

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

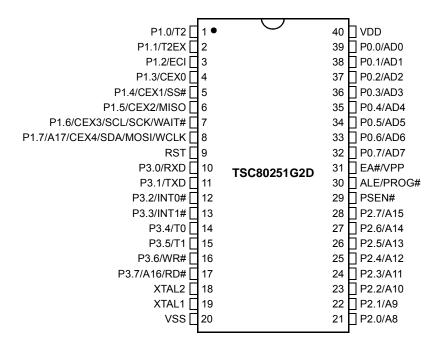
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

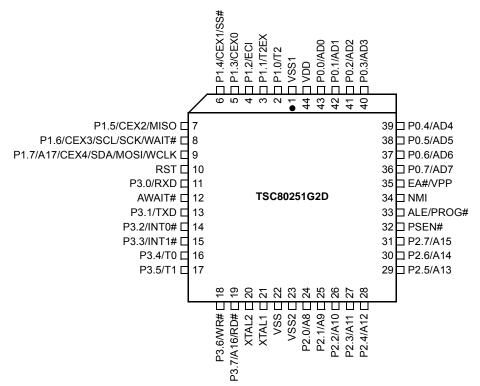
Details

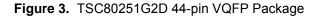
E·XFI

Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	16MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	<u> </u>
Program Memory Type	ROMIess
EEPROM Size	<u>.</u>
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	<u> </u>
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/tsc80251g2d-l16cer

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Pin Description


Pinout

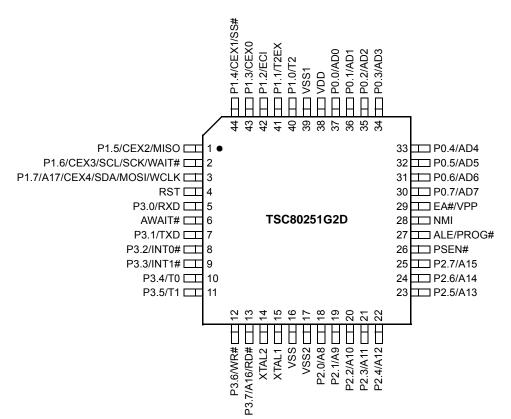

Figure 1. TSC80251G2D 40-pin DIP package

Table 1. TSC80251G2D Pin Assignment

DIP	PLCC	VQFP	Name	DIP	PLCC	VQFP	Name
	1	39	VSS1		23	17	VSS2
1	2	40	P1.0/T2	21	24	18	P2.0/A8
2	3	41	P1.1/T2EX	22	25	19	P2.1/A9
3	4	42	P1.2/ECI	23	26	20	P2.2/A10
4	5	43	P1.3/CEX0	24	27	21	P2.3/A11
5	6	44	P1.4/CEX1/SS#	25	28	22	P2.4/A12
6	7	1	P1.5/CEX2/MISO	26	29	23	P2.5/A13
7	8	2	P1.6/CEX3/SCL/SCK/WAIT#	27	30	24	P2.6/A14
8	9	3	P1.7/A17/CEX4/SDA/MOSI/WCLK	28	31	25	P2.7/A15
9	10	4	RST	29	32	26	PSEN#
10	11	5	P3.0/RXD	30	33	27	ALE/PROG#
	12	6	AWAIT#		34	28	NMI
11	13	7	P3.1/TXD	31	35	29	EA#/VPP
12	14	8	P3.2/INT0#	32	36	30	P0.7/AD7
13	15	9	P3.3/INT1#	33	37	31	P0.6/AD6
14	16	10	P3.4/T0	34	38	32	P0.5/AD5
15	17	11	P3.5/T1	35	39	33	P0.4/AD4
16	18	12	P3.6/WR#	36	40	34	P0.3/AD3
17	19	13	P3.7/A16/RD#	37	41	35	P0.2/AD2
18	20	14	XTAL2	38	42	36	P0.1/AD1
19	21	15	XTAL1	39	43	37	P0.0/AD0
20	22	16	VSS	40	44	38	VDD

Signals

Table 2. Product Name Signal Description

Table 2.	Product Name Signal Description							
Signal Name	Туре	Description	Alternate Function					
A17	0	18th Address Bit Output to memory as 18th external address bit (A17) in extended bus applications, depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).	P1.7					
A16	0	17th Address Bit Output to memory as 17th external address bit (A16) in extended bus applications, depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).	P3.7					
A15:8 ⁽¹⁾	0	Address Lines Upper address lines for the external bus.	P2.7:0					
AD7:0 ⁽¹⁾	I/O	Address/Data Lines Multiplexed lower address lines and data for the external memory.	P0.7:0					
ALE	0	Address Latch Enable ALE signals the start of an external bus cycle and indicates that valid address information are available on lines A16/A17 and A7:0. An external latch can use ALE to demultiplex the address from address/data bus.	-					
AWAIT#	I	Real-time Asynchronous Wait States Input When this pin is active (low level), the memory cycle is stretched until it becomes high. When using the Product Name as a pin-for-pin replacement for a 8xC51 product, AWAIT# can be unconnected without loss of compatibility or power consumption increase (on-chip pull-up). Not available on DIP package.	_					
CEX4:0	I/O	PCA Input/Output pins CEXx are input signals for the PCA capture mode and output signals for the PCA compare and PWM modes.	P1.7:3					
EA#	I	External Access Enable EA# directs program memory accesses to on-chip or off-chip code memory. For EA# = 0, all program memory accesses are off-chip. For EA# = 1, an access is on-chip ROM if the address is within the range of the on-chip ROM; otherwise the access is off-chip. The value of EA# is latched at reset. For devices without ROM on-chip, EA# must be strapped to ground.	_					
ECI	0	PCA External Clock input ECI is the external clock input to the 16-bit PCA timer.	P1.2					
MISO	I/O	SPI Master Input Slave Output line When SPI is in master mode, MISO receives data from the slave peripheral. When SPI is in slave mode, MISO outputs data to the master controller.	P1.5					
MOSI	I/O	SPI Master Output Slave Input line When SPI is in master mode, MOSI outputs data to the slave peripheral. When SPI is in slave mode, MOSI receives data from the master controller.	P1.7					
INT1:0#	I	External Interrupts 0 and 1 INT1#/INT0# inputs set IE1:0 in the TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0 are set by a falling edge on INT1#/INT0#. If bits IT1:0 are cleared, bits IE1:0 are set by a low level on INT1#/INT0#.	P3.3:2					

