

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	16MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/tsc80251g2d-l16cbr

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

Pin Description

Pinout

Figure 1. TSC80251G2D 40-pin DIP package

Table 2.	Product Name	Signal Description	(Continued)
----------	--------------	--------------------	-------------

Signal Name	Туре	Description	Alternate Function
NMI	I	Non Maskable Interrupt Holding this pin high for 24 oscillator periods triggers an interrupt. When using the Product Name as a pin-for-pin replacement for a 8xC51 product, NMI can be unconnected without loss of compatibility or power consumption increase (on-chip pull-down). Not available on DIP package.	_
P0.0:7	I/O	Port 0 P0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. To avoid any paraitic current consumption, Floating P0 inputs must be polarized to V_{DD} or V_{SS} .	AD7:0
P1.0:7	I/O	Port 1 P1 is an 8-bit bidirectional I/O port with internal pull-ups. P1 provides interrupt capability for a keyboard interface.	-
P2.0:7	I/O	Port 2 P2 is an 8-bit bidirectional I/O port with internal pull-ups.	A15:8
P3.0:7	I/O	Port 3 P3 is an 8-bit bidirectional I/O port with internal pull-ups.	-
PROG#	I	Programming Pulse input The programming pulse is applied to this input for programming the on-chip EPROM/OTPROM.	-
PSEN#	0	Program Store Enable/Read signal output PSEN# is asserted for a memory address range that depends on bits RD0 and RD1 in UCONFIG0 byte (see).	-
RD#	0	Read or 17 th Address Bit (A16) Read signal output to external data memory depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).	P3.7
RST	I	Reset input to the chip Holding this pin high for 64 oscillator periods while the oscillator is running resets the device. The Port pins are driven to their reset conditions when a voltage greater than V_{IH1} is applied, whether or not the oscillator is running. This pin has an internal pull-down resistor which allows the device to be reset by connecting a capacitor between this pin and VDD. Asserting RST when the chip is in Idle mode or Power-Down mode returns the chip to normal operation.	-
RXD	I/O	Receive Serial Data RXD sends and receives data in serial I/O mode 0 and receives data in serial I/O modes 1, 2 and 3.	P3.0
SCL	I/O	TWI Serial Clock When TWI controller is in master mode, SCL outputs the serial clock to slave peripherals. When TWI controller is in slave mode, SCL receives clock from the master controller.	P1.6
SCK	I/O	SPI Serial Clock When SPI is in master mode, SCK outputs clock to the slave peripheral. When SPI is in slave mode, SCK receives clock from the master controller.	P1.6
SDA	I/O	TWI Serial Data SDA is the bidirectional TWI data line.	P1.7
SS#	I	SPI Slave Select Input When in Slave mode, SS# enables the slave mode.	P1.4

Table 4. Serial I/O Port SFRs

Mnemonic	Name
SCON	Serial Control
SBUF	Serial Data Buffer
SADEN	Slave Address Mask

Table 5. SSLC SFRs

Mnemonic	Name
SSCON	Synchronous Serial control
SSDAT	Synchronous Serial Data
SSCS	Synchronous Serial Control and Status

Mnemonic	Name
SADDR	Slave Address
BRL	Baud Rate Reload
BDRCON	Baud Rate Control

Mnemonic	Name
SSADR	Synchronous Serial Address
SSBR	Synchronous Serial Bit Rate

Table 6. Event Waveform Control SFRs

Mnemonic	Name
CCON	EWC-PCA Timer/Counter Control
CMOD	EWC-PCA Timer/Counter Mode
CL	EWC-PCA Timer/Counter Low Register
СН	EWC-PCA Timer/Counter High Register
CCAPM0	EWC-PCA Timer/Counter Mode 0
CCAPM1	EWC-PCA Timer/Counter Mode 1
CCAPM2	EWC-PCA Timer/Counter Mode 2
CCAPM3	EWC-PCA Timer/Counter Mode 3
CCAPM4	EWC-PCA Timer/Counter Mode 4

Mnemonic	Name
CCAP0L	EWC-PCA Compare Capture Module 0 Low Register
CCAP1L	EWC-PCA Compare Capture Module 1 Low Register
CCAP2L	EWC-PCA Compare Capture Module 2 Low Register
CCAP3L	EWC-PCA Compare Capture Module 3 Low Register
CCAP4L	EWC-PCA Compare Capture Module 4 Low Register
CCAP0H	EWC-PCA Compare Capture Module 0 High Register
CCAP1H	EWC-PCA Compare Capture Module 1 High Register
CCAP2H	EWC-PCA Compare Capture Module 2 High Register
ССАРЗН	EWC-PCA Compare Capture Module 3 High Register
CCAP4H	EWC-PCA Compare Capture Module 4 High Register

Table 7. System Management SFRs

Mnemonic	Name
PCON	Power Control
POWM	Power Management

Mnemonic	Name
CKRL	Clock Reload
WCON	Synchronous Real-Time Wait State Control

Table 8. Interrupt SFRs

Mnemonic	Name
IE0	Interrupt Enable Control 0
IE1	Interrupt Enable Control 1
IPH0	Interrupt Priority Control High 0

Table 9.	Key	/board	Interface	SFRs
	T\C	ybouru	menace	01103

Mnemonic	Name
P1IE	Port 1 Input Interrupt Enable
P1F	Port 1 Flag

IPH1	Interrupt Priority Control High 1
IPL1	Interrupt Priority Control Low 1

Interrupt Priority Control Low 0

Mnemonic Name

IPL0

Mnemonic	Name
P1LS	Port 1 Level Selection

Table 16. Notation for Immediate Addressing

Immediate Address	Description	C251	C51
#data	An 8-bit constant that is immediately addressed in an instruction	3	3
#data16	A 16-bit constant that is immediately addressed in an instruction	3	-
#0data16 #1data16	A 32-bit constant that is immediately addressed in an instruction. The upper word is filled with zeros (#0data16) or ones (#1data16).	3	_
#short	A constant, equal to 1, 2, or 4, that is immediately addressed in an instruction.	3	_

