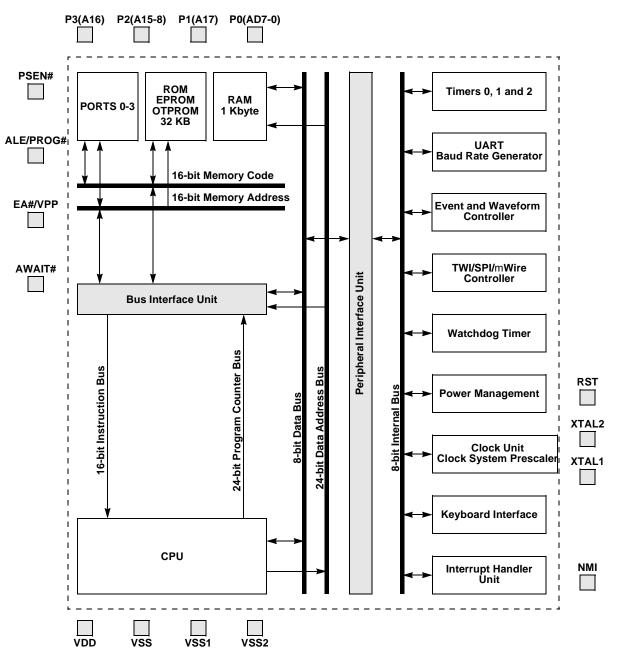


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	16MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/tsc87251g2d-16cb

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

Table 10. SFR Descriptions

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h		CH 0000 0000	CCAP0H 0000 0000	CCAP1H 0000 0000	CCAP2H 0000 0000	CCAP3H 0000 0000	CCAP4H 0000 0000		FFh
F0h	B ⁽¹⁾ 0000 0000								F7h
E8h		CL 0000 0000	CCAP0L 0000 0000	CCAP1L 0000 0000	CCAP2L 0000 0000	CCAP3L 0000 0000	CCAP4L 0000 0000		EFh
E0h	ACC ⁽¹⁾ 0000 0000								E7h
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		DFh
D0h	PSW ⁽¹⁾ 0000 0000	PSW1 ⁽¹⁾ 0000 0000							D7h
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh
C0h									C7h
B8h	IPL0 X000 0000	SADEN 0000 0000					SPH ⁽¹⁾ 0000 0000		BFh
B0h	P3 1111 1111	IE1 XX0X XXX0	IPL1 XX0X XXX0	IPH1 XX0X XXX0				IPH0 X000 0000	B7h
A8h	IE0 0000 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111						WDTRST 1111 1111	WCON XXXX XX00	A7h
98h	SCON 0000 0000	SBUF XXXX XXXX	BRL 0000 0000	BDRCON XXX0 0000	P1LS 0000 0000	P1IE 0000 0000	P1F 0000 0000		9Fh
90h	P1 1111 1111		SSBR 0000 0000	SSCON ⁽²⁾	SSCS ⁽³⁾	SSDAT 0000 0000	SSADR 0000 0000		97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	CKRL 0000 1000	POWM 0XXX XXXX	8Fh
80h	P0 1111 1111	SP ⁽¹⁾ 0000 0111	DPL ⁽¹⁾ 0000 0000	DPH ⁽¹⁾ 0000 0000	DPXL ⁽¹⁾ 0000 0001			PCON 0000 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Reserved

Notes: 1. These registers are described in the TSC80251 Programmer's Guide (C251 core registers).

- 2. In TWI and SPI modes, SSCON is splitted in two separate registers. SSCON reset value is 0000 0000 in TWI mode and 0000 0100 in SPI mode.
- 3. In read and write modes, SSCS is splitted in two separate registers. SSCS reset value is 1111 1000 in read mode and 0000 0000 in write mode.