Table 10. SFR Descriptions

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h		CH 0000 0000	CCAP0H 0000 0000	CCAP1H 0000 0000	CCAP2H 0000 0000	CCAP3H 0000 0000	CCAP4H 0000 0000		FFh
F0h	B ⁽¹⁾ 0000 0000								F7h
E8h		CL 0000 0000	CCAP0L 0000 0000	CCAP1L 0000 0000	CCAP2L 0000 0000	CCAP3L 0000 0000	CCAP4L 0000 0000		EFh
E0h	ACC ⁽¹⁾ 0000 0000								E7h
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		DFh
D0h	PSW ⁽¹⁾ 0000 0000	PSW1 ⁽¹⁾ 0000 0000							D7h
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh
C0h									C7h
B8h	IPL0 X000 0000	SADEN 0000 0000					SPH ⁽¹⁾ 0000 0000		BFh
B0h	P3 1111 1111	IE1 XX0X XXX0	IPL1 XX0X XXX0	IPH1 XX0X XXX0				IPH0 X000 0000	B7h
A8h	IE0 0000 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111						WDTRST 1111 1111	WCON XXXX XX00	A7h
98h	SCON 0000 0000	SBUF XXXX XXXX	BRL 0000 0000	BDRCON XXX0 0000	P1LS 0000 0000	P1IE 0000 0000	P1F 0000 0000		9Fh
90h	P1 1111 1111		SSBR 0000 0000	SSCON ⁽²⁾	SSCS ⁽³⁾	SSDAT 0000 0000	SSADR 0000 0000		97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	CKRL 0000 1000	POWM 0XXX XXXX	8Fh
80h	P0 1111 1111	SP ⁽¹⁾ 0000 0111	DPL ⁽¹⁾ 0000 0000	DPH ⁽¹⁾ 0000 0000	DPXL ⁽¹⁾ 0000 0001			PCON 0000 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Reserved

Notes: 1. These registers are described in the TSC80251 Programmer's Guide (C251 core registers).

- 2. In TWI and SPI modes, SSCON is splitted in two separate registers. SSCON reset value is 0000 0000 in TWI mode and 0000 0100 in SPI mode.
- 3. In read and write modes, SSCS is splitted in two separate registers. SSCS reset value is 1111 1000 in read mode and 0000 0000 in write mode.

Table 12. Configuration Byte 1UCONFIG1

7	6	5	4	3	2	1	0	
CSIZE	-	-	INTR	WSB	WSB1#	WSB0#	EMAP#	
Bit Number	Bit Mnem	nonic De	escription					
7	CSIZ TSC8725	E Cl 1G2D pr	On-Chip Code Memory Size bit ⁽¹⁾ Clear to select 16 KB of on-chip code memory (TSC87251G1D product). Set to select 32 KB of on-chip code memory (TSC87251G2D product).					
	TSC8025 TSC8325		eserved et this bit when	writing to UC	ONFIG1.			
6	-		eserved et this bit when	writing to UCC	ONFIG1.			
5	-		eserved et this bit when	writing to UCC	ONFIG1.			
4	INTF	Cl R by Se	Interrupt Mode bit ⁽²⁾ Clear so that the interrupts push two bytes onto the stack (the two lower bytes of the PC register). Set so that the interrupts push four bytes onto the stack (the three bytes of the PC register and the PSW1 register).					
3	WSE	B CI	Wait State B bit ⁽³⁾ Clear to generate one wait state for memory region 01:. Set for no wait states for memory region 01:.					
2	WSB		ait State B bit				# ciencle for	
1	WSB	ex <u>W</u>	Select the number of wait states for RD#, WR# and PSEN# signals for external memory accesses (only region 01:). WSB1# WSB0# Number of Wait States 0 0 3 0 1 2 1 0 1					
0	0 EMAP# On-Chip Code Memory Map bit Clear to map the upper 16 KB of on-chip code memory (at FF: FF:7FFFh) to the data space (at 00:C000h-00:FFFFh). Set not to map the upper 16 KB of on-chip code memory (at FI FF:7FFFh) to the data space.							

