

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	24MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/tsc80251g2d-24cb

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signals

Table 2. Product Name Signal Description

Table 2.	Product Name Signal Description			
Signal Name	Туре	Description	Alternate Function	
A17	0	18th Address Bit Output to memory as 18th external address bit (A17) in extended bus applications, depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).		
A16	0	17th Address Bit Output to memory as 17th external address bit (A16) in extended bus applications, depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).	P3.7	
A15:8 ⁽¹⁾	0	Address Lines Upper address lines for the external bus.	P2.7:0	
AD7:0 ⁽¹⁾	I/O	Address/Data Lines Multiplexed lower address lines and data for the external memory.	P0.7:0	
ALE	0	Address Latch Enable ALE signals the start of an external bus cycle and indicates that valid address information are available on lines A16/A17 and A7:0. An external latch can use ALE to demultiplex the address from address/data bus.	-	
AWAIT#	I	Real-time Asynchronous Wait States Input When this pin is active (low level), the memory cycle is stretched until it becomes high. When using the Product Name as a pin-for-pin replacement for a 8xC51 product, AWAIT# can be unconnected without loss of compatibility or power consumption increase (on-chip pull-up). Not available on DIP package.	_	
CEX4:0	I/O	PCA Input/Output pins CEXx are input signals for the PCA capture mode and output signals for the PCA compare and PWM modes.		
EA#	I	External Access Enable EA# directs program memory accesses to on-chip or off-chip code memory. For EA# = 0, all program memory accesses are off-chip. For EA# = 1, an access is on-chip ROM if the address is within the range of the on-chip ROM; otherwise the access is off-chip. The value of EA# is latched at reset. For devices without ROM on-chip, EA# must be strapped to ground.	_	
ECI	0	PCA External Clock input ECI is the external clock input to the 16-bit PCA timer.	P1.2	
MISO	I/O	SPI Master Input Slave Output line When SPI is in master mode, MISO receives data from the slave peripheral. When SPI is in slave mode, MISO outputs data to the master controller.	P1.5	
MOSI	I/O	SPI Master Output Slave Input line When SPI is in master mode, MOSI outputs data to the slave peripheral. When SPI is in slave mode, MOSI receives data from the master controller.	P1.7	
INT1:0#	I	External Interrupts 0 and 1 INT1#/INT0# inputs set IE1:0 in the TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0 are set by a falling edge on INT1#/INT0#. If bits IT1:0 are cleared, bits IE1:0 are set by a low level on INT1#/INT0#.	P3.3:2	

Configuration Bytes

The TSC80251G2D derivatives provide user design flexibility by configuring certain operating features at device reset. These features fall into the following categories:

- external memory interface (Page mode, address bits, programmed wait states and the address range for RD#, WR#, and PSEN#)
- source mode/binary mode opcodes
- selection of bytes stored on the stack by an interrupt
- mapping of the upper portion of on-chip code memory to region 00:

Two user configuration bytes UCONFIG0 (see Table 11) and UCONFIG1 (see Table 12) provide the information.

When EA# is tied to a low level, the configuration bytes are fetched from the external address space. The TSC80251G2D derivatives reserve the top eight bytes of the memory address space (FF:FFF8h-FF:FFFh) for an external 8-byte configuration array. Only two bytes are actually used: UCONFIG0 at FF:FFF8h and UCONFIG1 at FF:FFF9h.

For the mask ROM devices, configuration information is stored in on-chip memory (see ROM Verifying). When EA# is tied to a high level, the configuration information is retrieved from the on-chip memory instead of the external address space and there is no restriction in the usage of the external memory.

Configuration Byte 1

Table 13. Address Ranges and Usage of RD#, WR# and PSEN# Signals

RD1	RD0	P1.7	P3.7/RD#	PSEN#	WR#	External Memory
0	0	A17	A16	Read signal for all external memory locations	Write signal for all external memory locations	256 KB
0	1	I/O pin	A16	Read signal for all external memory locations	Write signal for all external memory locations	128 KB
1	0	I/O pin	I/O pin	Read signal for all external memory locations	Write signal for all external memory locations	64 KB
1	1	I/O pin	Read signal for regions 00: and 01:	Read signal for regions FE: and FF:	Write signal for all external memory locations	2 × 64 KB ⁽¹⁾

Notes: 1. This selection provides compatibility with the standard 80C51 hardware which has separate external memory spaces for data and code.