Table 17. Notation for Bit Addressing

Direct Address	Description	C251	C51
bit51	A directly addressed bit (bit number = 00h-FFh) in memory or an SFR. Bits 00h-7Fh are the 128 bits in byte locations 20h-2Fh in the on-chip RAM. Bits 80h-FFh are the 128 bits in the 16 SFRs with addresses that end in 0h or 8h, S:80h, S:88h, S:90h,, S:F0h, S:F8h.	_	3
bit	A directly addressed bit in memory locations 00:0020h-00:007Fh or in any defined SFR.	3	

Table 18. Notation for Destination in Control Instructions

Direct Address	Description	C251	C51
rel	A signed (two's complement) 8-bit relative address. The destination is -128 to +127 bytes relative to the next instruction's first byte.	3	3
addr11	An 11-bit target address. The target is in the same 2-Kbyte block of memory as the next instruction's first byte.	-	3
addr16	A 16-bit target address. The target can be anywhere within the same 64-Kbyte region as the next instruction's first byte.	_	3
addr24	A 24-bit target address. The target can be anywhere within the 16- Mbyte address space.	3	_

- Notes: 1. Logical instructions that affect a bit are in Table 27.
 - 2. A shaded cell denotes an instruction in the C51 Architecture.
 - 3. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
 - 4. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.
 - 5. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
 - 6. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

Table 23.	Summar	y of Logical	Instructions	(2/2))
-----------	--------	--------------	--------------	-------	---

$\begin{array}{l} \mbox{Shift Left LogicalS} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	LL <dest><de <dest>_n, n = t_{msb} eticSRA <des <dest>_n, n = 1 t_{0} (SRL <dest>< <dest>_n, n = 1 t_{0} $dest>_n, n = 1$ t_{0} $A_{7:4}$</dest></dest></dest></des </dest></de </dest>	$est>_{0} \leftarrow 0$ 0msb-1 at> <dest>_{msb} \leftarrow <dest>_{msb} msb1 edest>_{msb} $\leftarrow 0$ msb1</dest></dest>				
	<dost></dost>		Binary	Mode	Source	e Mode
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
	Rm	Shift byte register left through the MSB	3	2	2	1
SLL	WRj	Shift word register left through the MSB	3	2	2	1
CDA	Rm	Shift byte register right	3	2	2	1
SKA	WRj	Shift word register right	3	2	2	1
S DI	Rm	Shift byte register left	3	2	2	1
JKL	WRj	Shift word register left	3	2	2	1
SWAP	А	Swap nibbles within ACC	1	2	1	2

Note: 1. A shaded cell denotes an instruction in the C51 Architecture.

MOV	WRj, at WRj +dis24	Indirect with 16-bit displacement (16M) to word register	5	8 ⁽⁵⁾	4	7 ⁽⁵⁾
MOV	at WRj +dis16, Rm	Byte register to indirect with 16-bit displacement (64K)	5	6 ⁽⁴⁾	4	5 ⁽⁴⁾
MOV	at WRj +dis16, WRj	Word register to indirect with 16-bit displacement (64K)	5	7 ⁽⁵⁾	4	6 ⁽⁵⁾
MOV	at DRk +dis24, Rm	Byte register to indirect with 16-bit displacement (16M)	5	7 ⁽⁴⁾	4	6 ⁽⁴⁾
MOV	at DRk +dis24, WRj	Word register to indirect with 16-bit displacement (16M)	5	8 ⁽⁵⁾	4	7 ⁽⁵⁾

Notes: 1. Instructions that move bits are in Table 27.

2. Move instructions unique to the C251 Architecture.

3. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

4. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).

5. If this instruction addresses external memory location, add 2(N+1) to the number of states (N: number of wait states).

6. If this instruction addresses external memory location, add 4(N+2) to the number of states (N: number of wait states).

Table 32.	Summar	of Call and	Return	Instructions
-----------	--------	-------------	--------	--------------