Notes: 1. The CSIZE is only available on EPROM/OTPROM products.

2. Two or four bytes are transparently popped according to INTR when using the RETI instruction. INTR must be set if interrupts are used with code executing outside region FF:.

3. Use only for Step A compatibility; set this bit when WSB1:0# are used.

- Notes: 1. Logical instructions that affect a bit are in Table 27.
 - 2. A shaded cell denotes an instruction in the C51 Architecture.
 - 3. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
 - 4. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.
 - 5. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
 - 6. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

Table 23.	Summar	of Logical	Instructions	(2/2)

$ Shift Left LogicalSLL _{0} \leftarrow 0 _{n+1} \leftarrow _{n}, n = 0msb-1 (CY) \leftarrow _{msb} \\ Shift Right ArithmeticSRA _{msb} \leftarrow _{msb} \\ _{n-1} \leftarrow _{n}, n = msb1 (CY) \leftarrow _{0} \\ Shift Right LogicalSRL _{msb} \leftarrow 0 \\ _{n-1} \leftarrow _{n}, n = msb1 \\ (CY) \leftarrow _{0} \\ SwapSWAP AA_{3:0} A_{7:4} \\ Aa_{3:0} A_{7:4} \\ $									
	<dest>,</dest>		Binary	Mode	Source	e Mode			
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States			
	Rm	Shift byte register left through the MSB	3	2	2	1			
SLL	WRj	Shift word register left through the MSB	3	2	2	1			
CDA	Rm	Shift byte register right	3	2	2	1			
SRA WRj Shift word register right 3 2 2					1				
Rm		Shift byte register left	3	2	2	1			
SRL WRj Shift word register left 3 2 2 1									
SWAP	А	A Swap nibbles within ACC 1 2 1 2							

Note: 1. A shaded cell denotes an instruction in the C51 Architecture.

Table 25. Summary of Move Instructions (1/3)

Move to High wordMOVH <dest>, <src>dest opnd_{$31:16 \leftarrow src opnd$}</src></dest>
Move with Sign extensionMOVS <dest>, <src>dest opnd \leftarrow src opnd with sign extend</src></dest>
Move with Zero extensionMOVZ <dest>, <src>dest opnd \leftarrow src opnd with zero extend</src></dest>
Move CodeMOVC A, $<$ src>(A) \leftarrow src opnd

Move eXtendedMOVX <dest>, <src>dest opnd \leftarrow src opnd

	dosta		Binary	Mode	Source	e Mode
Mnemonic	<dest>, <src>⁽²⁾</src></dest>	Comments	Bytes	States	Bytes	States
MOVH	DRk, #data16	16-bit immediate data into upper word of dword register	5	3	4	2
MOVS	WRj, Rm	Byte register to word register with sign extension	3	2	2	1
MOVZ	WRj, Rm	Byte register to word register with zeros extension	3	2	2	1
A, at A +DPT		Code byte relative to DPTR to ACC	1	6 ⁽³⁾	1	6 ⁽³⁾
	A, at A +PC	Code byte relative to PC to ACC	1	6 ⁽³⁾	1	6 ⁽³⁾
	A, at Ri	Extended memory (8-bit address) to ACC ⁽²⁾	1	4	1	5
MOVX	A, at DPTR	Extended memory (16-bit address) to ACC ⁽²⁾	1	3 ⁽⁴⁾	1	3 ⁽⁴⁾
	at Ri, A	ACC to extended memory (8-bit address) ⁽²⁾	1	4	1	4
	at DPTR, A	ACC to extended memory (16-bit address) ⁽²⁾	1	4 ⁽³⁾	1	4 ⁽³⁾

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. Extended memory addressed is in the region specified by DPXL (reset value = 01h).

- 3. If this instruction addresses external memory location, add N+1 to the number of states (N: number of wait states).
- 4. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).