	<dest>,</dest>		Binary Mode		Source Mode	
Mnemonic	<src>⁽²⁾</src>	Comments	Bytes	States	Bytes	States
	Rmd, Rms	Register with register	3	2	2	1
	WRjd, WRjs	Word register with word register	3	3	2	2
	DRkd, DRks	Dword register with dword register	3	5	2	4
	Rm, #data	Register with immediate data	4	3	3	2
	WRj, #data16	Word register with immediate 16-bit data	5	4	4	3
,	DRk, #0data16	Dword register with zero-extended 16-bit immediate data	5	6	4	5
CMP	DRk, #1data16	Dword register with one-extended 16-bit immediate data	5	6	4	5
	Rm, dir8	Direct address (on-chip RAM or SFR) with byte register	4	3 ⁽¹⁾	3	2 ⁽¹⁾
	WRj, dir8	Direct address (on-chip RAM or SFR) with word register	4	4	3	3
	Rm, dir16	Direct address (64K) with byte register	5	3 ⁽²⁾	4	2 ⁽²⁾
	WRj, dir16	Direct address (64K) with word register	5	4 ⁽³⁾	4	3 ⁽³⁾
	Rm, at WRj	Indirect address (64K) with byte register	4	3 ⁽²⁾	3	2 ⁽²⁾
	Rm, at DRk	Indirect address (16M) with byte register	4	4 ⁽²⁾	3	3(2)

Table 22. Summary of Compare Instructions

Notes: 1. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

- 2. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
- 3. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

5

5

11

10

10

20

1

Table 24.	Summary of Multiply	y, Divide and Decimal-adjust Instructions
-----------	---------------------	---

MultiplyMUL AB(B:A) \leftarrow (A)×(B) MUL <dest>, <src>extended dest opnd \leftarrow dest opnd \times src opnd DivideDIV AB(A) \leftarrow Quotient ((A)/(B)) (B) \leftarrow Remainder ((A)/(B)) DivideDIV <dest>, <src>ext. dest opnd high ← Quotient (dest opnd / src opnd) ext. dest opnd low ← Remainder (dest opnd / src opnd) Decimal-adjust ACCDA AIF [[(A)_{3:0} > 9] \vee [(AC) = 1]] for Addition (BCD) THEN $(A)_{3:0} \leftarrow (A)_{3:0} + 6$ laffects CY; $\mathsf{IF} [[(A)_{7:4} > 9] \lor [(CY) = 1]]$ THEN $(A)_{7:4} \leftarrow (A)_{7:4} + 6$ **Binary Mode** Source Mode <dest>, <src>(1) Bytes Mnemonic Comments Bytes States States AB Multiply A and B 1 5 1 MUL Rmd, Rms Multiply byte register and byte register 3 6 2 WRjd, WRjs Multiply word register and word register 3 12 2 AB 1 10 1 Divide A and B DIV Rmd, Rms Divide byte register and byte register 3 11 2 WRjd, WRjs 3 21 2 Divide word register and word register DA А Decimal adjust ACC 1 1 1

1. A shaded cell denotes an instruction in the C51 Architecture. Note:

Table 25. Summary of Move Instructions (1/3)

Move to High wordMOVH <dest>, <src>dest opnd_{$31:16 \leftarrow src opnd$}</src></dest>
Move with Sign extensionMOVS <dest>, <src>dest opnd \leftarrow src opnd with sign extend</src></dest>
Move with Zero extensionMOVZ <dest>, <src>dest opnd \leftarrow src opnd with zero extend</src></dest>
Move CodeMOVC A, $<$ src>(A) \leftarrow src opnd