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		ACALL <src></src>	$(PC) \leftarrow (PC) + 2$ push $(PC)_{45}$				
Extended callECALL <src>(PC) \leftarrow (PC) + size (instr); push (PC)_{23.0}; (PC)_{23.0} \leftarrow src opnd Long callLCALL <src>(PC) \leftarrow (PC) + size (instr); push (PC)_{15.0}; (PC)_{15.0} \leftarrow src opnd Return from subroutineERETpop (PC)_{15.0} Extended return from subroutineERETpop (PC)_{23.0}; Return from interruptRAP(PC) \leftarrow (PC) + size (instr); IF [INTR = 1] THEN pop (PC)_{23.0}; pop (PSW1) Trap interruptTRAP(PC) \leftarrow (PC) + size (instr); IF [INTR = 1] THEN push (PC)_{15.0} IF [INTR = 1] THEN push (PC)_{15.0} IF [INTR = 1] THEN push (PSW1); push (PC)_{23.0} $\frac{\text{dests}}{\text{sccs}^{(1)}} \frac{\text{comments}}{\text{comments}} \frac{\text{Binary Mode}}{\text{Bytes}} \frac{\text{Source Mode}}{\text{Bytes}} \frac{\text{States}}{\text{2} g^{(2)(3)}} 2 g^{(2)(3)}$ ECALL addr11 Absolute subroutine call 2 $g^{(2)(3)}$ 2 $g^{(2)(3)}$ ECALL $\frac{\text{at DRk}}{\text{addr24}} \frac{\text{Extended subroutine call}}{\text{addr24}} \frac{5}{\text{14}^{(2)(3)}} \frac{114^{(2)(3)}}{2} 2 g^{(2)(3)}} 2 g^{(2)(3)}$ ECALL $\frac{\text{at WRj}}{\text{addr16}} \text{ Long subroutine call} \frac{3}{3} g^{(2)(3)} \frac{3}{3} g^{(2)(3)}} \frac{9^{(2)(3)}}{2} 2 g^{(2)(3)}}$ RET Return from subroutine call 3 $g^{(2)(3)} \frac{3}{3} g^{(2)(3)}} \frac{9^{(2)(3)}}{3} \frac{3}{3} g^{(2)(3)}}$ RET Return from subroutine return 3 $g^{(2)} 2 8^{(2)}$ RET Return from interrupt 1 $7^{(2)} \frac{1}{1} 7^{(2)} \frac{7^{(2)}}{1} \frac{1}{3} \frac{7^{(2)}}{1} \frac{1}{3}$</src></src>	(PC) _{10:0}	\leftarrow src opnd	(i c) (i c) 2, public (i c) _{15:0} ,				
$(PC)_{230} \leftarrow \text{ src opnd}$ $Long callLCALL < \text{src>}(PC) \leftarrow (PC) + \text{size (instr); push (PC)}_{15.0};$ $(PC)_{15.0} \leftarrow \text{src opnd}$ Return from subroutineRETpop (PC)_{15.0} Extended return from subroutineRETpop (PC)_{23.0} Return from interruptRETIIF [INTR = 0] THEN pop (PC)_{15.0} IF [INTR = 1] THEN pop (PC)_{23.0}; pop (PSW1) Trap interruptTRAP(PC) \leftarrow (PC) + size (instr); IF [INTR = 0] THEN push (PC)_{15.0} IF [INTR = 1] THEN push (PC)_{15.0} IF [INTR = 1] THEN push (PSW1); push (PC)_{23.0} $\frac{\text{cdest>,}}{\text{csrc>}^{(1)}} \frac{\text{comments}}{\text{Comments}} \frac{\text{Binary Mode}}{\text{Bytes}} \frac{\text{Source Mode}}{\text{Bytes}}$ $\frac{\text{ACALL}}{\text{addr11}} \text{Absolute subroutine call} \qquad 2 9^{(2)(3)} 2 9^{(2)(3)}$ $\frac{\text{cALL}}{\text{addr24}} \text{Extended subroutine call} 5 14^{(2)(3)} 4 13^{(2)(3)}$ $\frac{\text{cALL}}{\text{addr24}} \text{Extended subroutine call} 5 14^{(2)(3)} 2 9^{(2)(3)}$ $\frac{\text{cALL}}{\text{addr16} \text{Long subroutine call}} 3 9^{(2)(3)} 3 9^{(2)(3)}$ $\frac{\text{RET}}{\text{addr16} \text{Long subroutine call}} 3 9^{(2)} 2 8^{(2)}$ $\frac{\text{RET}}{\text{RET}} \text{Return from subroutine return} 3 9^{(2)} 2 8^{(2)}$ $\frac{\text{RET}}{\text{RET}} \text{Return from interrupt} 1 7^{(2)(4)} 1 7^{(2)(4)}$ $\frac{\text{RET}}{\text{RET}} \text{Return from interrupt} 2 12^{(4)} 1 11^{(4)}$	Extended cal	IECALL <src></src>	$(PC) \leftarrow (PC) + size (instr); push (PC)_2$	3:0;			
Long callLCALL <src>(PC) \leftarrow (PC) + size (instr); push (PC)_{15:0}; (PC)_{15:0} \leftarrow src opnd Return from subroutineRETpop (PC)_{15:0} Extended return from subroutineRETpop (PC)_{23:0} Return from interruptRETIIF [INTR = 0] THEN pop (PC)_{15:0} IF [INTR = 1] THEN pop (PC)_{23:0}; pop (PSW1) Trap interruptTRAP(PC) \leftarrow (PC) + size (instr); IF [INTR = 1] THEN push (PC)_{15:0} IF [INTR = 1] THEN push (PC)_{23:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{23:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (</src>	(PC) _{23:0}	$\leftarrow src opnd$		0.0			
$(PC)_{15:0} \leftarrow \text{ src opnd}$ Return from subroutineRETpop (PC)_{15:0} Extended return from subroutineRETpop (PC)_{23:0} Return from interruptRETIIF [INTR = 0] THEN pop (PC)_{15:0} IF [INTR = 1] THEN pop (PC)_{23:0} pop (PSW1) Trap interruptRAP(PC) \leftarrow (PC) + size (instr); IF [INTR = 0] THEN push (PC)_{15:0} IF [INTR = 1] THEN push (PC)_{15:0} RET at the extended subroutine call (indirect) and the push (PC)_{13:0} and t	Long callLCA	LL <src>(PC</src>) \leftarrow (PC) + size (instr); push (PC) _{15:0} ;				