Table 12. Configuration Byte 1UCONFIG1

7	6	5	4	3	2	1	0
CSIZE	-	-	INTR	WSB	WSB1#	WSB0#	EMAP#
Bit Number	Bit Mnem	nonic De	Description				
7	CSIZE TSC87251G2D 7		On-Chip Code Memory Size bit ⁽¹⁾ Clear to select 16 KB of on-chip code memory (TSC87251G1D product). Set to select 32 KB of on-chip code memory (TSC87251G2D product).				
	TSC8025 TSC8325		Reserved Set this bit when writing to UCONFIG1.				
6	-		Reserved Set this bit when writing to UCONFIG1.				
5	-		Reserved Set this bit when writing to UCONFIG1.				
4	INTF	Cl R by Se	Interrupt Mode bit ⁽²⁾ Clear so that the interrupts push two bytes onto the stack (the two lower bytes of the PC register). Set so that the interrupts push four bytes onto the stack (the three bytes of the PC register and the PSW1 register).				
3	WSE	B CI	ait State B bit ear to generate et for no wait st	e one wait stat			
2	WSB		ait State B bit				# ciencle for
1	WSB	ex <u>W</u>	Select the number of wait states for RD#, WR# and PSEN# signals foexternal memory accesses (only region 01:).WSB1#WSB0#Number of Wait States00301210				
0	EMAF	P# FF Se	1 1 0 On-Chip Code Memory Map bit Clear to map the upper 16 KB of on-chip code memory (at FF:4000h-FF:7FFFh) to the data space (at 00:C000h-00:FFFFh). Set not to map the upper 16 KB of on-chip code memory (at FF:4000h FF:7FFFh) to the data space.				

Notes: 1. The CSIZE is only available on EPROM/OTPROM products.

2. Two or four bytes are transparently popped according to INTR when using the RETI instruction. INTR must be set if interrupts are used with code executing outside region FF:.

3. Use only for Step A compatibility; set this bit when WSB1:0# are used.

Instruction Set Summary

This section contains tables that summarize the instruction set. For each instruction there is a short description, its length in bytes, and its execution time in states (one state time is equal to two system clock cycles). There are two concurrent processes limiting the effective instruction throughput:

- Instruction Fetch
- Instruction Execution

Table 20 to Table 32 assume code executing from on-chip memory, then the CPU is fetching 16-bit at a time and this is never limiting the execution speed.

If the code is fetched from external memory, a pre-fetch queue will store instructions ahead of execution to optimize the memory bandwidth usage when slower instructions are executed. However, the effective speed may be limited depending on the average size of instructions (for the considered section of the program flow). The maximum average instruction throughput is provided by Table 14 depending on the external memory configuration (from Page Mode to Non-Page Mode and the maximum number of wait states). If the average size of instructions is not an integer, the maximum effective throughput is found by pondering the number of states for the neighbor integer values.

Average size		Non-page Mode (states)						
of Instructions (bytes)	Page Mode (states)	0 Wait State	1 Wait State	2 Wait States	3 Wait States	4 Wait States		
1	1	2	3	4	5	6		
2	2	4	6	8	10	12		
3	3	6	9	12	15	18		
4	4	8	12	16	20	24		
5	5	10	15	20	25	30		

 Table 14.
 Minimum Number of States per Instruction for given Average Sizes

If the average execution time of the considered instructions is larger than the number of states given by Table 14, this larger value will prevail as the limiting factor. Otherwise, the value from Table 14 must be taken. This is providing a fair estimation of the execution speed but only the actual code execution can provide the final value.

Table 15 to Table 19 provide notation for Instruction Operands.

Notation for Instruction Operands

.

Table 15. Notation for Direct Addressing

Direct Address	Description	C251	C51
dir8	A direct 8-bit address. This can be a memory address (00h-7Fh) or a SFR address (80h-FFh). It is a byte (default), word or double word depending on the other operand.	3	з
dir16	A 16-bit memory address (00:0000h-00:FFFFh) used in direct addressing.	3	_

Register	Description	C251	C51
at Ri	A memory location (00h-FFh) addressed indirectly via byte registers R0 or R1	_	3
Rn n	Byte register R0-R7 of the currently selected register bank Byte register index: n = 0-7	_	3
Rm Rmd Rms m, md, ms	Byte register R0-R15 of the currently selected register file Destination register Source register Byte register index: m, md, ms = 0-15	3	-
WRj WRjd WRjs at WRj at WRj +dis16 j, jd, js	Word register WR0, WR2,, WR30 of the currently selected register file Destination register Source register A memory location (00:0000h-00:FFFFh) addressed indirectly through word register WR0-WR30, is the target address for jump instructions. A memory location (00:0000h-00:FFFFh) addressed indirectly through word register (WR0-WR30) + 16-bit signed (two's complement) displacement value Word register index: j, jd, js = 0-30	3	_
DRk DRkd DRks at DRk at DRk +dis16 k, kd, ks	Dword register DR0, DR4,, DR28, DR56, DR60 of the currently selected register file Destination register Source register A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register DR0-DR28, DR56 and DR60, is the target address for jump instruction A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register (DR0-DR28, DR56, DR60) + 16-bit (two's complement) signed displacement value Dword register index: k, kd, ks = 0, 4, 8, 28, 56, 60	3	_

Table 19. Notation for Register Operands

Add 3 if it addresses a Peripheral SFR.