			Binary	Mode	Source Mode	
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	States
MOV	Rmd, Rms	Byte register to byte register	3	2	2	1
MOV	WRjd, WRjs	Word register to word register	3	2	2	1
MOV	DRkd, DRks	Dword register to dword register	3	3	2	2
MOV	Rm, #data	Immediate 8-bit data to byte register	4	3	3	2
MOV	WRj, #data16	Immediate 16-bit data to word register	5	3	4	2
MOV	DRk, #0data16	zero-ext 16bit immediate data to dword register	5	5	4	4
MOV	DRk, #1data16	one-ext 16bit immediate data to dword register	5	5	4	4
MOV	Rm, dir8	Direct address (on-chip RAM or SFR) to byte register	4	3 ⁽³⁾	3	2 ⁽³⁾
MOV	WRj, dir8	Direct address (on-chip RAM or SFR) to word register	4	4	3	3
MOV	DRk, dir8	Direct address (on-chip RAM or SFR) to dword register	4	6	3	5
MOV	Rm, dir16	Direct address (64K) to byte register	5	3 ⁽⁴⁾	4	2 ⁽⁴⁾
MOV	WRj, dir16	Direct address (64K) to word register		4 ⁽⁵⁾	4	3 ⁽⁵⁾
MOV	DRk, dir16	Direct address (64K) to dword register	5	6 ⁽⁶⁾	4	5 ⁽⁶⁾
MOV	Rm, at WRj	Indirect address (64K) to byte register	4	3 ⁽⁴⁾	3	2(4)
MOV	Rm, at DRk	Indirect address (16M) to byte register	4	4 ⁽⁴⁾	3	3(4)
MOV	WRjd, at WRjs	Indirect address (64K) to word register	4	4 ⁽⁵⁾	3	3 ⁽⁵⁾
MOV	WRj, at DRk	Indirect address (16M) to word register	4	5 ⁽⁵⁾	3	4 ⁽⁵⁾
MOV	dir8, Rm	Byte register to direct address (on-chip RAM or SFR)	4	4 ⁽³⁾	3	3 ⁽³⁾
MOV	dir8, WRj	Word register to direct address (on-chip RAM or SFR)	4	5	3	4
MOV	dir8, DRk	Dword register to direct address (on-chip RAM or SFR)	4	7	3	6
MOV	dir16, Rm	Byte register to direct address (64K)	5	4 ⁽⁴⁾	4	3(4)
MOV	dir16, WRj	Word register to direct address (64K)	5	5 ⁽⁵⁾	4	4 ⁽⁵⁾
MOV	dir16, DRk	Dword register to direct address (64K)	5	7 ⁽⁶⁾	4	6 ⁽⁶⁾
MOV	at WRj, Rm	Byte register to indirect address (64K)	4	4 ⁽⁴⁾	3	3(4)
MOV	at DRk, Rm	Byte register to indirect address (16M)	4	5 ⁽⁴⁾	3	4 ⁽⁴⁾
MOV	at WRjd, WRjs	Word register to indirect address (64K)	4	5 ⁽⁵⁾	3	4 ⁽⁵⁾
MOV	at DRk, WRj	Word register to indirect address (16M)	4	6 ⁽⁵⁾	3	5 ⁽⁵⁾
MOV	Rm, at WRj +dis16	Indirect with 16-bit displacement (64K) to byte register	5	6 ⁽⁴⁾	4	5 ⁽⁴⁾
MOV	WRj, at WRj +dis16	Indirect with 16-bit displacement (64K) to word register	5	7 ⁽⁵⁾	4	6 ⁽⁵⁾
MOV	Rm, at DRk +dis24	Indirect with 16-bit displacement (16M) to byte register	5	7 ⁽⁴⁾	4	6 ⁽⁴⁾

Programming and Verifying Non-volatile Memory

Internal Features

The internal non-volatile memory of the TSC80251G2D derivatives contains five different areas:

- Code Memory
- Configuration Bytes
- Lock Bits
- Encryption Array
- Signature Bytes

EPROM/OTPROM Devices All the internal non-volatile memory but the Signature Bytes of the TSC87251G2D products are made of EPROM cells. The Signature Bytes of the TSC87251G2D products are made of Mask ROM.

The TSC87251G2D products are programmed and verified in the same manner as Atmel's TSC87251G1A, using a SINGLE-PULSE algorithm, which programs at V_{PP} = 12.75V using only one 100µs pulse per byte. This results in a programming time of less than 10 seconds for the 32 kilobytes on-chip code memory.

The EPROM of the TSC87251G2D products in Window package is erasable by Ultra-Violet radiation⁽¹⁾ (UV). UV erasure set all the EPROM memory cells to one and allows reprogramming. The quartz window must be covered with an opaque label⁽²⁾ when the device is in operation. This is not so much to protect the EPROM array from inadvertent erasure, as to protect the RAM and other on-chip logic. Allowing light to impinge on the silicon die during device operation may cause a logical malfunction.

The TSC87251G2D products in plastic packages are One Time Programmable (OTP). An EPROM cell cannot be reset by UV once programmed to zero.

- Notes: 1. The recommended erasure procedure is exposure to ultra-violet light (at 2537 Å) to an integrated dose of at least 20 W-sec/cm². Exposing the EPROM to an ultra-violet lamp of 12000 μW/cm² rating for 30 minutes should be sufficient.
 - 2. Erasure of the EPROM begins to occur when the chip is exposed to light wavelength shorter than 4000 Å. Since sunlight and fluorescent light have wavelength in this range, exposure to these light sources over an extended time (1 week in sunlight or 3 years in room-level fluorescent lighting) could cause inadvertent erasure.
- Mask ROM DevicesAll the internal non-volatile memory of TSC83251G2D products is made of Mask ROM
cells. They can only be verified by the user, using the same algorithm as the
EPROM/OTPROM devices.

ROMIess DevicesThe TSC80251G2D products do not include on-chip Configuration Bytes, Code Memory
and Encryption Array. They only include Signature Bytes made of Mask ROM cells
which can be read using the same algorithm as the EPROM/OTPROM devices.

- **Security Features** In some microcontroller applications, it is desirable that the user's program code be secured from unauthorized access. The TSC83251G2D and TSC87251G2D offer two kinds of protection for program code stored in the on-chip array:
 - Program code in the on-chip Code Memory is encrypted when read out for verification if the Encryption Array isprogrammed.
 - A three-level lock bit system restricts external access to the on-chip code memory.

Lock Bit System

The TSC87251G2D products implement 3 levels of security for User's program as described in Table 33. The TSC83251G2D products implement only the first level of security.

Level 0 is the level of an erased part and does not enable any security features.