Return from subroutineRETpop (PC)15:0Extended return from interruptRETIIF [INTR = 0] THEN pop (PC)15:0IF [INTR = 1] THEN pop (PC)23:0: pop (PSW1)Trap interruptTRAP(PC) \leftarrow (PC) + size (instr);IF [INTR = 0] THEN push (PC)15:0IF [INTR = 1] THEN push (PC)23:0Mnemonic <a block"="" href="https://www.sec.ed/states-stat</td><td>(PC)<sub>15:0</sub></td><td><math>\leftarrow</math> src opnd</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Extended return from subroutineERETpop (PC)<sub>23:0</sub>
Return from interruptRETIIF [INTR = 0] THEN pop (PC)<sub>15:0</sub>
IF [INTR = 1] THEN pop (PC)<sub>23:0</sub>; pop (PSW1)
Trap interruptTRAP(PC) <math>\leftarrow</math> (PC) + size (instr);
IF [INTR = 0] THEN push (PC)<sub>15:0</sub>
IF [INTR = 1] THEN push (PC)<sub>15:0</sub>
IF [INTR = 1] THEN push (PSW1); push (PC)<sub>23:0</sub>
Mnemonic <math>\frac{\langle \text{dest} \rangle}{\langle \text{src} \rangle^{(1)}}</math> Comments <math> </math></td><td>Return from s</td><td>subroutineRE</td><td>Tpop (PC)<sub>15:0</sub></td><td></td><td></td><td></td><td></td></tr><tr><td>Return from interruptRE IIIF [INTR = 0] THEN pop (PC)15:0
IF [INTR = 1] THEN pop (PC)23:0; pop (PSW1)
Trap interruptTRAP(PC) (- (PC) + size (instr);
IF [INTR = 0] THEN push (PC)15:0
IF [INTR = 1] THEN push (PSW1); push (PC)23:0Binary ModeSource ModeMnemonic<a cdest>,
<src>(-1)CommentsBinary ModeSource ModeMnemonicaddr11Absolute subroutine call2<math>9^{(2)(3)}</math>2<math>9^{(2)(3)}</math>ECALLaddr11Absolute subroutine call (indirect)3<math>14^{(2)(3)}</math>2<math>13^{(2)(3)}</math>ECALLat DRkExtended subroutine call (indirect)3<math>14^{(2)(3)}</math>2<math>9^{(2)(3)}</math>LCALLat WRjLong subroutine call (indirect)3<math>10^{(2)(3)}</math>2<math>9^{(2)(3)}</math>RETReturn from subroutine call3<math>9^{(2)(3)}</math>3<math>9^{(2)(3)}</math>RETReturn from subroutine return3<math>9^{(2)}</math>2<math>8^{(2)}</math>RETExtended subroutine return3<math>9^{(2)}</math>2<math>8^{(2)}</math>RETReturn from interrupt1<math>7^{(2)(4)}</math>1<math>7^{(2)(4)}</math>RETJump to the trap interrupt vector2<math>12^{(4)}</math>1<math>11^{(4)}</math></td><td>Extended retu</td><td>urn from subr</td><td>outineERETpop (PC)<sub>23:0</sub></td><td></td><td></td><td></td><td></td></tr><tr><td>In [INTR = 0] THEN pop (FOURT)Trap interruptTRAP(PC) <math>\leftarrow</math> (PC) + size (instr);
IF [INTR = 0] THEN push (PC)15:0
IF [INTR = 1] THEN push (PSW1); push (PC)23:0Mnemonic<math>< < dest >, < src >^{(1)}</math>CommentsBinary ModeSource ModeMnemonicaddr11Absolute subroutine call2<math>9^{(2)(3)}</math>2<math>9^{(2)(3)}</math>ACALLaddr11Absolute subroutine call (indirect)3<math>14^{(2)(3)}</math>2<math>13^{(2)(3)}</math>ECALLaddr24Extended subroutine call (indirect)3<math>10^{(2)(3)}</math>2<math>9^{(2)(3)}</math>LCALLat WRjLong subroutine call (indirect)3<math>10^{(2)(3)}</math>2<math>9^{(2)(3)}</math>addr16Long subroutine call3<math>9^{(2)(3)}</math>3<math>9^{(2)(3)}</math>RETReturn from subroutine call3<math>9^{(2)}</math>2<math>8^{(2)}</math>RETReturn from interrupt1<math>7^{(2)}</math>1<math>7^{(2)}</math>RETLine Return from interrupt1<math>7^{(2)(4)}</math>1<math>7^{(2)(4)}</math>RAPJump to the trap interrupt vector2<math>12^{(4)}</math>1<math>11^{(4)}</math></td><td>Return from I</td><td>nterruptRET</td><td><math display=">P(PC)_{15:0} = 0 P(PC)_{15:0}							
IF [INTR = 0] THEN push (PC)15:0 IF [INTR = 1] THEN push (PSW1); push (PC)23:0Mnemonic <src>'(1)CommentsBinary ModeSource ModeACALLaddr11Absolute subroutine call2$9^{(2)(3)}$2$9^{(2)(3)}$ECALLaddr24Extended subroutine call (indirect)3$14^{(2)(3)}$2$13^{(2)(3)}$ECALLaddr24Extended subroutine call (indirect)3$14^{(2)(3)}$2$13^{(2)(3)}$LCALLat WRjLong subroutine call (indirect)3$10^{(2)(3)}$2$9^{(2)(3)}$addr16Long subroutine call3$9^{(2)(3)}$3$9^{(2)(3)}$RETReturn from subroutine call1$7^{(2)}$1$7^{(2)}$ERETExtended subroutine return3$9^{(2)}$2$8^{(2)}$RETReturn from interrupt1$7^{(2)(4)}$1$7^{(2)(4)}$RAPJump to the trap interrupt vector2$12^{(4)}$1</src>	Tran interrunt	TRAP(PC) ←	-(PC) + size (instr)				
