait Timing Symbol Definitions

Signals		
S	PSEN#/RD#/WR#	
Y	AWAIT#	

Conditions		
L	Low	
V	Valid	
х	No Longer Valid	

Timings


Table 44. Real-Time Asynchronous Wait AC Timings; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C

Symbol	Parameter	Min	Мах	Unit
T _{SLYV}	PSEN#/RD#/WR# Low to Wait Set-up		T _{OSC} - 10	ns
T _{SLYX} Wait Hold after PSEN#/RD#/WR# Low		(2N-1)·T _{OSC} + 10		ns ⁽¹⁾

Note: 1. N is the number of wait states added (N \geq 1).

Waveforms

Figure 16. Real-time Asynchronous Wait State Timings

AC Characteristics - Serial Port in Shift Register Mode

Definition of Symbols

Table 45. Serial Port Timing Symbol Definitions

Signals		
D	Data In	
Q	Data Out	
Х	Clock	

Conditions		
Н	High	
L	Low	
V	Valid	
Х	No Longer Valid	

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

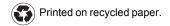
La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 **RF**/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340


1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNTIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedotherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2006. All rights reserved. Atmel[®], logo and combinations thereof, and Everywhere You Are[®] are the trademarks or registered trademarks, of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

