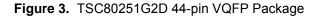
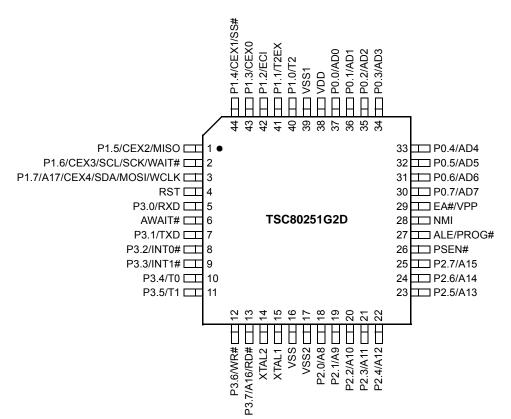


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?


"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	16MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/tsc80251g2d-16cbr

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

compatibility with the C51 Architecture). When PC increments beyond the end of seqment FE:, it continues at the reset address FF:0000h (linearity). When PC increments beyond the end of segment 01:, it loops to the beginning of segment 00: (this prevents from its going into the reserved area).

Data Memory The TSC80251G2D derivatives implement 1 Kbyte of on-chip data RAM. Figure 5 shows the split of the internal and external data memory spaces. This memory is mapped in the data space just over the 32 bytes of registers area (see TSC80251 Programmers' Guide). Hence, the part of the on-chip RAM located from 20h to FFh is bit addressable. This on-chip RAM is not accessible through the program/code memory space.

> For faster computation with the on-chip ROM/EPROM code of the TSC83251G2D/TSC87251G2D, its upper 16 KB are also mapped in the upper part of the region 00: if the On-Chip Code Memory Map configuration bit is cleared (EMAP# bit in UCONFIG1 byte, see Figure). However, if EA# is tied to a low level, the TSC80251G2D derivative is running as a ROMless product and the code is actually fetched in the corresponding external memory (i.e. the upper 16 KB of the lower 32 KB of the segment FF:). If EMAP# bit is set, the on-chip ROM is not accessible through the region 00:.

> All the accesses to the portion of the data space with no on-chip memory mapped onto are redirected to the external memory.

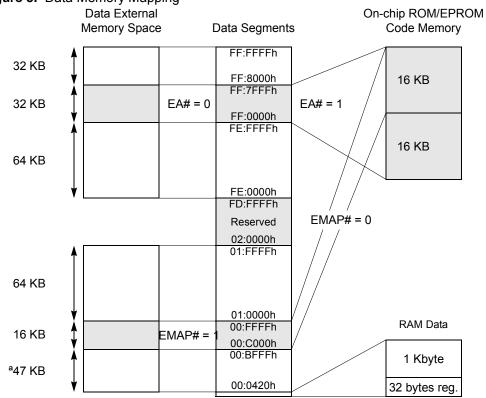


Figure 5. Data Memory Mapping

Instruction Set Summary

This section contains tables that summarize the instruction set. For each instruction there is a short description, its length in bytes, and its execution time in states (one state time is equal to two system clock cycles). There are two concurrent processes limiting the effective instruction throughput:

- Instruction Fetch
- Instruction Execution

Table 20 to Table 32 assume code executing from on-chip memory, then the CPU is fetching 16-bit at a time and this is never limiting the execution speed.

If the code is fetched from external memory, a pre-fetch queue will store instructions ahead of execution to optimize the memory bandwidth usage when slower instructions are executed. However, the effective speed may be limited depending on the average size of instructions (for the considered section of the program flow). The maximum average instruction throughput is provided by Table 14 depending on the external memory configuration (from Page Mode to Non-Page Mode and the maximum number of wait states). If the average size of instructions is not an integer, the maximum effective throughput is found by pondering the number of states for the neighbor integer values.

Average size		Non-page Mode (states)					
of Instructions (bytes)	Page Mode (states)	0 Wait State	1 Wait State	2 Wait States	3 Wait States	4 Wait States	
1	1	2	3	4	5	6	
2	2	4	6	8	10	12	
3	3	6	9	12	15	18	
4	4	8	12	16	20	24	
5	5	10	15	20	25	30	

 Table 14.
 Minimum Number of States per Instruction for given Average Sizes

If the average execution time of the considered instructions is larger than the number of states given by Table 14, this larger value will prevail as the limiting factor. Otherwise, the value from Table 14 must be taken. This is providing a fair estimation of the execution speed but only the actual code execution can provide the final value.