IF [INTR = 1] THEN push (PSW1); push (PC)_{23:0Mnemonic strestriction.com Binary ModeSource ModeMnemonic strestriction.com Binary ModeSource ModeMnemonicaddr11Absolute subroutine call2 $9^{(2)(3)}$ 2 $9^{(2)(3)}$ ACALLaddr11Absolute subroutine call2 $9^{(2)(3)}$ 2 $9^{(2)(3)}$ ECALLat DRkExtended subroutine call (indirect)3 $14^{(2)(3)}$ 2 $13^{(2)(3)}$ addr24Extended subroutine call (indirect)3 $10^{(2)(3)}$ 2 $9^{(2)(3)}$ LCALLat WRjLong subroutine call (indirect)3 $10^{(2)(3)}$ 2 $9^{(2)(3)}$ addr16Long subroutine call3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ 2 $8^{(2)(3)}$ RETReturn from subroutine call3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ 2 $8^{(2)(3)}$ RETReturn from subroutine return3 $9^{(2)}$ 2 $8^{(2)}$ RETLong burboutine return3 $9^{(2)}$ 2 $8^{(2)}$ RETLong burboutine return3 $9^{(2)}$ 1 $7^{(2)(4)}$ RETLong burboutine return3 $9^{(2)}$ 2 $8^{(2)}$ RETLong burboutine return3 $9^{(2)}$ 1 $7^{(2)(4)}$ RETLong burboutine return3 $9^{(2)}$ 1 $7^{(2)(4)}$ RETReturn from interrupt <th< td=""><td>IF [INTR</td><td>R = 0] THEN p</td><td>$(PC)_{150}$</td><td></td><td></td><td></td><td></td></th<>	IF [INTR	R = 0] THEN p	$(PC)_{150}$				
Mnemonic <dest>, <src>^(1)CommentsBinary ModeSource ModeACALLaddr11Absolute subroutine call2$9^{(2)(3)}$2$9^{(2)(3)}$ACALLaddr11Absolute subroutine call (indirect)3$14^{(2)(3)}$2$9^{(2)(3)}$ECALLat DRkExtended subroutine call (indirect)3$14^{(2)(3)}$2$13^{(2)(3)}$addr24Extended subroutine call (indirect)5$14^{(2)(3)}$4$13^{(2)(3)}$LCALLat WRjLong subroutine call (indirect)3$10^{(2)(3)}$2$9^{(2)(3)}$addr16Long subroutine call3$9^{(2)(3)}$3$9^{(2)(3)}$RETReturn from subroutine1$7^{(2)}$1$7^{(2)}$ERETExtended subroutine return3$9^{(2)}$2$8^{(2)}$RETIReturn from interrupt1$7^{(2)(4)}$1$7^{(2)(4)}$TRAPJump to the trap interrupt vector2$12^{(4)}$1$11^{(4)}$</src></dest>	IF [INTR	R = 1] THEN p	bush (PSW1); push (PC) $_{23:0}$				
MnemonicCommentsBytesStatesBytesStatesACALLaddr11Absolute subroutine call2 $9^{(2)(3)}$ 2 $9^{(2)(3)}$ ACALLaddr11Absolute subroutine call2 $9^{(2)(3)}$ 2 $9^{(2)(3)}$ ECALLat DRkExtended subroutine call (indirect)3 $14^{(2)(3)}$ 2 $13^{(2)(3)}$ addr24Extended subroutine call5 $14^{(2)(3)}$ 4 $13^{(2)(3)}$ LCALLat WRjLong subroutine call (indirect)3 $10^{(2)(3)}$ 2 $9^{(2)(3)}$ addr16Long subroutine call3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ RETReturn from subroutine1 $7^{(2)}$ 1 $7^{(2)}$ ERETExtended subroutine return3 $9^{(2)}$ 2 $8^{(2)}$ RETIReturn from interrupt1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ TRAPJump to the trap interrupt vector2 $12^{(4)}$ 1 $11^{(4)}$		-doot-		Binary	Mode	Source	e Mode
ACALLaddr11Absolute subroutine call2 $9^{(2)(3)}$ 2 $9^{(2)(3)}$ ECALLat DRkExtended subroutine call (indirect)3 $14^{(2)(3)}$ 2 $13^{(2)(3)}$ addr24Extended subroutine call5 $14^{(2)(3)}$ 4 $13^{(2)(3)}$ LCALLat WRjLong subroutine call (indirect)3 $10^{(2)(3)}$ 2 $9^{(2)(3)}$ addr16Long subroutine call3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ RETReturn from subroutine1 $7^{(2)}$ 1 $7^{(2)}$ ERETExtended subroutine return3 $9^{(2)}$ 2 $8^{(2)}$ RETIReturn from interrupt1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ TRAPJump to the trap interrupt vector2 $12^{(4)}$ 1 $11^{(4)}$	Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
at DRk Extended subroutine call (indirect) 3 $14^{(2)(3)}$ 2 $13^{(2)(3)}$ addr24 Extended subroutine call 5 $14^{(2)(3)}$ 4 $13^{(2)(3)}$ LCALL at WRj Long subroutine call (indirect) 3 $10^{(2)(3)}$ 2 $9^{(2)(3)}$ addr16 Long subroutine call 3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ RET Return from subroutine 1 $7^{(2)}$ 1 $7^{(2)}$ ERET Extended subroutine return 3 $9^{(2)}$ 2 $8^{(2)}$ RETI Return from interrupt 1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ RAP Jump to the trap interrupt vector 2 $12^{(4)}$ 1 $11^{(4)}$	ACALI			<u> </u>	- (2)(2)	0	o ⁽²⁾⁽³⁾