- 5. If this instruction addresses an I/O Port (Px, x = 0-3), add 3 to the number of states. Add 5 if it addresses a Peripheral SFR.
- 6. In internal execution only, add 1 to the number of states of the 'jump taken' if the destination address is internal and odd.

Table 31. Summary of Unconditional Jump Instructions

Absolute jumpAJMP <src>(PC) \leftarrow (PC) +2; (PC)_{10:0} \leftarrow src opnd Extended jumpEJMP <src>(PC) \leftarrow (PC) + size (instr); (PC)_{23:0} \leftarrow src opnd Long jumpLJMP <src>(PC) \leftarrow (PC) + size (instr); (PC)_{15:0} \leftarrow src opnd Short jumpSJMP rel(PC) \leftarrow (PC) +2; (PC) \leftarrow (PC) +rel Jump indirectJMP at A +DPTR(PC)_{23:16} \leftarrow FFh; (PC)_{15:0} \leftarrow (A) + (DPTR) No operationNOP(PC) \leftarrow (PC) +1

	<dest>,</dest>		Binary	Mode	Source Mode	
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
AJMP	addr11	Absolute jump	2	3 ⁽²⁾⁽³⁾	2	3 ⁽²⁾⁽³⁾
EJMP	addr24	Extended jump	5	6 ⁽²⁾⁽⁴⁾	4	5 ⁽²⁾⁽⁴⁾
EJIVIP	at DRk	Extended jump (indirect)	3	7 ⁽²⁾⁽⁴⁾	2	6 ⁽²⁾⁽⁴⁾
LJMP	at WRj	Long jump (indirect)	3	6 ⁽²⁾⁽⁴⁾	2	5 ⁽²⁾⁽⁴⁾
LJIMP	addr16	Long jump (direct address)	3	5 ⁽²⁾⁽⁴⁾	3	5 ⁽²⁾⁽⁴⁾
SJMP	rel	Short jump (relative address)	2	4 ⁽²⁾⁽⁴⁾	2	4 ⁽²⁾⁽⁴⁾
JMP	at A +DPTR	Jump indirect relative to the DPTR	1	5 ⁽²⁾⁽⁴⁾	1	5 ⁽²⁾⁽⁴⁾
NOP		No operation (Jump never)	1	1	1	1

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

- 2. In internal execution only, add 1 to the number of states if the destination address is internal and odd.
- 3. Add 2 to the number of states if the destination address is external.
- 4. Add 3 to the number of states if the destination address is external.

Table 32.	Summar	of Call and	Return	Instructions
-----------	--------	-------------	--------	--------------

	ACALL <src> \leftarrow src opnd</src>	$(PC) \leftarrow (PC)$ +2; push $(PC)_{15:0}$;				
Extended ca		$P(PC) \leftarrow (PC) + size (instr); push (PC)_2$	3:0,			
Long callLCA) \leftarrow (PC) + size (instr); push (PC) _{15:0} ;				
Return from	subroutineRE	Tpop (PC) _{15:0}				
		outineERETpop(PC) _{23:0}				
		IF [INTR = 0] THEN pop (PC) _{15:0} pop (PC) _{23:0} ; pop (PSW1)				
Trap interrup IF [INTF	tTRAP(PC) ← R = 0] THEN p	- (PC) + size (instr); bush (PC) _{15:0}				
	IF [INTR = 1] THEN push (PSW1); push (PC) _{23:0} Binary Mode Source Mod					e Mode
	<dest>,</dest>				.	_
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
Mnemonic ACALL	<src>(") addr11</src>	Comments Absolute subroutine call	Bytes 2	9 ⁽²⁾⁽³⁾	Bytes 2	
ACALL			-		,	States 9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³
ACALL	addr11	Absolute subroutine call	2	9 ⁽²⁾⁽³⁾	2	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³
ACALL	addr11 at DRk	Absolute subroutine call Extended subroutine call (indirect)	2 3	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾	2 2 2	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 13 ⁽²⁾⁽³
ACALL	addr11 at DRk addr24	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call	2 3 5	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾	2 2 4	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 9 ⁽²⁾⁽³
ACALL	addr11 at DRk addr24 at WRj	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect)	2 3 5 3	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾ 10 ⁽²⁾⁽³⁾	2 2 4 2	9 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 13 ⁽²⁾⁽³ 9 ⁽²⁾⁽³
ACALL ECALL LCALL RET	addr11 at DRk addr24 at WRj	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call	2 3 5 3 3	$\begin{array}{c} 9^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \\ 9^{(2)(3)} \end{array}$	2 2 4 2 3	$9^{(2)(3)}$ $13^{(2)(3)}$ $13^{(2)(3)}$ $9^{(2)(3)}$ $9^{(2)(3)}$
ACALL ECALL LCALL	addr11 at DRk addr24 at WRj	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call Return from subroutine	2 3 5 3 3 1	$\begin{array}{c} 9^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \\ 9^{(2)(3)} \\ 7^{(2)} \end{array}$	2 2 4 2 3 1	$9^{(2)(3)}$ $13^{(2)(3)}$ $13^{(2)(3)}$ $9^{(2)(3)}$ $9^{(2)(3)}$ $9^{(2)(3)}$ $7^{(2)}$