Table 15 to Table 19 provide notation for Instruction Operands.

Notation for Instruction Operands

.

Table 15. Notation for Direct Addressing

Direct Address	Description	C251	C51
dir8	A direct 8-bit address. This can be a memory address (00h-7Fh) or a SFR address (80h-FFh). It is a byte (default), word or double word depending on the other operand.	3	з
dir16	A 16-bit memory address (00:0000h-00:FFFFh) used in direct addressing.	3	_

Size and Execution Time for Instruction Families

Table 20. Summary of Add and Subtract Instructions

AddADD <dest>, <src>dest opnd \leftarrow dest opnd + src opnd</src></dest>
SubtractSUB <dest>, <src>dest opnd \leftarrow dest opnd - src opnd</src></dest>
Add with CarryADDC <dest>, <src>(A) \leftarrow (A) + src opnd + (CY)</src></dest>
Subtract with BorrowSUBB <dest>, <src>(A) \leftarrow (A) - src opnd - (CY)</src></dest>

	-dost>		Binary	Mode	Source	e Mode
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	States
	A, Rn	Register to ACC	1	1	2	2
	A, dir8	Direct address to ACC	2	1 ⁽²⁾	2	1 ⁽²⁾
ADD	A, at Ri	Indirect address to ACC	1	2	2	3
	A, #data	Immediate data to ACC	2	1	2	1
	Rmd, Rms	Byte register to/from byte register	3	2	2	1
	WRjd, WRjs	Word register to/from word register	3	3	2	2
	DRkd, DRks	Dword register to/from dword register	3	5	2	4
	Rm, #data	Immediate 8-bit data to/from byte register	4	3	3	2
	WRj, #data16	Immediate 16-bit data to/from word register	5	4	4	3
	DRk, #0data16	16-bit unsigned immediate data to/from dword register	5	6	4	5
ADD/SUB	Rm, dir8	Direct address (on-chip RAM or SFR) to/from byte register	4	3 ⁽²⁾	3	2 ⁽²⁾
	WRj, dir8	Direct address (on-chip RAM or SFR) to/from word register	4	4	3	3
	Rm, dir16	Direct address (64K) to/from byte register	5	3 ⁽³⁾	4	2 ⁽³⁾
	WRj, dir16	Direct address (64K) to/from word register	5	4 ⁽⁴⁾	4	3 ⁽⁴⁾
	Rm, at WRj	Indirect address (64K) to/from byte register	4	3 ⁽³⁾	3	2 ⁽³⁾
	Rm, at DRk	Indirect address (16M) to/from byte register	4	4 ⁽³⁾	3	3 ⁽³⁾
	A, Rn	Register to/from ACC with carry	1	1	2	2
	A, dir8	Direct address (on-chip RAM or SFR) to/from ACC with carry	2	1 ⁽²⁾	2	1 ⁽²⁾
ADDC/SU BB	A, at Ri	Indirect address to/from ACC with carry	1	2	2 2 2 2 2 2 2 2 3 4 4 3 3 4 4 3 3 4 3 3 4 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2	3
	A, #data	Immediate data to/from ACC with carry	2	1	2	1

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

3. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).

	<dest>,</dest>		Binary	Mode	Source Mode	
Mnemonic	<src>⁽²⁾</src>	Comments	Bytes	States	Bytes	States
	Rmd, Rms	Register with register	3	2	2	1
	WRjd, WRjs	Word register with word register	3	3	2	2
	DRkd, DRks	Dword register with dword register	3	5	2	4
	Rm, #data	Register with immediate data	4	3	3	2
	WRj, #data16	Word register with immediate 16-bit data	5	4	4	3
	DRk, #0data16	Dword register with zero-extended 16-bit immediate data	5	6	4	5
CMP	DRk, #1data16	Dword register with one-extended 16-bit immediate data	5	6	4	5
	Rm, dir8	Direct address (on-chip RAM or SFR) with byte register	4	3 ⁽¹⁾	3	2 ⁽¹⁾
	WRj, dir8	Direct address (on-chip RAM or SFR) with word register	4	4	3	3
	Rm, dir16	Direct address (64K) with byte register	5	3 ⁽²⁾	4	2 ⁽²⁾
	WRj, dir16	Direct address (64K) with word register	5	4 ⁽³⁾	4	3 ⁽³⁾
	Rm, at WRj	Indirect address (64K) with byte register	4	3 ⁽²⁾	3	2 ⁽²⁾
	Rm, at DRk	Indirect address (16M) with byte register	4	4 ⁽²⁾	3	3(2)