Move eXtendedMOVX <dest>, <src>dest opnd \leftarrow src opnd

	<dest>,</dest>		Binary Mode		Source Mode	
Mnemonic	<uest>, <src>⁽²⁾</src></uest>	Comments	Bytes	States	Bytes	States
MOVH	DRk, #data16	16-bit immediate data into upper word of dword register	5	3	4	2
MOVS	WRj, Rm	Byte register to word register with sign extension	3	2	2	1
MOVZ	WRj, Rm	Byte register to word register with zeros extension	3	2	2	1
MOVC	A, at A +DPTR	Code byte relative to DPTR to ACC	1	6 ⁽³⁾	1	6 ⁽³⁾
	A, at A +PC	Code byte relative to PC to ACC	1	6 ⁽³⁾	1	6 ⁽³⁾
	A, at Ri	Extended memory (8-bit address) to ACC ⁽²⁾	1	4	1	5
MOVX	A, at DPTR	Extended memory (16-bit address) to ACC ⁽²⁾	1	3 ⁽⁴⁾	1	3 ⁽⁴⁾
	at Ri, A	ACC to extended memory (8-bit address) ⁽²⁾	1	4	1	4
	at DPTR, A	ACC to extended memory (16-bit address) ⁽²⁾	1	4 ⁽³⁾	1	4 ⁽³⁾

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. Extended memory addressed is in the region specified by DPXL (reset value = 01h).

- 3. If this instruction addresses external memory location, add N+1 to the number of states (N: number of wait states).
- 4. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).

Programming and Verifying Non-volatile Memory

Internal Features

The internal non-volatile memory of the TSC80251G2D derivatives contains five different areas:

- Code Memory
- Configuration Bytes
- Lock Bits
- Encryption Array
- Signature Bytes

EPROM/OTPROM Devices All the internal non-volatile memory but the Signature Bytes of the TSC87251G2D products are made of EPROM cells. The Signature Bytes of the TSC87251G2D products are made of Mask ROM.

The TSC87251G2D products are programmed and verified in the same manner as Atmel's TSC87251G1A, using a SINGLE-PULSE algorithm, which programs at V_{PP} = 12.75V using only one 100µs pulse per byte. This results in a programming time of less than 10 seconds for the 32 kilobytes on-chip code memory.

The EPROM of the TSC87251G2D products in Window package is erasable by Ultra-Violet radiation⁽¹⁾ (UV). UV erasure set all the EPROM memory cells to one and allows reprogramming. The quartz window must be covered with an opaque label⁽²⁾ when the device is in operation. This is not so much to protect the EPROM array from inadvertent erasure, as to protect the RAM and other on-chip logic. Allowing light to impinge on the silicon die during device operation may cause a logical malfunction.

The TSC87251G2D products in plastic packages are One Time Programmable (OTP). An EPROM cell cannot be reset by UV once programmed to zero.

- Notes: 1. The recommended erasure procedure is exposure to ultra-violet light (at 2537 Å) to an integrated dose of at least 20 W-sec/cm². Exposing the EPROM to an ultra-violet lamp of 12000 μW/cm² rating for 30 minutes should be sufficient.
 - 2. Erasure of the EPROM begins to occur when the chip is exposed to light wavelength shorter than 4000 Å. Since sunlight and fluorescent light have wavelength in this range, exposure to these light sources over an extended time (1 week in sunlight or 3 years in room-level fluorescent lighting) could cause inadvertent erasure.
- Mask ROM DevicesAll the internal non-volatile memory of TSC83251G2D products is made of Mask ROM
cells. They can only be verified by the user, using the same algorithm as the
EPROM/OTPROM devices.

ROMIess DevicesThe TSC80251G2D products do not include on-chip Configuration Bytes, Code Memory
and Encryption Array. They only include Signature Bytes made of Mask ROM cells
which can be read using the same algorithm as the EPROM/OTPROM devices.

