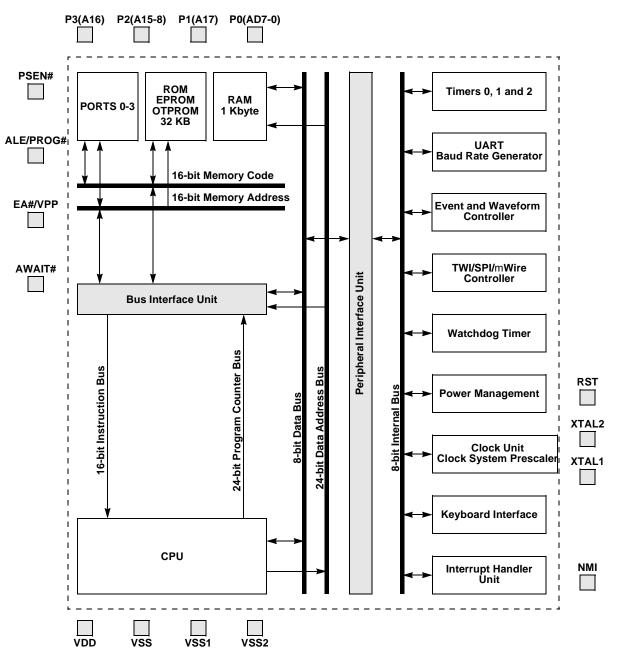


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

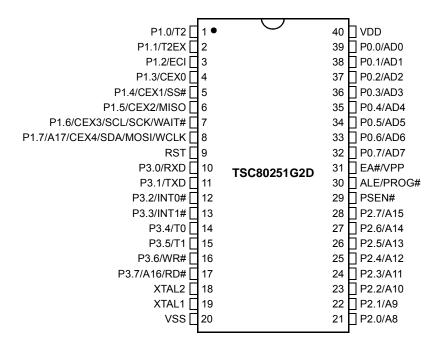

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

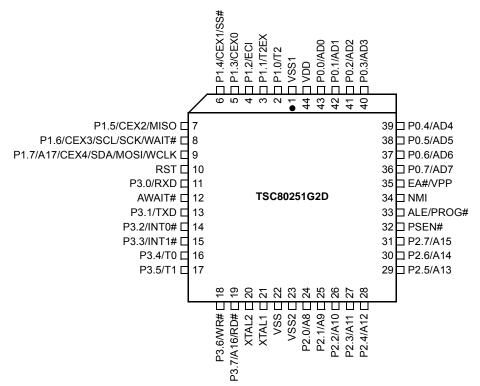
Details

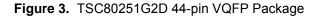
Details	
Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	16MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/tsc80251g2d-l16cb