Table 22. Summary of Compare Instructions

Notes: 1. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

- 2. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
- 3. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

- Notes: 1. Logical instructions that affect a bit are in Table 27.
 - 2. A shaded cell denotes an instruction in the C51 Architecture.
 - 3. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
 - 4. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.
 - 5. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
 - 6. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

Table 23.	Summar	of Logical	Instructions	(2/2)

(CY) ← <des Shift Right Arithme <dest>_{n-1} ← (CY) ← <des Shift Right Logical</des </dest></des 	<dest>_n, n = tt>_{msb} eticSRA <des <dest>_n, n = n tt>₀ SRL <dest>< <dest>_n, n = n tt>₀</dest></dest></dest></des </dest>	0msb-1 t> <dest>_{msb} ← <dest>_{msb} msb1 :dest>_{msb} ← 0</dest></dest>				
	Binary Mode Source Mod					e Mode
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	States
	Rm	Shift byte register left through the MSB	3	2	2	1
SLL	WRj	Shift word register left through the MSB	3	2	2	1
SRA	Rm	Shift byte register right	3	2	2	1
SKA	WRj	Shift word register right	3	2	2	1
SRL	Rm	Shift byte register left	3	2	2	1
SKL	WRj	Shift word register left	3	2	2	1
SWAP	А	Swap nibbles within ACC	1	2	1	2

Note: 1. A shaded cell denotes an instruction in the C51 Architecture.

Table 27. Summary of Bit Instructions

Set BitSETB <dest>dest opnd \leftarrow 1

 $\textbf{Complement BitCPL <dest>dest opnd} \leftarrow \varnothing \textbf{ bit}$

AND Carry with BitANL CY, $\langle src \rangle(CY) \leftarrow (CY) \land src opnd$

AND Carry with Complement of BitANL CY, /<src>(CY) \leftarrow (CY) $\land \varnothing$ src opnd

OR Carry with BitORL CY, <src>(CY) \leftarrow (CY) \lor src opnd

OR Carry with Complement of BitORL CY, /<src>(CY) \leftarrow (CY) $\vee \varnothing$ src opnd

Move Bit to CarryMOV CY, $\langle crc \rangle$ (CY) \leftarrow src opnd

Move Bit from CarryMOV <dest>, CYdest opnd \leftarrow (CY)

	<dest>,</dest>		Binary	Mode	Source	e Mode
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
	CY	Clear carry	1	1	1	1
CLR	bit51	Clear direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit	Clear direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾
	CY	Set carry	1	1	1	1
SETB	bit51	Set direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit	Set direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾
	CY	Complement carry	1	1	1	1
CPL	bit51	Complement direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit	Complement direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾
	CY, bit51	And direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	CY, bit	And direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
ANL	CY, /bit51	And complemented direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	CY, /bit	And complemented direct bit to carry	4	3 ⁽²⁾	2	2 ⁽²⁾
	CY, bit51	Or direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	CY, bit	Or direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
ORL	CY, /bit51	Or complemented direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	CY, /bit	Or complemented direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
	CY, bit51	Move direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
MOV	CY, bit	Move direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
MOV	bit51, CY	Move carry to direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit, CY	Move carry to direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

3. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Binary Mode Source Mode							
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	State	
	A, Rn	ACC and register	1	3	2	4	
ХСН	A, dir8	ACC and direct address (on-chip RAM or SFR)	2	3 ⁽³⁾	2	3 ⁽³⁾	
	A, at Ri	ACC and indirect address	1	4	2	5	
XCHD	A, at Ri	ACC low nibble and indirect address (256 bytes)	1	4	2	5	
	dir8	Push direct address onto stack	2	2 ⁽²⁾	2	2(2	
	#data	Push immediate data onto stack	4	4	3	3	
PUSH	#data16	Push 16-bit immediate data onto stack	5	5	4	5	
F 0311	Rm	Push byte register onto stack	3	4	2	3	
	WRj	Push word register onto stack	3	5	2	4	
	DRk	Push double word register onto stack	3	9	2	8	
	dir8	Pop direct address (on-chip RAM or SFR) from stack	2	3 ⁽²⁾	2	3(2	
POP	Rm	Pop byte register from stack	3	3	2	2	
	WRj	Pop word register from stack	3	5	2	4	
	DRk	Pop double word register from stack	3	9	2	8	