- **Security Features** In some microcontroller applications, it is desirable that the user's program code be secured from unauthorized access. The TSC83251G2D and TSC87251G2D offer two kinds of protection for program code stored in the on-chip array:
 - Program code in the on-chip Code Memory is encrypted when read out for verification if the Encryption Array isprogrammed.
 - A three-level lock bit system restricts external access to the on-chip code memory.

AC Characteristics - Commercial & Industrial

AC Characteristics - External Bus Cycles

Definition of Symbols

Table 38. External Bus Cycles Timing Symbol Definitions

Signals		
Address		
Data In		
ALE		
Data Out		
RD#/PSEN#		
WR#		

Conditions		
High		
Low		
Valid		
No Longer Valid		
Floating		

Timings

Test conditions: capacitive load on all pins = 50 pF.

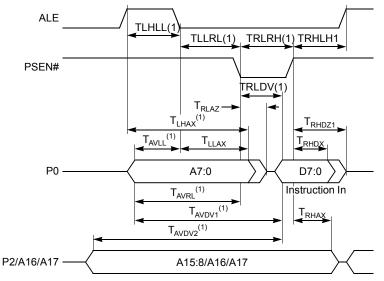
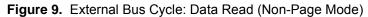
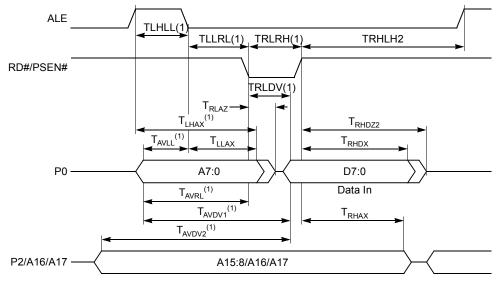

Table 39 and Table 40 list the AC timing parameters for the TSC80251G2D derivatives with no wait states. External wait states can be added by extending PSEN#/RD#/WR# and or by extending ALE. In these tables, Note 2 marks parameters affected by one ALE wait state, and Note 3 marks parameters affected by PSEN#/RD#/WR# wait states.

Figure 8 to Figure 13 show the bus cycles with the timing parameters.





Waveforms in Non-Page Mode Figure 8. External Bus Cycle: Code Fetch (Non-Page Mode)

Note: 1. The value of this parameter depends on wait states. See Table 39 and Table 40.

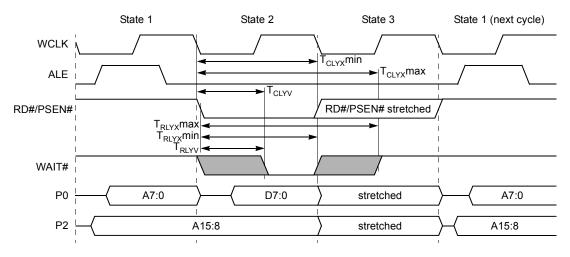
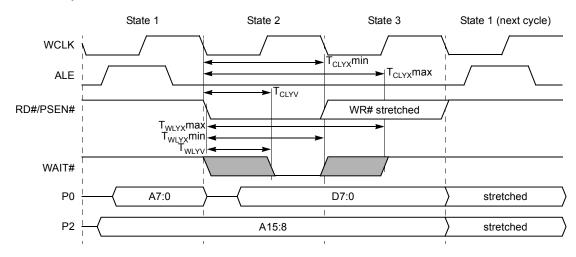

Note: 1. The value of this parameter depends on wait states. See Table 39 and Table 40.

Table 42. Real-Time Synchronous Wait AC Timings; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C


Symbol	Parameter	Min	Мах	Unit
T _{CLYV}	Wait Clock Low to Wait Set-up	0	T _{OSC} - 20	ns
T _{CLYX}	Wait Hold after Wait Clock Low	2W·T _{OSC} + 5	(1+2W)·T _{OSC} - 20	ns
T _{RLYV}	PSEN#/RD# Low to Wait Set-up	0	T _{OSC} - 20	ns
T _{RLYX}	Wait Hold after PSEN#/RD# Low	2W·T _{OSC} + 5	(1+2W)·T _{OSC} - 20	ns
T _{WLYV}	WR# Low to Wait Set-up	0	T _{OSC} - 20	ns
T _{WLYX}	Wait Hold after WR# Low	2W·T _{OSC} + 5	(1+2W)·T _{OSC} - 20	ns