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. In internal execution only, add 1 to the number of states if the destination/return address is internal and odd.

- 3. Add 2 to the number of states if the destination address is external.
- 4. Add 5 to the number of states if INTR = 1.

Programming and Verifying Non-volatile Memory

Internal Features

The internal non-volatile memory of the TSC80251G2D derivatives contains five different areas:

- Code Memory
- Configuration Bytes
- Lock Bits
- Encryption Array
- Signature Bytes

EPROM/OTPROM Devices All the internal non-volatile memory but the Signature Bytes of the TSC87251G2D products are made of EPROM cells. The Signature Bytes of the TSC87251G2D products are made of Mask ROM.

The TSC87251G2D products are programmed and verified in the same manner as Atmel's TSC87251G1A, using a SINGLE-PULSE algorithm, which programs at V_{PP} = 12.75V using only one 100µs pulse per byte. This results in a programming time of less than 10 seconds for the 32 kilobytes on-chip code memory.

The EPROM of the TSC87251G2D products in Window package is erasable by Ultra-Violet radiation⁽¹⁾ (UV). UV erasure set all the EPROM memory cells to one and allows reprogramming. The quartz window must be covered with an opaque label⁽²⁾ when the device is in operation. This is not so much to protect the EPROM array from inadvertent erasure, as to protect the RAM and other on-chip logic. Allowing light to impinge on the silicon die during device operation may cause a logical malfunction.

The TSC87251G2D products in plastic packages are One Time Programmable (OTP). An EPROM cell cannot be reset by UV once programmed to zero.

- Notes: 1. The recommended erasure procedure is exposure to ultra-violet light (at 2537 Å) to an integrated dose of at least 20 W-sec/cm². Exposing the EPROM to an ultra-violet lamp of 12000 μW/cm² rating for 30 minutes should be sufficient.
 - 2. Erasure of the EPROM begins to occur when the chip is exposed to light wavelength shorter than 4000 Å. Since sunlight and fluorescent light have wavelength in this range, exposure to these light sources over an extended time (1 week in sunlight or 3 years in room-level fluorescent lighting) could cause inadvertent erasure.
- Mask ROM DevicesAll the internal non-volatile memory of TSC83251G2D products is made of Mask ROM
cells. They can only be verified by the user, using the same algorithm as the
EPROM/OTPROM devices.

ROMIess DevicesThe TSC80251G2D products do not include on-chip Configuration Bytes, Code Memory
and Encryption Array. They only include Signature Bytes made of Mask ROM cells
which can be read using the same algorithm as the EPROM/OTPROM devices.

- **Security Features** In some microcontroller applications, it is desirable that the user's program code be secured from unauthorized access. The TSC83251G2D and TSC87251G2D offer two kinds of protection for program code stored in the on-chip array:
 - Program code in the on-chip Code Memory is encrypted when read out for verification if the Encryption Array isprogrammed.
 - A three-level lock bit system restricts external access to the on-chip code memory.