Table 28. Summary of Exchange, Push and Pop Instructions

Exchange bytesXCH A, <src>(A) \leftrightarrow src opnd

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

3. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Add 3 if it addresses a Peripheral SFR.

- 5. If this instruction addresses an I/O Port (Px, x = 0-3), add 3 to the number of states. Add 5 if it addresses a Peripheral SFR.
- 6. In internal execution only, add 1 to the number of states of the 'jump taken' if the destination address is internal and odd.

Table 31. Summary of Unconditional Jump Instructions

Absolute jumpAJMP <src>(PC) \leftarrow (PC) +2; (PC)_{10:0} \leftarrow src opnd Extended jumpEJMP <src>(PC) \leftarrow (PC) + size (instr); (PC)_{23:0} \leftarrow src opnd Long jumpLJMP <src>(PC) \leftarrow (PC) + size (instr); (PC)_{15:0} \leftarrow src opnd Short jumpSJMP rel(PC) \leftarrow (PC) +2; (PC) \leftarrow (PC) +rel Jump indirectJMP at A +DPTR(PC)_{23:16} \leftarrow FFh; (PC)_{15:0} \leftarrow (A) + (DPTR) No operationNOP(PC) \leftarrow (PC) +1

	<dest>,</dest>	sta		Mode	Source Mode	
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
AJMP	addr11	Absolute jump	2	3 ⁽²⁾⁽³⁾	2	3 ⁽²⁾⁽³⁾
EJMP	addr24	Extended jump	5	6 ⁽²⁾⁽⁴⁾	4	5 ⁽²⁾⁽⁴⁾
EJIVIP	at DRk	Extended jump (indirect)	3	7 ⁽²⁾⁽⁴⁾	2	6 ⁽²⁾⁽⁴⁾
LJMP	at WRj	Long jump (indirect)	3	6 ⁽²⁾⁽⁴⁾	2	5 ⁽²⁾⁽⁴⁾
LJIMP	addr16	Long jump (direct address)	3	5 ⁽²⁾⁽⁴⁾	3	5 ⁽²⁾⁽⁴⁾
SJMP	rel	Short jump (relative address)	2	4 ⁽²⁾⁽⁴⁾	2	4 ⁽²⁾⁽⁴⁾
JMP	at A +DPTR	Jump indirect relative to the DPTR	1	5 ⁽²⁾⁽⁴⁾	1	5 ⁽²⁾⁽⁴⁾
NOP		No operation (Jump never)	1	1	1	1

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

- 2. In internal execution only, add 1 to the number of states if the destination address is internal and odd.
- 3. Add 2 to the number of states if the destination address is external.
- 4. Add 3 to the number of states if the destination address is external.

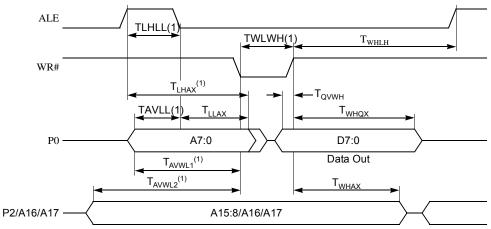
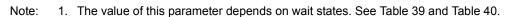
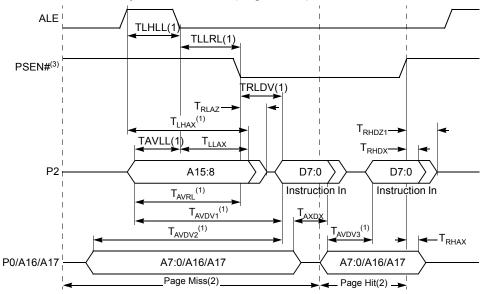




Figure 10. External Bus Cycle: Data Write (Non-Page Mode)

Waveforms in Page Mode

Figure 11. External Bus Cycle: Code Fetch (Page Mode)