Waveforms

Figure 14. Real-time Synchronous Wait State: Code Fetch/Data Read

Figure 15. Real-time Synchronous Wait State: Data Write

AC Characteristics - Real-Time Asynchronous Wait State

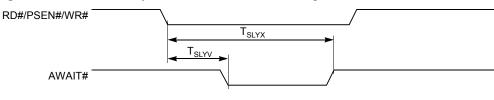
Definition of Symbols

Table 43. Real-Time Asynchronous Wait Timing Symbol Definitions

	Signals
S	PSEN#/RD#/WR#
Y	AWAIT#

Conditions		
L	Low	
V	Valid	
х	No Longer Valid	

Timings


Table 44. Real-Time Asynchronous Wait AC Timings; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C

Symbol	Parameter	Min	Мах	Unit
T _{SLYV}	PSEN#/RD#/WR# Low to Wait Set-up		T _{OSC} - 10	ns
T _{SLYX}	Wait Hold after PSEN#/RD#/WR# Low	(2N-1)·T _{OSC} + 10		ns ⁽¹⁾

Note: 1. N is the number of wait states added (N \geq 1).

Waveforms

Figure 16. Real-time Asynchronous Wait State Timings

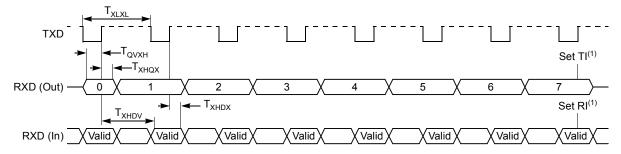
AC Characteristics - Serial Port in Shift Register Mode

Definition of Symbols

Table 45. Serial Port Timing Symbol Definitions

Signals						
D	Data In					
Q	Data Out					
Х	Clock					

Conditions						
H High						
L	Low					
V	Valid					
Х	No Longer Valid					


Table 46. Serial Port AC Timing -Shift Register Mode; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C

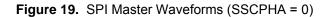
		12	MHz	16	ИНz	24 M	Hz ⁽¹⁾	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
T _{XLXL}	Serial Port Clock Cycle Time	998		749		500		ns
T _{QVXH}	Output Data Setup to Clock Rising Edge	833		625		417		ns
T _{XHQX}	Output Data hold after Clock Rising Edge	165		124		82		ns
T _{XHDX}	Input Data Hold after Clock Rising Edge	0		0		0		ns
T _{XHDV}	Clock Rising Edge to Input Data Valid		974		732		482	ns

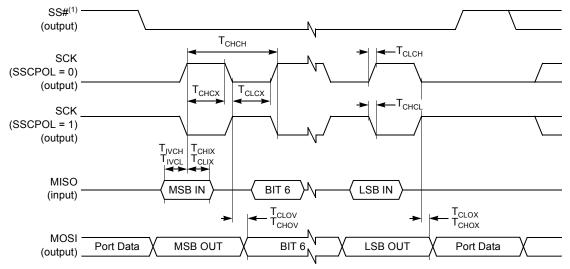
Note: 1. For high speed versions only.

Waveforms

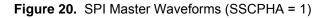
Note: 1. TI and RI are set during S1P1 of the peripheral cycle following the shift of the eight bit.