AC Characteristics - Commercial & Industrial

AC Characteristics - External Bus Cycles

Definition of Symbols

Table 38. External Bus Cycles Timing Symbol Definitions

Signals
Address
Data In
ALE
Data Out
RD#/PSEN#
WR#

Conditions					
High					
Low					
Valid					
No Longer Valid					
Floating					

Timings

Test conditions: capacitive load on all pins = 50 pF.

Table 39 and Table 40 list the AC timing parameters for the TSC80251G2D derivatives with no wait states. External wait states can be added by extending PSEN#/RD#/WR# and or by extending ALE. In these tables, Note 2 marks parameters affected by one ALE wait state, and Note 3 marks parameters affected by PSEN#/RD#/WR# wait states.

Figure 8 to Figure 13 show the bus cycles with the timing parameters.

		12	MHz	16 I		
Symbol	Parameter	Min	Max	Min	Max	Unit
T _{osc}	1/F _{osc}	83		62		ns
T _{LHLL}	ALE Pulse Width	72		52		ns ⁽²⁾
T _{AVLL}	Address Valid to ALE Low	71		51		ns ⁽²⁾
T _{LLAX}	Address hold after ALE Low	14		6		ns
T _{RLRH} ⁽¹⁾	RD#/PSEN# Pulse Width	163		121		ns ⁽³⁾
T _{WLWH}	WR# Pulse Width	165		124		ns ⁽³⁾
T _{LLRL} ⁽¹⁾	ALE Low to RD#/PSEN# Low	17		11		ns
T _{LHAX}	ALE High to Address Hold	90		57		ns ⁽²⁾
T _{RLDV} ⁽¹⁾	RD#/PSEN# Low to Valid Data		133		92	ns ⁽³⁾
T _{RHDX} ⁽¹⁾	Data Hold After RD#/PSEN# High	0		0		ns
T _{RHAX} ⁽¹⁾	Address Hold After RD#/PSEN# High	0		0		ns
T _{RLAZ} ⁽¹⁾	RD#/PSEN# Low to Address Float		0		0	ns
T _{RHDZ1}	Instruction Float After RD#/PSEN# High		59		48	ns
T _{RHDZ2}	Data Float After RD#/PSEN# High		225		175	ns
T _{RHLH1}	RD#/PSEN# high to ALE High (Instruction)	60		47		ns
T _{RHLH2}	RD#/PSEN# high to ALE High (Data)	226		172		ns
T _{WHLH}	WR# High to ALE High	226		172		ns
T _{AVDV1}	Address (P0) Valid to Valid Data In		289		160	ns ⁽²⁾⁽³⁾
T _{AVDV2}	Address (P2) Valid to Valid Data In		296		211	ns ⁽²⁾⁽³⁾
T _{AVDV3}	Address (P0) Valid to Valid Instruction In		144		98	ns ⁽³⁾
T _{AXDX}	Data Hold after Address Hold	0		0		ns
T _{AVRL} ⁽¹⁾	Address Valid to RD# Low	111		64		ns ⁽²⁾
T _{AVWL1}	Address (P0) Valid to WR# Low	111		64		ns ⁽²⁾
T _{AVWL2}	Address (P2) Valid to WR# Low	158		116		ns ⁽²⁾
T _{WHQX}	Data Hold after WR# High	82		66		ns
T _{QVWH}	Data Valid to WR# High	135		103		ns ⁽³⁾
T _{WHAX}	WR# High to Address Hold	168		125		ns

Table 40. Bus Cycles AC Timings; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C

Notes: 1. Specification for PSEN# are identical to those for RD#.

2. If a wait state is added by extending ALE, add $2 \cdot T_{OSC}$. 3. If wait states are added by extending RD#/PSEN#/WR#, add $2N \cdot T_{OSC}$ (N = 1..3).