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram




Pin Description


Pinout

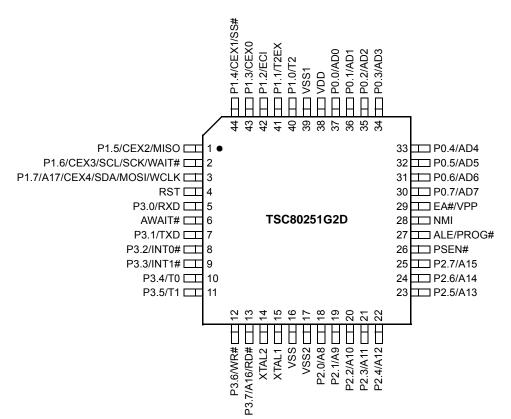

Figure 1. TSC80251G2D 40-pin DIP package

Table 1. TSC80251G2D Pin Assignment

DIP	PLCC	VQFP	Name	DIP	PLCC	VQFP	Name
	1	39	VSS1		23	17	VSS2
1	2	40	P1.0/T2	21	24	18	P2.0/A8
2	3	41	P1.1/T2EX	22	25	19	P2.1/A9
3	4	42	P1.2/ECI	23	26	20	P2.2/A10
4	5	43	P1.3/CEX0	24	27	21	P2.3/A11
5	6	44	P1.4/CEX1/SS#	25	28	22	P2.4/A12
6	7	1	P1.5/CEX2/MISO	26	29	23	P2.5/A13
7	8	2	P1.6/CEX3/SCL/SCK/WAIT#	27	30	24	P2.6/A14
8	9	3	P1.7/A17/CEX4/SDA/MOSI/WCLK	28	31	25	P2.7/A15
9	10	4	RST	29	32	26	PSEN#
10	11	5	P3.0/RXD	30	33	27	ALE/PROG#
	12	6	AWAIT#		34	28	NMI
11	13	7	P3.1/TXD	31	35	29	EA#/VPP
12	14	8	P3.2/INT0#	32	36	30	P0.7/AD7
13	15	9	P3.3/INT1#	33	37	31	P0.6/AD6
14	16	10	P3.4/T0	34	38	32	P0.5/AD5
15	17	11	P3.5/T1	35	39	33	P0.4/AD4
16	18	12	P3.6/WR#	36	40	34	P0.3/AD3
17	19	13	P3.7/A16/RD#	37	41	35	P0.2/AD2
18	20	14	XTAL2	38	42	36	P0.1/AD1
19	21	15	XTAL1	39	43	37	P0.0/AD0
20	22	16	VSS	40	44	38	VDD

Signals

Table 2. Product Name Signal Description

Table 2.	Product Name Signal Description						
Signal Name	Туре	Description	Alternate Function				
A17	0	18th Address Bit Output to memory as 18th external address bit (A17) in extended bus applications, depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).	P1.7				
A16	0	17th Address Bit Output to memory as 17th external address bit (A16) in extended bus applications, depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).	P3.7				
A15:8 ⁽¹⁾	0	Address Lines Upper address lines for the external bus.	P2.7:0				
AD7:0 ⁽¹⁾	I/O	Address/Data Lines Multiplexed lower address lines and data for the external memory.	P0.7:0				
ALE	0	Address Latch Enable ALE signals the start of an external bus cycle and indicates that valid address information are available on lines A16/A17 and A7:0. An external latch can use ALE to demultiplex the address from address/data bus.	-				
AWAIT#	I	Real-time Asynchronous Wait States Input When this pin is active (low level), the memory cycle is stretched until it becomes high. When using the Product Name as a pin-for-pin replacement for a 8xC51 product, AWAIT# can be unconnected without loss of compatibility or power consumption increase (on-chip pull-up). Not available on DIP package.	_				
CEX4:0	I/O	PCA Input/Output pins CEXx are input signals for the PCA capture mode and output signals for the PCA compare and PWM modes.	P1.7:3				
EA#	I	External Access Enable EA# directs program memory accesses to on-chip or off-chip code memory. For EA# = 0, all program memory accesses are off-chip. For EA# = 1, an access is on-chip ROM if the address is within the range of the on-chip ROM; otherwise the access is off-chip. The value of EA# is latched at reset. For devices without ROM on-chip, EA# must be strapped to ground.	_				
ECI	0	PCA External Clock input ECI is the external clock input to the 16-bit PCA timer.	P1.2				
MISO	I/O	SPI Master Input Slave Output line When SPI is in master mode, MISO receives data from the slave peripheral. When SPI is in slave mode, MISO outputs data to the master controller.	P1.5				
MOSI	I/O	SPI Master Output Slave Input line When SPI is in master mode, MOSI outputs data to the slave peripheral. When SPI is in slave mode, MOSI receives data from the master controller.	P1.7				
INT1:0#	I	External Interrupts 0 and 1 INT1#/INT0# inputs set IE1:0 in the TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0 are set by a falling edge on INT1#/INT0#. If bits IT1:0 are cleared, bits IE1:0 are set by a low level on INT1#/INT0#.	P3.3:2				

compatibility with the C51 Architecture). When PC increments beyond the end of seqment FE:, it continues at the reset address FF:0000h (linearity). When PC increments beyond the end of segment 01:, it loops to the beginning of segment 00: (this prevents from its going into the reserved area).