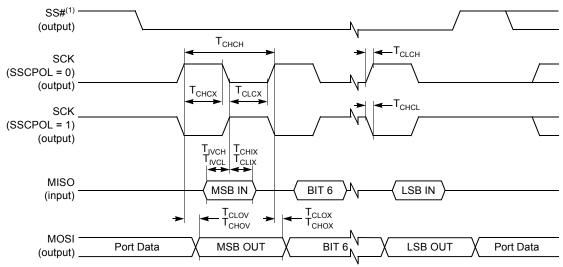
Table 49. SPI Interface AC Timing; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C


Symbol	Parameter	Min	Мах	Unit
	Slave Mode ⁽¹)		1
Т _{снсн}	Clock Period	8		T _{OSC}
T _{CHCX}	Clock High Time	3.2		T _{osc}
T _{CLCX}	Clock Low Time	3.2		T _{osc}
T _{SLCH} , T _{SLCL}	SS# Low to Clock edge	200		ns
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	100		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	100		ns
T _{CLOV,} T _{CHOV}	Output Data Valid after Clock Edge		100	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns
T _{CLSH} , T _{CHSH}	SS# High after Clock Edge	0		ns
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	100		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	100		ns
T _{SLOV}	SS# Low to Output Data Valid		130	ns
Т _{знох}	Output Data Hold after SS# High		130	ns
T _{SHSL}	SS# High to SS# Low	(2)		
T _{ILIH}	Input Rise Time		2	μs
T _{IHIL}	Input Fall Time		2	μs
Т _{огон}	Output Rise time		100	ns
Т _{ОНОL}	Output Fall Time		100	ns
	Master Mode	(3)		
Тснсн	Clock Period	4		T _{osc}
Т _{снсх}	Clock High Time	1.6		T _{osc}
T _{CLCX}	Clock Low Time	1.6		T _{osc}
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	50		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	50		ns
T _{CLOV,} T _{CHOV}	Output Data Valid after Clock Edge		65	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns
T _{ILIH}	Input Data Rise Time		2	μs
T _{IHIL}	Input Data Fall Time		2	μs
Т _{оloн}	Output Data Rise time		50	ns
Т _{оноь}	Output Data Fall Time		50	ns


Notes: 1. Capacitive load on all pins = 200 pF in slave mode.

2. The value of this parameter depends on software.


3. Capacitive load on all pins = 100 pF in master mode.



Note: 1. SS# handled by software.

Note: 1. Not Defined but normally MSB of character just received.

Symbol	Parameter	Min	Мах	Unit
T _{osc}	XTAL1 Period	83.5	250	ns
T _{AVGL}	Address Setup to PROG# low	48		T _{OSC}
T _{GHAX}	Address Hold after PROG# low	48		T _{OSC}
T _{DVGL}	Data Setup to PROG# low	etup to PROG# low 48		T _{OSC}
T _{GHDX}	Data Hold after PROG#	48		T _{OSC}
T _{ELSH}	ENABLE High to V _{PP}	48		T _{OSC}
T _{SHGL}	V _{PP} Setup to PROG# low	10		μs
T _{GHSL}	V _{PP} Hold after PROG#	10		μs
T _{SLEH}	ENABLE Hold after V _{PP}	0		ns
T _{GLGH}	PROG# Width	90	110	μs

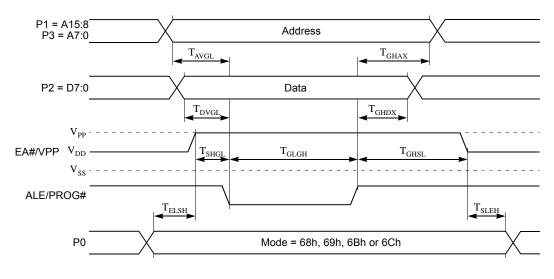

Table 51. EPROM Programming AC timings; V_{DD} = 4.5 to 5.5 V, T_A = 0 to 40°C

Table 52. EPROM Verifying AC timings; V_{DD} = 4.5 to 5.5 V, V_{DD} = 2.7 to 5.5 V, T_A = 0 to 40°C

Symbol	Parameter	Min	Мах	Unit
T _{osc}	XTAL1 Period	83.5	250	ns
T _{AVQV}	Address to Data Valid		48	T _{osc}
T _{AXQX}	Address to Data Invalid	0		ns
T _{ELQV}	ENABLE low to Data Valid	0	48	T _{osc}
T _{EHQZ}	Data Float after ENABLE	0	48	T _{osc}