- Note: 1. The value of this parameter depends on wait states. See Table 39 and Table 40.
 - A page hit (i.e., a code fetch to the same 256-byte "page" as the previous code fetch) requires one state (2·T_{OSC});

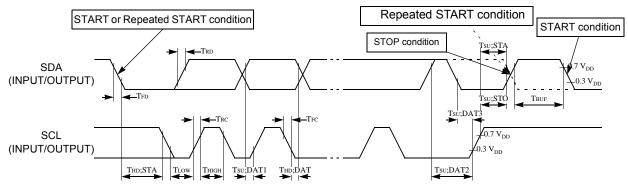
a page miss requires two states ($4 \cdot T_{OSC}$).

During a sequence of page hits, PSEN# remains low until the end of the last page-hit cycle.

AC Characteristics - SSLC: TWI Interface

Timings

Table 47. TWI Interface AC Timing; V_{DD} = 2.7 to 5.5 V, T_{A} = -40 to 85°C


		INPUT	OUTPUT	
Symbol	Parameter	Min Max	Min Max	
THD; STA	Start condition hold time	14·Tclcl ⁽⁴⁾	4.0 μs ⁽¹⁾	
TLOW	SCL low time	16·Tclcl ⁽⁴⁾	4.7 μs ⁽¹⁾	
Тнідн	SCL high time	14·Tclcl ⁽⁴⁾	4.0 μs ⁽¹⁾	
Trc	SCL rise time	1 μs	_(2)	
TFC	SCL fall time	0.3 μs	0.3 μs ⁽³⁾	
Tsu; DAT1	Data set-up time	250 ns	20.TCLCL ⁽⁴⁾ - TRD	
Tsu; DAT2	SDA set-up time (before repeated START condition)	250 ns	1 μs ⁽¹⁾	
Tsu; DAT3	SDA set-up time (before STOP condition)	250 ns	8.Tclcl ⁽⁴⁾	
Thd; DAT	Data hold time	0 ns	8.TCLCL ⁽⁴⁾ - TFC	
Ts∪; STA	Repeated START set-up time	14·Tclcl ⁽⁴⁾	4.7 μs ⁽¹⁾	
Tsu; STO	STOP condition set-up time	14·Tclcl ⁽⁴⁾	4.0 μs ⁽¹⁾	
Твиғ	Bus free time	14·Tclcl ⁽⁴⁾	4.7 μs ⁽¹⁾	
Trd	SDA rise time	1 μs	_(2)	
Tfd	SDA fall time	0.3 μs	0.3 μs ⁽³⁾	

Notes: 1. At 100 kbit/s. At other bit-rates this value is inversely proportional to the bit-rate of 100 kbit/s.

- 2. Determined by the external bus-line capacitance and the external bus-line pull-up resistor, this must be < 1 $\mu s.$
- Spikes on the SDA and SCL lines with a duration of less than 3. TCLCL will be filtered out. Maximum capacitance on bus-lines SDA and SCL = 400 pF.
- 4. TCLCL = T_{OSC} = one oscillator clock period.

Waveforms

Figure 18. TWI Waveforms

54 AT/TSC8x251G2D

Timings

Table 49. SPI Interface AC Timing; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C

Symbol	Parameter	Min	Max	Unit
	Slave Mode ⁽	1)		1
Тснсн	Clock Period	8		T _{OSC}
T _{CHCX}	Clock High Time	3.2		T _{osc}
T _{CLCX}	Clock Low Time	3.2		T _{osc}
T _{SLCH} , T _{SLCL}	SS# Low to Clock edge	200		ns
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	100		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	100		ns
T _{CLOV,} T _{CHOV}	Output Data Valid after Clock Edge		100	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns
T _{CLSH} , T _{CHSH}	SS# High after Clock Edge	0		ns
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	100		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	100		ns
T _{SLOV}	SS# Low to Output Data Valid		130	ns
Т _{знох}	Output Data Hold after SS# High		130	ns
T _{SHSL}	SS# High to SS# Low	(2)		
T _{ILIH}	Input Rise Time		2	μs
T _{IHIL}	Input Fall Time		2	μs
Т _{огон}	Output Rise time		100	ns
Т _{оног}	Output Fall Time		100	ns
	Master Mode	(3)		
Тснсн	Clock Period	4		T _{osc}
Т _{снсх}	Clock High Time	1.6		T _{osc}
T _{CLCX}	Clock Low Time	1.6		T _{osc}
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	50		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	50		ns
T _{CLOV,} T _{CHOV}	Output Data Valid after Clock Edge		65	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns
T _{ILIH}	Input Data Rise Time		2	μs
T _{IHIL}	Input Data Fall Time		2	μs
T _{OLOH}	Output Data Rise time		50	ns
T _{OHOL}	Output Data Fall Time		50	ns


Notes: 1. Capacitive load on all pins = 200 pF in slave mode.