Data Memory The TSC80251G2D derivatives implement 1 Kbyte of on-chip data RAM. Figure 5 shows the split of the internal and external data memory spaces. This memory is mapped in the data space just over the 32 bytes of registers area (see TSC80251 Programmers' Guide). Hence, the part of the on-chip RAM located from 20h to FFh is bit addressable. This on-chip RAM is not accessible through the program/code memory space.

> For faster computation with the on-chip ROM/EPROM code of the TSC83251G2D/TSC87251G2D, its upper 16 KB are also mapped in the upper part of the region 00: if the On-Chip Code Memory Map configuration bit is cleared (EMAP# bit in UCONFIG1 byte, see Figure). However, if EA# is tied to a low level, the TSC80251G2D derivative is running as a ROMless product and the code is actually fetched in the corresponding external memory (i.e. the upper 16 KB of the lower 32 KB of the segment FF:). If EMAP# bit is set, the on-chip ROM is not accessible through the region 00:.

> All the accesses to the portion of the data space with no on-chip memory mapped onto are redirected to the external memory.

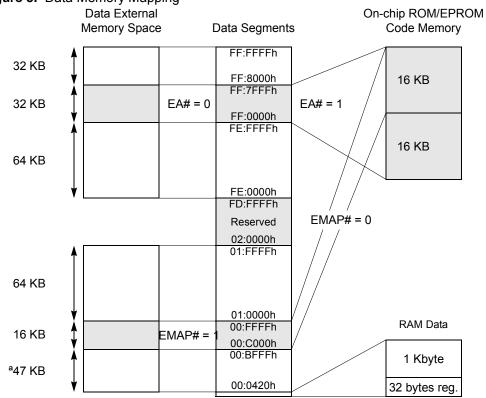


Figure 5. Data Memory Mapping

Table 11. Configuration Byte 0UCONFIG0

7	6	5	4	3	2	1	0
-	WSA1#	WSA0#	XALE#	RD1	RD0	PAGE#	SRC
Bit Number	Bit Mnemonic	Descriptio	n				
7	-	Reserved Set this bit	Reserved Set this bit when writing to UCONFIG0.				
6	WSA1#	Wait State					fan as fam al
5	WSA0#		cesses (all re <u>VSA0#</u> <u>Nu</u> 3 2 1	it states for RL gions except (<u>umber of Wait</u>	,	-SEN# signals	s for external
4	XALE#		tend the dura		E pulse from T E pulse to 1·T _o		
3	RD1	-	gnal Select		-1 - d due 1		
2	RD0			s (see Table 1	al address bu 3).	s and the usag	ge of RD#,
1	PAGE#	Clear to sel Port 0.		Page mode v	vith A15:8/D7: h A15:8 on Po		
0	SRC	Clear to set	de/Binary M lect the binary ct the source		t		

Notes: 1. UCONFIG0 is fetched twice so it can be properly read both in Page or Non-Page modes. If P2.1 is cleared during the first data fetch, a Page mode configuration is used, otherwise the subsequent fetches are performed in Non-Page mode.

2. This selection provides compatibility with the standard 80C51 hardware which is multiplexing the address LSB and the data on Port 0.