ECALL addr24 Extended subroutine call 5 $14^{(2)(3)}$ 4 $13^{(2)(3)}$ LCALL at WRj Long subroutine call (indirect) 3 $10^{(2)(3)}$ 2 $9^{(2)(3)}$ addr16 Long subroutine call 3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ RET Return from subroutine 1 $7^{(2)}$ 1 $7^{(2)}$ ERET Extended subroutine return 3 $9^{(2)}$ 2 $8^{(2)}$ RETI Return from interrupt 1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ TRAP Jump to the trap interrupt vector 2 $12^{(4)}$ 1 $11^{(4)}$	/ IO/ IEE	addr11	Absolute subroutine call	2	9(2)(3)	2	9
LCALLat WRjLong subroutine call (indirect)3 $10^{(2)(3)}$ 2 $9^{(2)(3)}$ addr16Long subroutine call3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ RETReturn from subroutine1 $7^{(2)}$ 1 $7^{(2)}$ ERETExtended subroutine return3 $9^{(2)}$ 2 $8^{(2)}$ RETIReturn from interrupt1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ TRAPJump to the trap interrupt vector2 $12^{(4)}$ 1 $11^{(4)}$		addr11 at DRk	Extended subroutine call (indirect)	3	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾	2	13 ⁽²⁾⁽³⁾
addr16 Long subroutine call 3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ RET Return from subroutine 1 $7^{(2)}$ 1 $7^{(2)}$ ERET Extended subroutine return 3 $9^{(2)(3)}$ 2 $8^{(2)}$ RETI Return from interrupt 1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ RETI Return from interrupt vector 2 $12^{(4)}$ 1 $11^{(4)}$	ECALL	addr11 at DRk addr24	Extended subroutine call (indirect) Extended subroutine call	2 3 5	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾	2 2 4	13 ⁽²⁾⁽³⁾ 13 ⁽²⁾⁽³⁾
RET Return from subroutine 1 $7^{(2)}$ 1 $7^{(2)}$ ERET Extended subroutine return 3 $9^{(2)}$ 2 $8^{(2)}$ RETI Return from interrupt 1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ TRAP Jump to the trap interrupt vector 2 $12^{(4)}$ 1 $11^{(4)}$	ECALL	addr11 at DRk addr24 at WRj	Extended subroutine call (indirect) Extended subroutine call (indirect) Long subroutine call (indirect)	2 3 5 3	$ \begin{array}{c} g^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \end{array} $	2 2 4 2	$ \begin{array}{c} 9^{(2)(3)} \\ 13^{(2)(3)} \\ 9^{(2)(3)} \end{array} $
ERETExtended subroutine return3 $9^{(2)}$ 2 $8^{(2)}$ RETIReturn from interrupt1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ TRAPJump to the trap interrupt vector2 $12^{(4)}$ 1 $11^{(4)}$	ECALL	addr11 at DRk addr24 at WRj addr16	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call	2 3 5 3 3	$9^{(2)(3)}$ $14^{(2)(3)}$ $14^{(2)(3)}$ $10^{(2)(3)}$ $9^{(2)(3)}$	2 2 4 2 3	$\begin{array}{c} 9^{(2)(3)} \\ 13^{(2)(3)} \\ 9^{(2)(3)} \\ 9^{(2)(3)} \end{array}$
RETI Return from interrupt 1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ TRAP Jump to the trap interrupt vector 2 $12^{(4)}$ 1 $11^{(4)}$	ECALL LCALL RET	addr11 at DRk addr24 at WRj addr16	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call Return from subroutine	2 3 5 3 3 1	$\begin{array}{c} g^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \\ g^{(2)(3)} \\ 7^{(2)} \end{array}$	2 2 4 2 3 1	$ \begin{array}{c} 9^{(2)}(3) \\ 13^{(2)}(3) \\ 9^{(2)}(3) \\ 9^{(2)}(3) \\ 7^{(2)} \end{array} $
TRAP Jump to the trap interrupt vector 2 12 ⁽⁴⁾ 1 11 ⁽⁴⁾	ECALL LCALL RET ERET	addr11 at DRk addr24 at WRj addr16	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call Return from subroutine Extended subroutine return	2 3 5 3 3 1 3	$\begin{array}{c} g^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \\ g^{(2)(3)} \\ 7^{(2)} \\ g^{(2)} \end{array}$	2 2 4 2 3 1 2	$\begin{array}{c} 9^{(2)} \\ 13^{(2)(3)} \\ 9^{(2)(3)} \\ 9^{(2)(3)} \\ 7^{(2)} \\ 8^{(2)} \end{array}$
	ECALL LCALL RET ERET RETI	addr11 at DRk addr24 at WRj addr16	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call Return from subroutine Extended subroutine return Return from interrupt	2 3 5 3 3 1 3 1 1	$\begin{array}{c} g^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \\ g^{(2)(3)} \\ 7^{(2)} \\ g^{(2)} \\ 7^{(2)(4)} \end{array}$	2 2 4 2 3 1 2 1	$\begin{array}{c} 9^{(2)}(3) \\ 13^{(2)(3)} \\ 9^{(2)(3)} \\ 9^{(2)(3)} \\ 7^{(2)} \\ 8^{(2)} \\ 7^{(2)(4)} \end{array}$