Level 1 locks the programming of the User's internal Code Memory, the Configuration Bytes and the Encryption Array.

Level 2 locks the verifying of the User's internal Code Memory. It is always possible to verify the Configuration Bytes and the Lock Bits. It is not possible to verify the Encryption Array.

Level 3 locks the external execution.

Level	Lock bits LB[2:0]	Internal Execution	External Execution	Verification	Programming	External PROM read (MOVC)
0	000	Enable	Enable	Enable ⁽¹⁾	Enable	Enable ⁽²⁾
1	001	Enable	Enable	Enable ⁽¹⁾	Disable	Disable
2	01x ⁽³⁾	Enable	Enable	Disable	Disable	Disable
3	1xx ⁽³⁾	Enable	Disable	Disable	Disable	Disable

Table 33. Lock Bits Programming

Notes: 1. Returns encrypted data if Encryption Array is programmed.

2. Returns non encrypted data.

3. x means don't care. Level 2 always enables level 1, and level 3 always enables levels 1 and 2.

The security level may be verified according to Table 34.

Table 34. Lock Bits Verifying

Level	Lock bits Data ⁽¹⁾
0	xxxxx000
1	xxxxx001
2	xxxxx01x
3	xxxxx1xx

Note: 1. x means don't care.

Encryption Array

The TSC83251G2D and TSC87251G2D products include a 128-byte Encryption Array located in non-volatile memory outside the memory address space. During verification of the on-chip code memory, the seven low-order address bits also address the Encryption Array. As the byte of the code memory is read, it is exclusive-NOR'ed (XNOR) with the key byte from the Encryption Array. If the Encryption Array is not programmed (still all 1s), the user program code is placed on the data bus in its original, unencrypted form. If the Encryption Array is programmed with key bytes, the user program code is encrypted and cannot be used without knowledge of the key byte sequence.

• PSEN# and the other control signals have to be released to complete a sequence of programming operations or a sequence of programming and verifying operations.

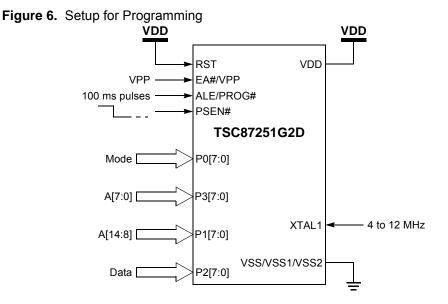


 Table 36.
 Programming Modes

ROM Area ⁽¹⁾	RST	EA#/VPP	PSEN #	ALE/PROG# ⁽²⁾	P0	P2	P1(MSB) P3(LSB)
On-chip Code Memory	1	V _{PP}	0	1 Pulse	68h	Data	16-bit Address 0000h-7FFFh (32 kilobytes)
Configuration Bytes	1	V _{PP}	0	1 Pulse	69h	Data	CONFIG0: FFF8h CONFIG1: FFF9h
Lock Bits	1	V _{PP}	0	1 Pulse	6Bh	х	LB0: 0001h LB1: 0002h LB2: 0003h
Encryption Array	1	V _{PP}	0	1 Pulse	6Ch	Data	0000h-007Fh

Notes: 1. Signature Bytes are not user-programmable.

2. The ALE/PROG# pulse waveform is shown in Figure 23 page 59.

Verify Algorithm

Figure 7 shows the hardware setup needed to verify the TSC87251G2D EPROM/OTPROM or TSC83251G2D ROM areas:

- The chip has to be put under reset and maintained in this state until the completion of the verifying sequence.
- PSEN# and the other control signals (ALE and Port 0) have to be set to a high level.
- Then PSEN# has to be to forced to a low level after two clock cycles or more and it
 has to be maintained in this state until the completion of the verifying sequence (see
 below).
- The voltage on the EA# pin must be set to V_{DD} and ALE must be set to a high level.
- The Verifying Mode is selected according to the code applied on Port 0. It has to be applied until the completion of this verifying operation.
- The verifying address is applied on Ports 1 and 3 which are respectively the MSB and the LSB of the address.