Waveforms



Figure 24. EPROM Verifying Waveforms

AC Characteristics - External Clock Drive and Logic Level References

Definition of Symbols

Table 53. External Clock Timing Symbol Definitions

	Signals				
С	C Clock				

Conditions					
H High					
L	Low				
X No Longer Valid					

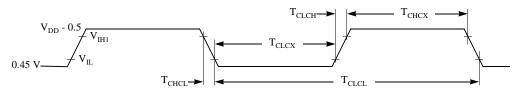

Timings

Table 54. External Clock AC Timings; V_{DD} = 4.5 to 5.5 V, T_A = -40 to +85°C

Symbol	Parameter	Min	Max	Unit
F _{osc}	Oscillator Frequency		24	MHz
T _{CHCX}	High Time	10		ns
T _{CLCX}	Low Time	10		ns
T _{CLCH}	Rise Time	3		ns
T _{CHCL}	Fall Time	3		ns

Waveforms

Figure 25. External Clock Waveform

- Notes: 1. During AC testing, all inputs are driven at V_{DD} -0.5 V for a logic 1 and 0.45 V for a logic 0.
 - 2. Timing measurements are made on all outputs at $V_{\rm IH}$ min for a logic 1 and $V_{\rm IL}$ max for a logic 0.

Absolute Maximum Rating and Operating Conditions

Absolute Maximum Ratings

Storage Temperature65 to +150°C	*NOTICE: Stressing the device beyond the "Absolute Maxi- mum Ratings" may cause permanent damage.
Voltage on any other Pin to VSS0.5 to +6.5 V	These are stress ratings only. Operation beyond
I _{OL} per I/O Pin 15 mA	the "operating conditions" is not recommended and extended exposure beyond the "Operating
Power Dissipation 1.5 W	Conditions" may affect device reliability.
Ambient Temperature Under Bias	
Commercial0 to +70°C	
Industrial40 to +85°C	
Automotive40 to +85°C	
V _{DD}	
High Speed versions	
Low Voltage versions 2.7 to 5.5 V	

Figure 31. I_{DL} Test Condition, Idle Mode

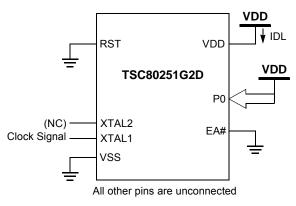
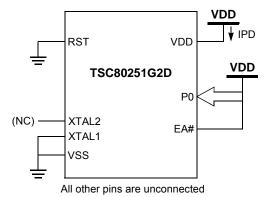



Figure 32. I_{PD} Test Condition, Power-Down Mode

CDIL 40 with Window -Mechanical Outline

Figure 34. Ceramic Dual In Line

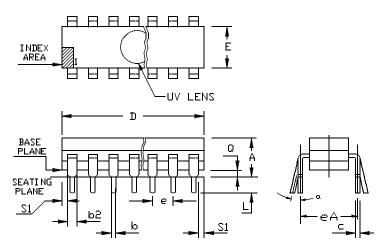


Table 58. CDIL Package Size

	ММ		In	ch
	Min	Мах	Min	Мах
A	-	5.71	-	.225
b	0.36	0.58	.014	.023
b2	1.14	1.65	.045	.065
с	0.20	0.38	.008	.015
D	-	53.47	-	2.105
E	13.06	15.37	.514	.605
e	2.54	B.S.C.	.100 B.S.C.	
eA	15.24	B.S.C.	.600 B.S.C.	
L	3.18	5.08	.125	.200
Q	0.38	1.40	.015	.055
S1	0.13	-	.005	-
а	0 -	15	0 -	15
Ν	40			

Options (Please

- ROM code encryption • consult Atmel sales)
 - Tape & Reel or Dry Pack ٠
 - Known good dice ٠
 - Extended temperature range: -55°C to +125°C •

Product Markings

ROMIess versions

ATMEL Part number Mask ROM versions

ATMEL Customer Part number Part Number YYWW . Lot Number

OTP versions

ATMEL Part number

YYWW . Lot Number

YYWW . Lot Number