Table 16. Notation for Immediate Addressing

Immediate Address	Description	C251	C51
#data	An 8-bit constant that is immediately addressed in an instruction	3	3
#data16	A 16-bit constant that is immediately addressed in an instruction	3	-
#0data16 #1data16	A 32-bit constant that is immediately addressed in an instruction. The upper word is filled with zeros (#0data16) or ones (#1data16).	3	_
#short	A constant, equal to 1, 2, or 4, that is immediately addressed in an instruction.	3	_

Table 17. Notation for Bit Addressing

Direct Address	Description	C251	C51
bit51	A directly addressed bit (bit number = 00h-FFh) in memory or an SFR. Bits 00h-7Fh are the 128 bits in byte locations 20h-2Fh in the on-chip RAM. Bits 80h-FFh are the 128 bits in the 16 SFRs with addresses that end in 0h or 8h, S:80h, S:88h, S:90h,, S:F0h, S:F8h.	_	3
bit	A directly addressed bit in memory locations 00:0020h-00:007Fh or in any defined SFR.	3	

Table 18. Notation for Destination in Control Instructions

Direct Address	Description	C251	C51
rel	A signed (two's complement) 8-bit relative address. The destination is -128 to +127 bytes relative to the next instruction's first byte.	3	3
addr11	An 11-bit target address. The target is in the same 2-Kbyte block of memory as the next instruction's first byte.	_	3
addr16	A 16-bit target address. The target can be anywhere within the same 64-Kbyte region as the next instruction's first byte.	_	3
addr24	A 24-bit target address. The target can be anywhere within the 16- Mbyte address space.	3	-

	<dest>,</dest>		Binary	Mode	Source Mode	
Mnemonic	<src>⁽²⁾</src>	Comments	Bytes	States	Bytes	States
	Rmd, Rms	Register with register	3	2	2	1
	WRjd, WRjs	Word register with word register	3	3	2	2
	DRkd, DRks	Dword register with dword register	3	5	2	4
	Rm, #data	Register with immediate data	4	3	3	2
	WRj, #data16	Word register with immediate 16-bit data	5	4	4	3
	DRk, #0data16	Dword register with zero-extended 16-bit immediate data	5	6	4	5
CMP	DRk, #1data16	Dword register with one-extended 16-bit immediate data	5	6	4	5
	Rm, dir8	Direct address (on-chip RAM or SFR) with byte register	4	3 ⁽¹⁾	3	2 ⁽¹⁾
	WRj, dir8	Direct address (on-chip RAM or SFR) with word register	4	4	3	3
	Rm, dir16	Direct address (64K) with byte register	5	3 ⁽²⁾	4	2 ⁽²⁾
	WRj, dir16	Direct address (64K) with word register	5	4 ⁽³⁾	4	3 ⁽³⁾
	Rm, at WRj	Indirect address (64K) with byte register	4	3 ⁽²⁾	3	2 ⁽²⁾
	Rm, at DRk	Indirect address (16M) with byte register	4	4 ⁽²⁾	3	3(2)

Table 22. Summary of Compare Instructions

Notes: 1. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

- 2. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
- 3. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

MOV	WRj, at WRj +dis24	Indirect with 16-bit displacement (16M) to word register	5	8 ⁽⁵⁾	4	7 ⁽⁵⁾
MOV	at WRj +dis16, Rm	Byte register to indirect with 16-bit displacement (64K)	5	6 ⁽⁴⁾	4	5 ⁽⁴⁾
MOV	at WRj +dis16, WRj	Word register to indirect with 16-bit displacement (64K)	5	7 ⁽⁵⁾	4	6 ⁽⁵⁾
MOV	at DRk +dis24, Rm	Byte register to indirect with 16-bit displacement (16M)	5	7 ⁽⁴⁾	4	6 ⁽⁴⁾
MOV	at DRk +dis24, WRj	Word register to indirect with 16-bit displacement (16M)	5	8(5)	4	7 ⁽⁵⁾

Notes: 1. Instructions that move bits are in Table 27.

2. Move instructions unique to the C251 Architecture.

3. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

4. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).

5. If this instruction addresses external memory location, add 2(N+1) to the number of states (N: number of wait states).

6. If this instruction addresses external memory location, add 4(N+2) to the number of states (N: number of wait states).