		12	MHz	16	MHz	24 MHz		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
T _{OSC}	1/F _{osc}	83		62		41		ns
T _{LHLL}	ALE Pulse Width	78		58		38		ns ⁽²⁾
T _{AVLL}	Address Valid to ALE Low	78		58		37		ns ⁽²⁾
T_{LLAX}	Address hold after ALE Low	19		11		3		ns
T _{RLRH} ⁽¹⁾	RD#/PSEN# Pulse Width	162		121		78		ns ⁽³⁾
T _{WLWH}	WR# Pulse Width	165		124		81		ns ⁽³⁾
$T_{LLRL}^{(1)}$	ALE Low to RD#/PSEN# Low	22		14		6		ns
T _{LHAX}	ALE High to Address Hold	99		70		40		ns ⁽²⁾
T _{RLDV} ⁽¹⁾	RD#/PSEN# Low to Valid Data		146		104		61	ns ⁽³⁾
$T_{RHDX}^{(1)}$	Data Hold After RD#/PSEN# High	0		0		0		ns
T _{RHAX} ⁽¹⁾	Address Hold After RD#/PSEN# High	0		0		0		ns
T _{RLAZ} ⁽¹⁾	RD#/PSEN# Low to Address Float		0		0		0	ns
T _{RHDZ1}	Instruction Float After RD#/PSEN# High		45		40		30	ns
T _{RHDZ2}	Data Float After RD#/PSEN# High		215		165		115	ns
T _{RHLH1}	RD#/PSEN# high to ALE High (Instruction)	49		43		31		ns
T _{RHLH2}	RD#/PSEN# high to ALE High (Data)	215		169		115		ns
T _{WHLH}	WR# High to ALE High	215		169		115		ns
T _{AVDV1}	Address (P0) Valid to Valid Data In		250		175		105	ns ⁽²⁾⁽³
T _{AVDV2}	Address (P2) Valid to Valid Data In		306		223		140	ns ⁽²⁾⁽³
T _{AVDV3}	Address (P0) Valid to Valid Instruction In		150		109		68	ns ⁽³⁾
T _{AXDX}	Data Hold after Address Hold	0		0		0		ns
T _{AVRL} ⁽¹⁾	Address Valid to RD# Low	100		70		40		ns ⁽²
T _{AVWL1}	Address (P0) Valid to WR# Low	100		70		40		ns ⁽²
T _{AVWL2}	Address (P2) Valid to WR# Low	158		115		74		ns ⁽²
T _{WHQX}	Data Hold after WR# High	90		69		32		ns
T _{QVWH}	Data Valid to WR# High	133		102		72		ns ⁽³
T _{WHAX}	WR# High to Address Hold	167		125		84		ns

Table 39. Bus Cycles AC Timings;	V_{DD} = 4.5 to 5.5 V, T_A = -40 to 85°C
----------------------------------	--

Notes: 1. Specification for PSEN# are identical to those for RD#.

2. If a wait state is added by extending ALE, add $2 \cdot T_{OSC}$. 3. If wait states are added by extending RD#/PSEN#/WR#, add $2N \cdot T_{OSC}$ (N = 1..3).

			MHz	16 I	MHz	
Symbol	Parameter	Min	Max	Min	Max	Unit
T _{osc}	1/F _{osc}	83		62		ns
T _{LHLL}	ALE Pulse Width	72		52		ns ⁽²⁾
T _{AVLL}	Address Valid to ALE Low	71		51		ns ⁽²⁾
T _{LLAX}	Address hold after ALE Low	14		6		ns
T _{RLRH} ⁽¹⁾	RD#/PSEN# Pulse Width	163		121		ns ⁽³⁾
T _{WLWH}	WR# Pulse Width	165		124		ns ⁽³⁾
T _{LLRL} ⁽¹⁾	ALE Low to RD#/PSEN# Low	17		11		ns
T _{LHAX}	ALE High to Address Hold	90		57		ns ⁽²⁾
T _{RLDV} ⁽¹⁾	RD#/PSEN# Low to Valid Data		133		92	ns ⁽³⁾
T _{RHDX} ⁽¹⁾	Data Hold After RD#/PSEN# High	0		0		ns
T _{RHAX} ⁽¹⁾	Address Hold After RD#/PSEN# High	0		0		ns
T _{RLAZ} ⁽¹⁾	RD#/PSEN# Low to Address Float		0		0	ns
T _{RHDZ1}	Instruction Float After RD#/PSEN# High		59		48	ns
T _{RHDZ2}	Data Float After RD#/PSEN# High		225		175	ns
T _{RHLH1}	RD#/PSEN# high to ALE High (Instruction)	60		47		ns
T _{RHLH2}	RD#/PSEN# high to ALE High (Data)	226		172		ns
T _{WHLH}	WR# High to ALE High	226		172		ns
T _{AVDV1}	Address (P0) Valid to Valid Data In		289		160	ns ⁽²⁾⁽³⁾
T _{AVDV2}	Address (P2) Valid to Valid Data In		296		211	ns ⁽²⁾⁽³⁾
T _{AVDV3}	Address (P0) Valid to Valid Instruction In		144		98	ns ⁽³⁾
T _{AXDX}	Data Hold after Address Hold	0		0		ns
T _{AVRL} ⁽¹⁾	Address Valid to RD# Low	111		64		ns ⁽²⁾
T _{AVWL1}	Address (P0) Valid to WR# Low	111		64		ns ⁽²⁾
T _{AVWL2}	Address (P2) Valid to WR# Low	158		116		ns ⁽²⁾
T _{WHQX}	Data Hold after WR# High	82		66		ns
T _{QVWH}	Data Valid to WR# High	135		103		ns ⁽³⁾
T _{WHAX}	WR# High to Address Hold	168		125		ns

Table 40. Bus Cycles AC Timings; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C

Notes: 1. Specification for PSEN# are identical to those for RD#.

2. If a wait state is added by extending ALE, add $2 \cdot T_{OSC}$. 3. If wait states are added by extending RD#/PSEN#/WR#, add $2N \cdot T_{OSC}$ (N = 1..3).