2. The value of this parameter depends on software.

3. Capacitive load on all pins = 100 pF in master mode.

Figure 24. EPROM Verifying Waveforms

AC Characteristics - External Clock Drive and Logic Level References

Definition of Symbols

Table 53. External Clock Timing Symbol Definitions

Signals			
C Clock			

Conditions				
H High				
L	Low			
Х	No Longer Valid			

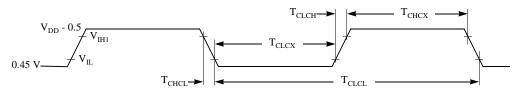
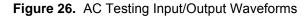

Timings

Table 54. External Clock AC Timings; V_{DD} = 4.5 to 5.5 V, T_A = -40 to +85°C


Symbol	Parameter	Min	Max	Unit
F _{osc}	Oscillator Frequency		24	MHz
T _{CHCX}	High Time	10		ns
T _{CLCX}	Low Time	10		ns
T _{CLCH}	Rise Time	3		ns
T _{CHCL}	Fall Time	3		ns

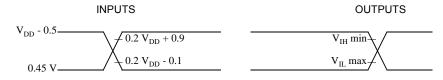

Waveforms

Figure 25. External Clock Waveform


- Notes: 1. During AC testing, all inputs are driven at V_{DD} -0.5 V for a logic 1 and 0.45 V for a logic 0.
 - 2. Timing measurements are made on all outputs at $V_{\rm IH}$ min for a logic 1 and $V_{\rm IL}$ max for a logic 0.

Note: For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loading V_{OH}/V_{OL} level occurs with $I_{OL}/I_{OH} = \pm 20$ mA.

Figure 27. Float Waveforms

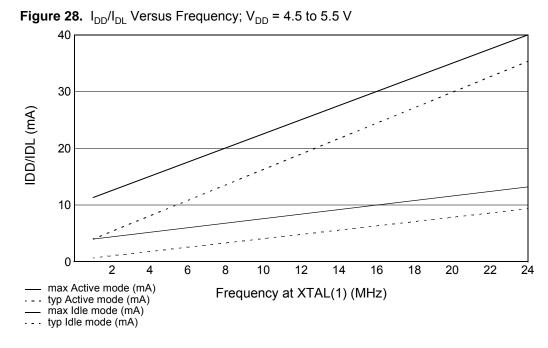
Absolute Maximum Rating and Operating Conditions

Absolute Maximum Ratings

Storage Temperature65 to +150°C	*NOTICE: Stressing the device beyond the "Absolute Maxi- mum Ratings" may cause permanent damage.
Voltage on any other Pin to VSS0.5 to +6.5 V	These are stress ratings only. Operation beyond
I _{OL} per I/O Pin 15 mA	the "operating conditions" is not recommended and extended exposure beyond the "Operating
Power Dissipation 1.5 W	Conditions" may affect device reliability.
Ambient Temperature Under Bias	
Commercial0 to +70°C	
Industrial40 to +85°C	
Automotive40 to +85°C	
V _{DD}	
High Speed versions	
Low Voltage versions	

Notes: 1. Under steady-state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum IOL per port pin: 10 mA


Maximum IOL per 8-bit port:Port 0 26 mA

Ports 1-3 15 mA

Maximum Total IOL for all: Output Pins 71 mA

If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 2. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low-level outputs of ALE and Ports 1, 2, and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from high to low. In applications where capacitive loading exceeds 100 pF, the noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify ALE or other signals with a Schmitt Trigger or CMOS-level input logic.
- Capacitive loading on Ports 0 and 2 causes the V_{OH} on ALE and PSEN# to drop below the specification when the address lines are stabilizing.
- 4. Typical values are obtained using V_{DD} = 5 V and T_A = 25°C. They are not tested and there is not guarantee on these values.
- The input threshold voltage of SCL and SDA meets the TWI specification, so an input voltage below 0.3 V_{DD} will be recognized as a logic 0 while an input voltage above 0.7 V_{DD} will be recognized as a logic 1.