Table 29.	Summar	of Conditional Jump Instructions ((1/2)
-----------	--------	------------------------------------	-------

Jump conditional on statusJcc rel(PC) \leftarrow (PC) + size (instr); IF [cc] THEN (PC) \leftarrow (PC) + rel							
	<dest>,</dest>		Binary	Mode	Source Mode		
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States	
JC	rel	Jump if carry	2	1/4 ⁽³⁾	2	1/4 ⁽³⁾	
JNC	rel	Jump if not carry	2	1/4 ⁽³⁾	2	1/4 ⁽³⁾	
JE	rel	Jump if equal	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JNE	rel	Jump if not equal	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JG	rel	Jump if greater than	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JLE	rel	Jump if less than, or equal	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JSL	rel	Jump if less than (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JSLE	rel	Jump if less than, or equal (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JSG	rel	Jump if greater than (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JSGE	rel	Jump if greater than or equal (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. States are given as jump not-taken/taken.

3. In internal execution only, add 1 to the number of states of the 'jump taken' if the destination address is internal and odd.

			MHz	16 I		
Symbol	Parameter	Min	Max	Min	Max	Unit
T _{osc}	1/F _{osc}	83		62		ns
T _{LHLL}	ALE Pulse Width	72		52		ns ⁽²⁾
T _{AVLL}	Address Valid to ALE Low	71		51		ns ⁽²⁾
T _{LLAX}	Address hold after ALE Low	14		6		ns
T _{RLRH} ⁽¹⁾	RD#/PSEN# Pulse Width	163		121		ns ⁽³⁾
T _{WLWH}	WR# Pulse Width	165		124		ns ⁽³⁾
T _{LLRL} ⁽¹⁾	ALE Low to RD#/PSEN# Low	17		11		ns
T _{LHAX}	ALE High to Address Hold	90		57		ns ⁽²⁾
T _{RLDV} ⁽¹⁾	RD#/PSEN# Low to Valid Data		133		92	ns ⁽³⁾
T _{RHDX} ⁽¹⁾	Data Hold After RD#/PSEN# High	0		0		ns
T _{RHAX} ⁽¹⁾	Address Hold After RD#/PSEN# High	0		0		ns
T _{RLAZ} ⁽¹⁾	RD#/PSEN# Low to Address Float		0		0	ns
T _{RHDZ1}	Instruction Float After RD#/PSEN# High		59		48	ns
T _{RHDZ2}	Data Float After RD#/PSEN# High		225		175	ns
T _{RHLH1}	RD#/PSEN# high to ALE High (Instruction)	60		47		ns
T _{RHLH2}	RD#/PSEN# high to ALE High (Data)	226		172		ns
T _{WHLH}	WR# High to ALE High	226		172		ns
T _{AVDV1}	Address (P0) Valid to Valid Data In		289		160	ns ⁽²⁾⁽³⁾
T _{AVDV2}	Address (P2) Valid to Valid Data In		296		211	ns ⁽²⁾⁽³⁾
T _{AVDV3}	Address (P0) Valid to Valid Instruction In		144		98	ns ⁽³⁾
T _{AXDX}	Data Hold after Address Hold	0		0		ns
T _{AVRL} ⁽¹⁾	Address Valid to RD# Low	111		64		ns ⁽²⁾
T _{AVWL1}	Address (P0) Valid to WR# Low	111		64		ns ⁽²⁾
T _{AVWL2}	Address (P2) Valid to WR# Low	158		116		ns ⁽²⁾
T _{WHQX}	Data Hold after WR# High	82		66		ns
T _{QVWH}	Data Valid to WR# High	135		103		ns ⁽³⁾
T _{WHAX}	WR# High to Address Hold	168		125		ns

Table 40. Bus Cycles AC Timings; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C

Notes: 1. Specification for PSEN# are identical to those for RD#.

2. If a wait state is added by extending ALE, add $2 \cdot T_{OSC}$. 3. If wait states are added by extending RD#/PSEN#/WR#, add $2N \cdot T_{OSC}$ (N = 1..3).