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. In internal execution only, add 1 to the number of states if the destination/return address is internal and odd.

- 3. Add 2 to the number of states if the destination address is external.
- 4. Add 5 to the number of states if INTR = 1.

• PSEN# and the other control signals have to be released to complete a sequence of programming operations or a sequence of programming and verifying operations.

 Table 36.
 Programming Modes

ROM Area ⁽¹⁾	RST	EA#/VPP	PSEN #	ALE/PROG# ⁽²⁾	P0	P2	P1(MSB) P3(LSB)
On-chip Code Memory	1	V _{PP}	0	1 Pulse	68h	Data	16-bit Address 0000h-7FFFh (32 kilobytes)
Configuration Bytes	1	V _{PP}	0	1 Pulse	69h	Data	CONFIG0: FFF8h CONFIG1: FFF9h
Lock Bits	1	V _{PP}	0	1 Pulse	6Bh	x	LB0: 0001h LB1: 0002h LB2: 0003h
Encryption Array	1	V _{PP}	0	1 Pulse	6Ch	Data	0000h-007Fh

Notes: 1. Signature Bytes are not user-programmable.

2. The ALE/PROG# pulse waveform is shown in Figure 23 page 59.

Verify Algorithm

Figure 7 shows the hardware setup needed to verify the TSC87251G2D EPROM/OTPROM or TSC83251G2D ROM areas:

- The chip has to be put under reset and maintained in this state until the completion of the verifying sequence.
- PSEN# and the other control signals (ALE and Port 0) have to be set to a high level.
- Then PSEN# has to be to forced to a low level after two clock cycles or more and it
 has to be maintained in this state until the completion of the verifying sequence (see
 below).
- The voltage on the EA# pin must be set to V_{DD} and ALE must be set to a high level.
- The Verifying Mode is selected according to the code applied on Port 0. It has to be applied until the completion of this verifying operation.
- The verifying address is applied on Ports 1 and 3 which are respectively the MSB and the LSB of the address.

- Then device is driving the data on Port 2.
- It is possible to alternate programming and verification operation (see Paragraph Programming Algorithm). Please make sure the voltage on the EA# pin has actually been lowered to V_{DD} before performing the verifying operation.
- PSEN# and the other control signals have to be released to complete a sequence of verifying operations or a sequence of programming and verifying operations.

ROM Area ⁽¹⁾	RST	EA#/VPP	PSEN#	ALE/PROG#	P0	P2	P1(MSB) P3(LSB)
On-chip code memory	1	1	0	1	28h	Data	16-bit Address 0000h-7FFFh (32 kilobytes)
Configuration Bytes	1	1	0	1	29h	Data	CONFIG0: FFF8h CONFIG1: FFF9h
Lock Bits	1	1	0	1	2Bh	Data	0000h
Signature Bytes	1	1	0	1	29h	Data	0030h, 0031h, 0060h, 0061h

Notes: 1. To preserve the secrecy of on-chip code memory when encrypted, the Encryption Array can not be verified.

AC Characteristics - Commercial & Industrial

AC Characteristics - External Bus Cycles

Definition of Symbols

Table 38. External Bus Cycles Timing Symbol Definitions

Signals		
А	Address	
D	Data In	
L	ALE	
Q	Data Out	
R	RD#/PSEN#	
W	WR#	

Conditions			
Н	High		
L	Low		
V	Valid		
х	No Longer Valid		
Z	Floating		

Timings

Test conditions: capacitive load on all pins = 50 pF.

Table 39 and Table 40 list the AC timing parameters for the TSC80251G2D derivatives with no wait states. External wait states can be added by extending PSEN#/RD#/WR# and or by extending ALE. In these tables, Note 2 marks parameters affected by one ALE wait state, and Note 3 marks parameters affected by PSEN#/RD#/WR# wait states.

Figure 8 to Figure 13 show the bus cycles with the timing parameters.

		12	MHz	16	MHz	24	MHz	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
T _{OSC}	1/F _{OSC}	83		62		41		ns
T _{LHLL}	ALE Pulse Width	78		58		38		ns ⁽²⁾
T _{AVLL}	Address Valid to ALE Low	78		58		37		ns ⁽²⁾
T _{LLAX}	Address hold after ALE Low	19		11		3		ns
T _{RLRH} ⁽¹⁾	RD#/PSEN# Pulse Width	162		121		78		ns ⁽³⁾
T _{WLWH}	WR# Pulse Width	165		124		81		ns ⁽³⁾
T _{LLRL} ⁽¹⁾	ALE Low to RD#/PSEN# Low	22		14		6		ns
T _{LHAX}	ALE High to Address Hold	99		70		40		ns ⁽²⁾
T _{RLDV} ⁽¹⁾	RD#/PSEN# Low to Valid Data		146		104		61	ns ⁽³⁾
T _{RHDX} ⁽¹⁾	Data Hold After RD#/PSEN# High	0		0		0		ns
T _{RHAX} ⁽¹⁾	Address Hold After RD#/PSEN# High	0		0		0		ns
T _{RLAZ} ⁽¹⁾	RD#/PSEN# Low to Address Float		0		0		0	ns
T _{RHDZ1}	Instruction Float After RD#/PSEN# High		45		40		30	ns
T _{RHDZ2}	Data Float After RD#/PSEN# High		215		165		115	ns
T _{RHLH1}	RD#/PSEN# high to ALE High (Instruction)	49		43		31		ns
T _{RHLH2}	RD#/PSEN# high to ALE High (Data)	215		169		115		ns
T _{WHLH}	WR# High to ALE High	215		169		115		ns
T _{AVDV1}	Address (P0) Valid to Valid Data In		250		175		105	ns ⁽²⁾⁽³⁾
T _{AVDV2}	Address (P2) Valid to Valid Data In		306		223		140	ns ⁽²⁾⁽³⁾
T _{AVDV3}	Address (P0) Valid to Valid Instruction In		150		109		68	ns ⁽³⁾
T _{AXDX}	Data Hold after Address Hold	0		0		0		ns
T _{AVRL} ⁽¹⁾	Address Valid to RD# Low	100		70		40		ns ⁽²⁾
T _{AVWL1}	Address (P0) Valid to WR# Low	100		70		40		ns ⁽²⁾
T _{AVWL2}	Address (P2) Valid to WR# Low	158		115		74		ns ⁽²⁾
T _{WHQX}	Data Hold after WR# High	90		69		32		ns
T _{QVWH}	Data Valid to WR# High	133		102		72		ns ⁽³⁾
T _{WHAX}	WR# High to Address Hold	167		125		84		ns

Table 39.	Bus Cycles AC	Timings; V _D	_D = 4.5 to 5.5	V, T _A =	-40 to 85°C
-----------	---------------	-------------------------	---------------------------	---------------------	-------------

Notes: 1. Specification for PSEN# are identical to those for RD#.