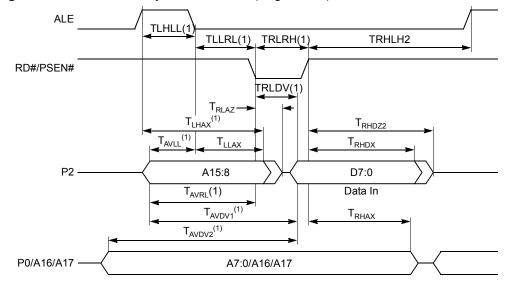
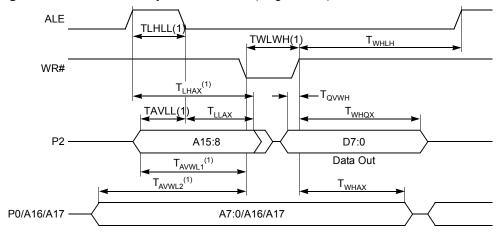
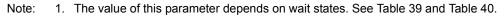




Figure 12. External Bus Cycle: Data Read (Page Mode)

Figure 13. External Bus Cycle: Data Write (Page Mode)

AC Characteristics - Real-Time Synchronous Wait State

Definition of Symbols

Table 41. Real-Time Synchronous Wait Timing Symbol Definitions

Signals						
С	WCLK					
R	RD#/PSEN#					
W	WR#					
Y	WAIT#					

Conditions						
L	Low					
V	Valid					
Х	No Longer Valid					

50 AT/TSC8x251G2D

AC Characteristics - SSLC: SPI Interface

Definition of Symbols

Table 48. SPI Interface Timing Symbol Definitions

	Signals					
С	Clock					
I	Data In					
0	Data Out					
S	SS#					

	Conditions			
Н	High			
L	Low			
V	Valid			
Х	No Longer Valid			
Z Floating				

DC Characteristics

High Speed Versions - Commercial, Industrial, and Automotive

Symbol	Parameter	Min	Typical ⁽⁴⁾	Max	Units	Test Conditions
V _{IL}	Input Low Voltage (except EA#, SCL, SDA)	-0.5		0.2·V _{DD} - 0.1	V	
$V_{IL1}^{(5)}$	Input Low Voltage (SCL, SDA)	-0.5		0.3·V _{DD}	V	
V_{IL2}	Input Low Voltage (EA#)	0		0.2·V _{DD} - 0.3	V	
V _{IH}	Input high Voltage (except XTAL1, RST, SCL, SDA)	0.2·V _{DD} + 0.9		V _{DD} + 0.5	V	
$V_{IH1}^{(5)}$	Input high Voltage (XTAL1, RST, SCL, SDA)	0.7·V _{DD}		V _{DD} + 0.5	V	
V _{OL}	Output Low Voltage (Ports 1, 2, 3)			0.3 0.45 1.0	V	$I_{OL} = 100 \ \mu A^{(1)(2)}$ $I_{OL} = 1.6 \ m A^{(1)(2)}$ $I_{OL} = 3.5 \ m A^{(1)(2)}$
V _{OL1}	Output Low Voltage (Ports 0, ALE, PSEN#, Port 2 in Page Mode during External Address)			0.3 0.45 1.0	V	$I_{OL} = 200 \ \mu A^{(1)(2)}$ $I_{OL} = 3.2 \ m A^{(1)(2)}$ $I_{OL} = 7.0 \ m A^{(1)(2)}$
V _{OH}	Output high Voltage (Ports 1, 2, 3, ALE, PSEN#)	V _{DD} - 0.3 V _{DD} - 0.7 V _{DD} - 1.5			V	$\begin{split} I_{OH} &= -10 \ \mu A^{(3)} \\ I_{OH} &= -30 \ \mu A^{(3)} \\ I_{OH} &= -60 \ \mu A^{(3)} \end{split}$
V _{OH1}	Output high Voltage (Port 0, Port 2 in Page Mode during External Address)	V _{DD} - 0.3 V _{DD} - 0.7 V _{DD} - 1.5			V	I _{OH} = -200 μA I _{OH} = -3.2 mA I _{OH} = -7.0 mA
V_{RET}	V _{DD} data retention limit			1.8	V	
I _{IL0}	Logical 0 Input Current (Ports 1, 2, 3)			- 50	μA	V _{IN} = 0.45 V
I _{IL1}	Logical 1 Input Current (NMI)			+ 50	μA	V _{IN} = V _{DD}
I _{LI}	Input Leakage Current (Port 0)			± 10	μA	0.45 V < V _{IN} < V _{DD}
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3 - AWAIT#)			- 650	μA	V _{IN} = 2.0 V
R _{RST}	RST Pull-Down Resistor	40	110	225	kΩ	
CIO	Pin Capacitance		10		pF	T _A = 25°C
I _{DD}	Operating Current		20 25 35	25 30 40	mA	F_{OSC} = 12 MHz F_{OSC} = 16 MHz F_{OSC} = 24 MHz
I _{DL}	Idle Mode Current		5 6.5 9.5	8 10 14	mA	F_{OSC} = 12 MHz F_{OSC} = 16 MHz F_{OSC} = 24 MHz
I _{PD}	Power-Down Current		2	20	μA	$V_{RET} < V_{DD} < 5.5 V$
V_{PP}	Programming supply voltage	12.5		13	V	$T_A = 0$ to +40°C
I _{PP}	Programming supply current	1		75	mA	T _A = 0 to +40°C

Low Voltage Versions - Commercial & Industrial

Table 56.	DC Characteristics;	V _{DD} = 2.7 to	5.5 V, T _A :	= -40 to +85°C
-----------	---------------------	--------------------------	-------------------------	----------------