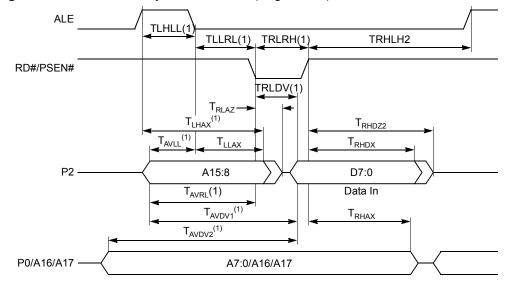
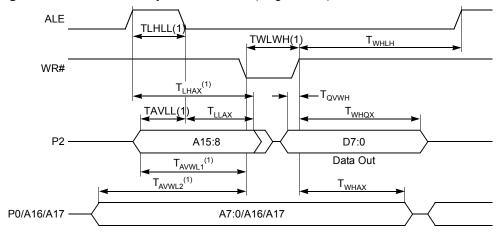
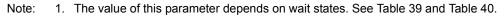




Figure 12. External Bus Cycle: Data Read (Page Mode)

Figure 13. External Bus Cycle: Data Write (Page Mode)

AC Characteristics - Real-Time Synchronous Wait State

Definition of Symbols

Table 41. Real-Time Synchronous Wait Timing Symbol Definitions

Signals		
С	WCLK	
R	RD#/PSEN#	
W	WR#	
Y	WAIT#	

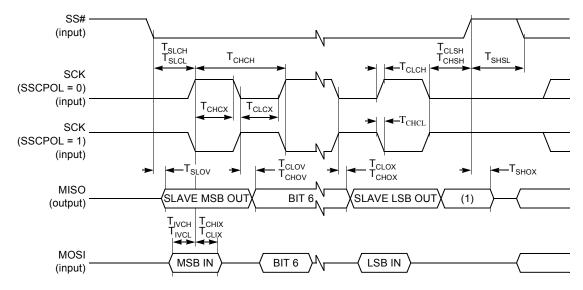
Conditions		
L	Low	
V	Valid	
Х	No Longer Valid	

50 AT/TSC8x251G2D

Timings

Table 49. SPI Interface AC Timing; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C

Symbol	Parameter	Min	Max	Unit
	Slave Mode ⁽	1)		1
Тснсн	Clock Period	8		T _{OSC}
T _{CHCX}	Clock High Time	3.2		T _{osc}
T _{CLCX}	Clock Low Time	3.2		T _{osc}
T _{SLCH} , T _{SLCL}	SS# Low to Clock edge	200		ns
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	100		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	100		ns
T _{CLOV,} T _{CHOV}	Output Data Valid after Clock Edge		100	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns
T _{CLSH} , T _{CHSH}	SS# High after Clock Edge	0		ns
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	100		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	100		ns
T _{SLOV}	SS# Low to Output Data Valid		130	ns
Т _{знох}	Output Data Hold after SS# High		130	ns
T _{SHSL}	SS# High to SS# Low	(2)		
T _{ILIH}	Input Rise Time		2	μs
T _{IHIL}	Input Fall Time		2	μs
Т _{огон}	Output Rise time		100	ns
Т _{оног}	Output Fall Time		100	ns
	Master Mode	(3)		
Тснсн	Clock Period	4		T _{osc}
Т _{снсх}	Clock High Time	1.6		T _{osc}
T _{CLCX}	Clock Low Time	1.6		T _{osc}
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	50		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	50		ns
T _{CLOV,} T _{CHOV}	Output Data Valid after Clock Edge		65	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns
T _{ILIH}	Input Data Rise Time		2	μs
T _{IHIL}	Input Data Fall Time		2	μs
T _{OLOH}	Output Data Rise time		50	ns
T _{OHOL}	Output Data Fall Time		50	ns


Notes: 1. Capacitive load on all pins = 200 pF in slave mode.