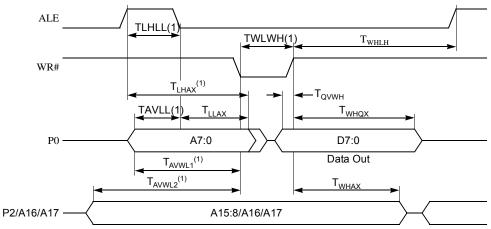
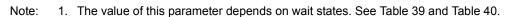
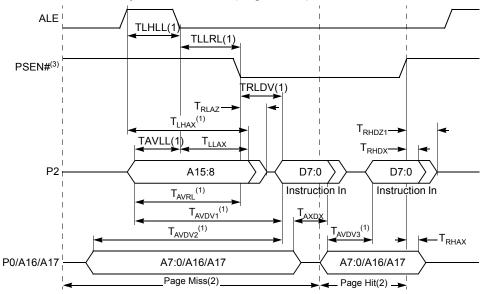




Figure 10. External Bus Cycle: Data Write (Non-Page Mode)

Waveforms in Page Mode

Figure 11. External Bus Cycle: Code Fetch (Page Mode)

- Note: 1. The value of this parameter depends on wait states. See Table 39 and Table 40.
 - A page hit (i.e., a code fetch to the same 256-byte "page" as the previous code fetch) requires one state (2·T_{OSC});

a page miss requires two states ($4 \cdot T_{OSC}$).

During a sequence of page hits, PSEN# remains low until the end of the last page-hit cycle.

AC Characteristics - Real-Time Asynchronous Wait State

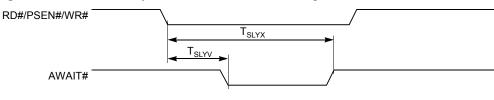
Definition of Symbols

Table 43. Real-Time Asynchronous Wait Timing Symbol Definitions

Signals	
S	PSEN#/RD#/WR#
Y	AWAIT#

Conditions		
L	Low	
V	Valid	
х	No Longer Valid	

Timings


Table 44. Real-Time Asynchronous Wait AC Timings; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C

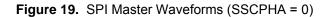
Symbol	Parameter	Min	Мах	Unit
T _{SLYV}	PSEN#/RD#/WR# Low to Wait Set-up		T _{OSC} - 10	ns
T _{SLYX}	Wait Hold after PSEN#/RD#/WR# Low	(2N-1)·T _{OSC} + 10		ns ⁽¹⁾

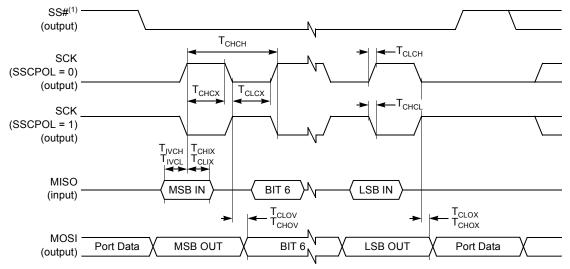
Note: 1. N is the number of wait states added (N \geq 1).

Waveforms

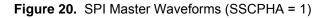
Figure 16. Real-time Asynchronous Wait State Timings

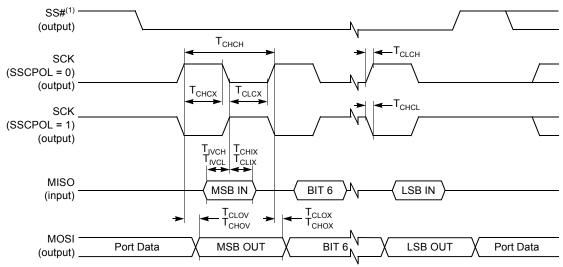
AC Characteristics - Serial Port in Shift Register Mode


Definition of Symbols

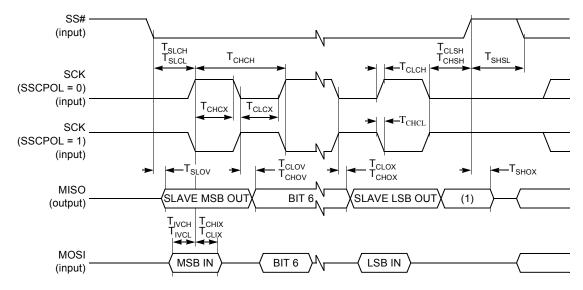

Table 45. Serial Port Timing Symbol Definitions

Signals		
D Data In		
Q	Data Out	
Х	Clock	


Conditions		
Н	H High	
L	Low	
V	Valid	
Х	No Longer Valid	



Note: 1. SS# handled by software.



Note: 1. Not Defined but normally MSB of character just received.