2. If a wait state is added by extending ALE, add $2 \cdot T_{OSC}$. 3. If wait states are added by extending RD#/PSEN#/WR#, add $2N \cdot T_{OSC}$ (N = 1..3).

Timings

Table 49. SPI Interface AC Timing; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C

Symbol	Parameter	Min	Мах	Unit
	Slave Mode ⁽¹)		
Тснсн	Clock Period	8		T _{osc}
T _{CHCX}	Clock High Time	3.2		T _{osc}
T _{CLCX}	Clock Low Time	3.2		T _{osc}
T _{SLCH} , T _{SLCL}	SS# Low to Clock edge	200		ns
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	100		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	100		ns
T _{CLOV,} T _{CHOV}	Output Data Valid after Clock Edge		100	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns
T _{CLSH} , T _{CHSH}	SS# High after Clock Edge	0		ns
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	100		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	100		ns
T _{SLOV}	SS# Low to Output Data Valid		130	ns
T _{SHOX}	Output Data Hold after SS# High		130	ns
T _{SHSL}	SS# High to SS# Low	(2)		
T _{ILIH}	Input Rise Time		2	μs
T _{IHIL}	Input Fall Time		2	μs
T _{OLOH}	Output Rise time		100	ns
T _{OHOL}	Output Fall Time		100	ns
	Master Mode ^{(;}	3)		
Тснсн	Clock Period	4		T _{osc}
T _{CHCX}	Clock High Time	1.6		T _{osc}
T _{CLCX}	Clock Low Time	1.6		T _{osc}
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	50		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	50		ns
T _{CLOV,} T _{CHOV}	Output Data Valid after Clock Edge		65	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns
T _{ILIH}	Input Data Rise Time		2	μs
T _{IHIL}	Input Data Fall Time		2	μs
T _{OLOH}	Output Data Rise time		50	ns
TOHOL	Output Data Fall Time		50	ns

Notes: 1. Capacitive load on all pins = 200 pF in slave mode.

2. The value of this parameter depends on software.

3. Capacitive load on all pins = 100 pF in master mode.

Note: For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loading V_{OH}/V_{OL} level occurs with $I_{OL}/I_{OH} = \pm 20$ mA.

Figure 27. Float Waveforms

Notes: 1. Under steady-state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum IOL per port pin: 10 mA

Maximum IOL per 8-bit port:Port 0 26 mA

Ports 1-3 15 mA

Maximum Total IOL for all: Output Pins 71 mA

If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 2. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low-level outputs of ALE and Ports 1, 2, and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from high to low. In applications where capacitive loading exceeds 100 pF, the noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify ALE or other signals with a Schmitt Trigger or CMOS-level input logic.
- Capacitive loading on Ports 0 and 2 causes the V_{OH} on ALE and PSEN# to drop below the specification when the address lines are stabilizing.
- 4. Typical values are obtained using V_{DD} = 5 V and T_A = 25°C. They are not tested and there is not guarantee on these values.
- The input threshold voltage of SCL and SDA meets the TWI specification, so an input voltage below 0.3 V_{DD} will be recognized as a logic 0 while an input voltage above 0.7 V_{DD} will be recognized as a logic 1.

Note: 1. The clock prescaler is not used: $F_{OSC} = F_{XTAL}$.

Figure 31. I_{DL} Test Condition, Idle Mode

Figure 32. I_{PD} Test Condition, Power-Down Mode

Packages

List of Packages

- PDIL 40
- CDIL 40 with window
- PLCC 44
- CQPJ 44 with window
- VQFP 44 (10x10)

PDIL 40 - Mechanical Outline

Figure 33. Plastic Dual In Line

Table 57. PDIL Package Size

	М	М	Inch		
	Min	Мах	Min	Мах	
A	-	5.08	-	.200	
A1	0.38	-	.015	-	
A2	3.18	4.95	.125	.195	
В	0.36	0.56	.014	.022	
B1	0.76	1.78	.030	.070	
С	0.20	0.38	.008	.015	
D	50.29	53.21	1.980	2.095	
E	15.24	15.87	.600	.625	
E1	12.32	14.73	.485	.580	
е	2.54 [B.S.C.	.100	B.S.C.	
eA	15.24	B.S.C.	.600 B.S.C.		
eB	-	17.78	-	.700	
L	2.93	3.81	.115	.150	
D1	0.13	-	.005	-	

Figure 36. Ceramic Quad Pack J

CQPJ 44 with Window -Mechanical Outline

Table 60.	CQPJ Package Size
-----------	-------------------

	м	Μ	Inch		
	Min	Max	Min	Max	
A	-	4.90	-	.193	
С	0.15	0.25	.006	.010	
D - E	17.40	17.55	.685	.691	
D1 - E1	16.36	16.66	.644	.656	
е	1.27 TYP		.050 TYP		
f	0.43	0.53	.017	.021	
J	0.86	1.12	.034	.044	
Q	15.49	16.00	.610	.630	
R	0.86 TYP		.034 TYP		
N1	11		11		
N2	1	1	11		

Part Number ⁽¹⁾	ROM	Description		
Low Voltage Versions 2.7 to 5.5 V				
TSC251G2Dxxx-L16CB	32K MaskROM	16 MHz, Commercial 0° to 70°C, PLCC 44		
TSC251G2Dxxx-L16CE	32K MaskROM	16 MHz, Commercial 0° to 70°C, VQFP 44		
AT251G2Dxxx-SLSUL	32K MaskROM	16 MHz, Industrial & Green, PLCC 44		
AT251G2Dxxx-RLTUL	32K MaskROM	16 MHz, Industrial & Green, VQFP 44		

Note: 1. xxx: means ROM code, is Cxxx in case of encrypted code.