2. The value of this parameter depends on software.

3. Capacitive load on all pins = 100 pF in master mode.

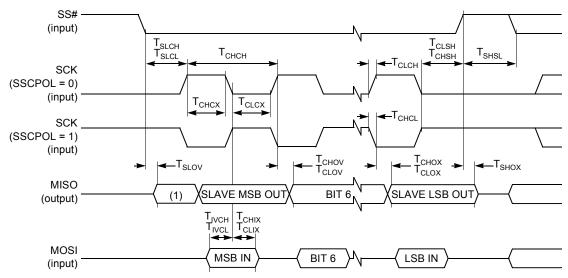


Figure 21. SPI Slave Waveforms (SSCPHA = 0)

Note: 1. Not Defined but generally the LSB of the character which has just been received.

Figure 22. SPI Slave Waveforms (SSCPHA = 1)

AC Characteristics - EPROM Programming and Verifying

Definition of Symbols

Table 50. EPROM Programming and Verifying Timing Symbol Definitions

Signals			
А	Address		
E	Enable: mode set on Port 0		
G	Program		
Q	Data Out		
S	Supply (V _{PP})		

Conditions		
н	High	
L	Low	
V	Valid	
Х	No Longer Valid	
Z	Floating	

58 AT/TSC8x251G2D

4135F-8051-11/06

Timings

Symbol	Parameter	Min	Мах	Unit
T _{osc}	XTAL1 Period	83.5	250	ns
T _{AVGL}	Address Setup to PROG# low	48		T _{OSC}
T _{GHAX}	Address Hold after PROG# low	48		T _{OSC}
T _{DVGL}	Data Setup to PROG# low	48		T _{OSC}
T _{GHDX}	Data Hold after PROG#	48		T _{osc}
T _{ELSH}	ENABLE High to V _{PP}	48		T _{osc}
T _{SHGL}	V _{PP} Setup to PROG# low	10		μs
T _{GHSL}	V _{PP} Hold after PROG#	10		μs
T _{SLEH}	ENABLE Hold after V _{PP}	0		ns
T _{GLGH}	PROG# Width	90	110	μs

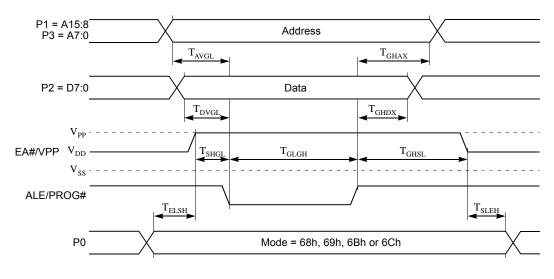

Table 51. EPROM Programming AC timings; V_{DD} = 4.5 to 5.5 V, T_A = 0 to 40°C

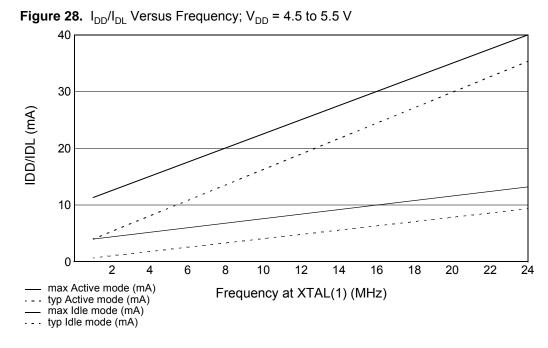
Table 52. EPROM Verifying AC timings; V_{DD} = 4.5 to 5.5 V, V_{DD} = 2.7 to 5.5 V, T_A = 0 to 40°C

Symbol	Parameter	Min	Мах	Unit
T _{osc}	XTAL1 Period	83.5	250	ns
T _{AVQV}	Address to Data Valid		48	T _{osc}
T _{AXQX}	Address to Data Invalid	0		ns
T _{ELQV}	ENABLE low to Data Valid	0	48	T _{osc}
T _{EHQZ}	Data Float after ENABLE	0	48	T _{osc}