Note: 1. The clock prescaler is not used: $F_{OSC} = F_{XTAL}$.

CDIL 40 with Window -Mechanical Outline

Figure 34. Ceramic Dual In Line

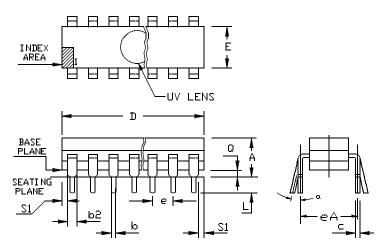
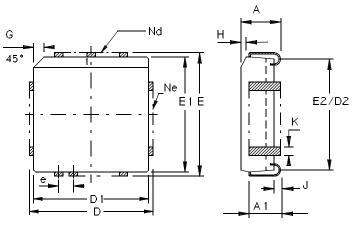
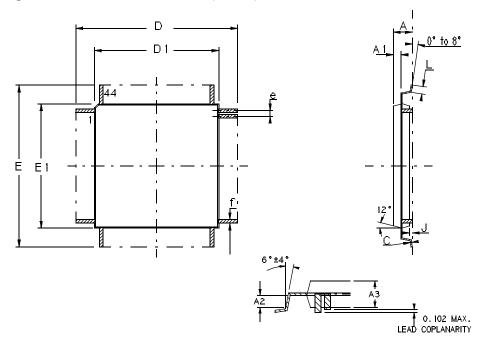


Table 58. CDIL Package Size


	ММ		Inch	
	Min	Max	Min	Мах
A	-	5.71	-	.225
b	0.36	0.58	.014	.023
b2	1.14	1.65	.045	.065
с	0.20	0.38	.008	.015
D	-	53.47	-	2.105
E	13.06	15.37	.514	.605
e	2.54 B.S.C.		.100 B.S.C.	
eA	15.24 B.S.C.		.600 B.S.C.	
L	3.18	5.08	.125	.200
Q	0.38	1.40	.015	.055
S1	0.13	-	.005	-
а	0 - 15 0 - 15		15	
Ν	40			

PLCC 44 - Mechanical Outline


Table 59. PLCC Package Size

	мм		Inch	
	Min	Max	Min	Max
А	4.20	4.57	.165	.180
A1	2.29	3.04	.090	.120
D	17.40	17.65	.685	.695
D1	16.44	16.66	.647	.656
D2	14.99	16.00	.590	.630
E	17.40	17.65	.685	.695
E1	16.44	16.66	.647	.656
E2	14.99	16.00	.590	.630
е	1.27 BSC		1.27 BSC .050 BSC	
G	1.07	1.22	.042	.048
Н	1.07	1.42	.042	.056
J	0.51	-	.020	-
К	0.33	0.53	.013	.021
Nd	11		11	
Ne	1	11 11		1

VQFP 44 (10x10) -Mechanical Outline

Figure 37. Shrink Quad Flat Pack (Plastic)

Table 61.	VQFP	Package Size
-----------	------	--------------

	ММ		Inch	
	Min	Мах	Min	Max
A	-	1.60	-	.063
A1	0.64	REF	.025 REF	
A2	0.64 REF		.025REF	
A3	1.35	1.45	.053	.057
D	11.90	12.10	.468	.476
D1	9.90	10.10	.390	.398
E	11.90	12.10	.468	.476
E1	9.90	10.10	.390	.398
J	0.05	-	.002	6
L	0.45	0.75	.018	.030
е	0.80 BSC .0315 BSC		5 BSC	
f	0.35 BSC		.014 BSC	

Options (Please

- ROM code encryption • consult Atmel sales)
 - Tape & Reel or Dry Pack ٠
 - Known good dice ٠
 - Extended temperature range: -55°C to +125°C •

Product Markings

ROMIess versions

ATMEL Part number Mask ROM versions

ATMEL Customer Part number Part Number YYWW . Lot Number

OTP versions

ATMEL Part number

YYWW . Lot Number

YYWW . Lot Number