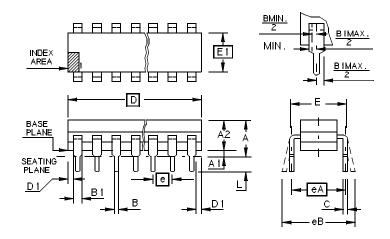
Symbol	Parameter	Min	Typical ⁽⁴⁾	Max	Units	Test Conditions
V _{IL}	Input Low Voltage (except EA#, SCL, SDA)	-0.5		0.2·V _{DD} - 0.1	V	
$V_{IL1}^{(5)}$	Input Low Voltage (SCL, SDA)	-0.5		0.3·V _{DD}	v	
V _{IL2}	Input Low Voltage (EA#)	0		0.2·V _{DD} - 0.3	V	
V _{IH}	Input high Voltage (except XTAL1, RST, SCL, SDA)	0.2·V _{DD} + 0.9		V _{DD} + 0.5	V	
$V_{\rm IH1}^{(5)}$	Input high Voltage (XTAL1, RST, SCL, SDA)	0.7·V _{DD}		V _{DD} + 0.5	v	
V _{OL}	Output Low Voltage (Ports 1, 2, 3)			0.45	v	$I_{OL} = 0.8 \text{ mA}^{(1)(2)}$
V _{OL1}	Output Low Voltage (Ports 0, ALE, PSEN#, Port 2 in Page Mode during External Address)			0.45	v	I _{OL} = 1.6 mA ⁽¹⁾⁽²⁾
V _{OH}	Output high Voltage (Ports 1, 2, 3, ALE, PSEN#)	0.9·V _{DD}			V	I _{OH} = -10 μA ⁽³⁾
V _{OH1}	Output high Voltage (Port 0, Port 2 in Page Mode during External Address)	0.9·V _{DD}			v	Ι _{ΟΗ} = -40 μΑ
V_{RET}	V _{DD} data retention limit			1.8	V	
I _{ILO}	Logical 0 Input Current (Ports 1, 2, 3 - AWAIT#)			- 50	μA	V _{IN} = 0.45 V
I _{IL1}	Logical 1 Input Current (NMI)			+ 50	μA	V _{IN} = V _{DD}
I _{LI}	Input Leakage Current (Port 0)			± 10	μΑ	0.45 V < V _{IN} < V _{DD}
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3)			- 650	μΑ	V _{IN} = 2.0 V
R _{RST}	RST Pull-Down Resistor	40	110	225	kΩ	
C _{IO}	Pin Capacitance		10		pF	T _A = 25°C
I _{DD}	Operating Current		4 8 9 11	8 11 12 14	mA	$\begin{array}{l} 5 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 10 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 12 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 16 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \end{array}$
I _{DL}	Idle Mode Current		0.5 1.5 2 3	1 4 5 7	mA	$\begin{array}{c} 5 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 10 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 12 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \\ 16 \text{ MHz, } V_{\text{DD}} < 3.6 \text{ V} \end{array}$
I _{PD}	Power-Down Current		1	10	μA	V _{RET} < V _{DD} < 3.6 V

Notes: 1. Under steady-state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum IOL per port pin: 10 mA

Maximum IOL per 8-bit port: Port 0 26 mA

Ports 1-315 mA

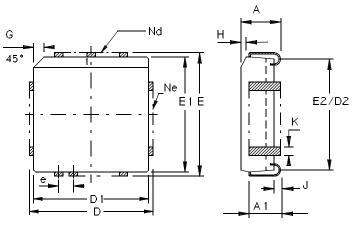

Packages

List of Packages

- PDIL 40
- CDIL 40 with window
- PLCC 44
- CQPJ 44 with window
- VQFP 44 (10x10)

PDIL 40 - Mechanical Outline

Figure 33. Plastic Dual In Line


Table 57. PDIL Package Size

	MM		Inch				
	Min	Мах	Min	Мах			
A	-	5.08	-	.200			
A1	0.38	-	.015	-			
A2	3.18	4.95	.125	.195			
В	0.36	0.56	.014	.022			
B1	0.76	1.78	.030	.070			
С	0.20	0.38	.008	.015			
D	50.29	53.21	1.980	2.095			
E	15.24	15.87	.600	.625			
E1	12.32	14.73	.485	.580			
е	2.54 B.S.C.		.100 B.S.C.				
eA	15.24 B.S.C.		.600 B.S.C.				
eB	-	17.78	-	.700			
L	2.93	3.81	.115	.150			
D1	0.13	-	.005	-			

PLCC 44 - Mechanical Outline

Table 59. PLCC Package Size

	ММ		Inch	
	Min	Max	Min	Max
А	4.20	4.57	.165	.180
A1	2.29	3.04	.090	.120
D	17.40	17.65	.685	.695
D1	16.44	16.66	.647	.656
D2	14.99	16.00	.590	.630
E	17.40	17.65	.685	.695
E1	16.44	16.66	.647	.656
E2	14.99	16.00	.590	.630
е	1.27 BSC		.050 BSC	
G	1.07	1.22	.042	.048
Н	1.07	1.42	.042	.056
J	0.51	-	.020	-
К	0.33	0.53	.013	.021
Nd	11		11	
Ne	11		11	