Waveforms

Notes: 1. Under steady-state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum IOL per port pin: 10 mA


Maximum IOL per 8-bit port:Port 0 26 mA

Ports 1-3 15 mA

Maximum Total IOL for all: Output Pins 71 mA

If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 2. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low-level outputs of ALE and Ports 1, 2, and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from high to low. In applications where capacitive loading exceeds 100 pF, the noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify ALE or other signals with a Schmitt Trigger or CMOS-level input logic.
- Capacitive loading on Ports 0 and 2 causes the V_{OH} on ALE and PSEN# to drop below the specification when the address lines are stabilizing.
- 4. Typical values are obtained using V_{DD} = 5 V and T_A = 25°C. They are not tested and there is not guarantee on these values.
- The input threshold voltage of SCL and SDA meets the TWI specification, so an input voltage below 0.3 V_{DD} will be recognized as a logic 0 while an input voltage above 0.7 V_{DD} will be recognized as a logic 1.

Note: 1. The clock prescaler is not used: $F_{OSC} = F_{XTAL}$.

Figure 31. I_{DL} Test Condition, Idle Mode

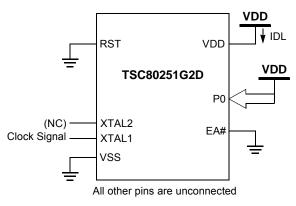
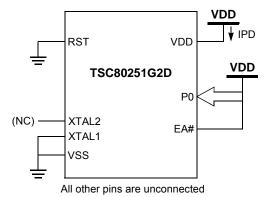
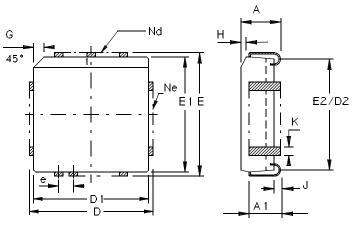



Figure 32. I_{PD} Test Condition, Power-Down Mode



PLCC 44 - Mechanical Outline

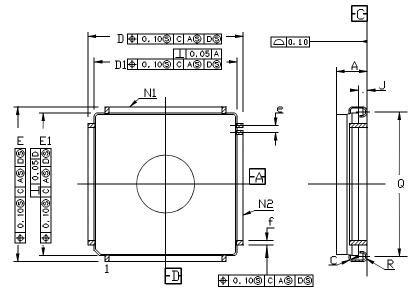


Table 59. PLCC Package Size

	ММ		Inc	ch
	Min	Max	Min	Max
А	4.20	4.57	.165	.180
A1	2.29	3.04	.090	.120
D	17.40	17.65	.685	.695
D1	16.44	16.66	.647	.656
D2	14.99	16.00	.590	.630
E	17.40	17.65	.685	.695
E1	16.44	16.66	.647	.656
E2	14.99	16.00	.590	.630
е	1.27	BSC	.050 BSC	
G	1.07	1.22	.042	.048
Н	1.07	1.42	.042	.056
J	0.51	-	.020	-
К	0.33	0.53	.013	.021
Nd	11		11	
Ne	11 11		1	

Figure 36. Ceramic Quad Pack J

CQPJ 44 with Window -Mechanical Outline

Table 60.	CQPJ Package Size
-----------	-------------------

	ММ		In	ch
	Min	Max	Min	Мах
A	-	4.90	-	.193
С	0.15	0.25	.006	.010
D - E	17.40	17.55	.685	.691
D1 - E1	16.36	16.66	.644	.656
е	1.27	' TYP	.050 TYP	
f	0.43	0.53	.017	.021
J	0.86	1.12	.034	.044
Q	15.49	16.00	.610	.630
R	0.86 TYP		.034	ТҮР
N1	11		11	
N2		11 11		11