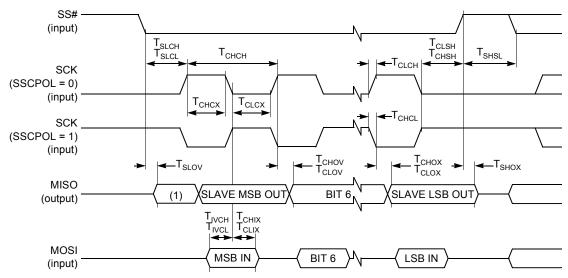


Figure 21. SPI Slave Waveforms (SSCPHA = 0)

Note: 1. Not Defined but generally the LSB of the character which has just been received.

Figure 22. SPI Slave Waveforms (SSCPHA = 1)

AC Characteristics - EPROM Programming and Verifying

Definition of Symbols

Table 50. EPROM Programming and Verifying Timing Symbol Definitions

Signals		
А	Address	
E	Enable: mode set on Port 0	
G	Program	
Q	Data Out	
S	Supply (V _{PP})	


Conditions		
н	High	
L	Low	
V	Valid	
Х	No Longer Valid	
Z	Floating	

58 AT/TSC8x251G2D

4135F-8051-11/06

Figure 24. EPROM Verifying Waveforms

AC Characteristics - External Clock Drive and Logic Level References

Definition of Symbols

Table 53. External Clock Timing Symbol Definitions

Signals		
С	Clock	

Conditions		
H High		
L	Low	
Х	No Longer Valid	

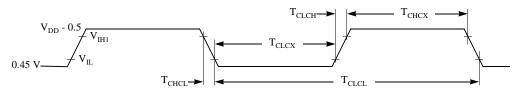
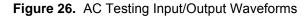

Timings

Table 54. External Clock AC Timings; V_{DD} = 4.5 to 5.5 V, T_A = -40 to +85°C


Symbol	Parameter	Min	Max	Unit
F _{osc}	Oscillator Frequency		24	MHz
T _{CHCX}	High Time	10		ns
T _{CLCX}	Low Time	10		ns
T _{CLCH}	Rise Time	3		ns
T _{CHCL}	Fall Time	3		ns

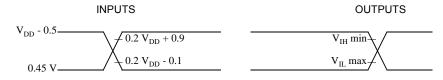

Waveforms

Figure 25. External Clock Waveform


- Notes: 1. During AC testing, all inputs are driven at V_{DD} -0.5 V for a logic 1 and 0.45 V for a logic 0.
 - 2. Timing measurements are made on all outputs at $V_{\rm IH}$ min for a logic 1 and $V_{\rm IL}$ max for a logic 0.

Note: For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loading V_{OH}/V_{OL} level occurs with $I_{OL}/I_{OH} = \pm 20$ mA.

Figure 27. Float Waveforms

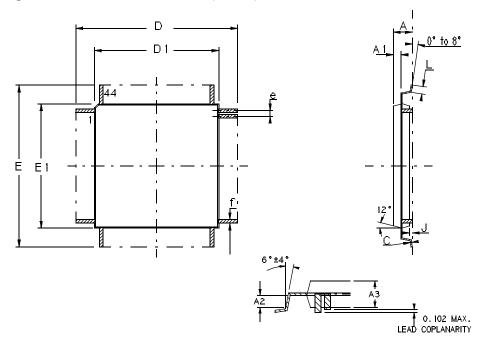
Absolute Maximum Rating and Operating Conditions

Absolute Maximum Ratings

Storage Temperature65 to +150°C	*NOTICE: Stressing the device beyond the "Absolute Maxi- mum Ratings" may cause permanent damage.
Voltage on any other Pin to VSS0.5 to +6.5 V	These are stress ratings only. Operation beyond
I _{OL} per I/O Pin 15 mA	the "operating conditions" is not recommended and extended exposure beyond the "Operating
Power Dissipation 1.5 W	Conditions" may affect device reliability.
Ambient Temperature Under Bias	
Commercial0 to +70°C	
Industrial40 to +85°C	
Automotive40 to +85°C	
V _{DD}	
High Speed versions	
Low Voltage versions 2.7 to 5.5 V	

DC Characteristics

High Speed Versions - Commercial, Industrial, and Automotive


Symbol	Parameter	Min	Typical ⁽⁴⁾	Max	Units	Test Conditions
V _{IL}	Input Low Voltage (except EA#, SCL, SDA)	-0.5		0.2·V _{DD} - 0.1	V	
$V_{IL1}^{(5)}$	Input Low Voltage (SCL, SDA)	-0.5		$0.3 \cdot V_{DD}$	V	
V_{IL2}	Input Low Voltage (EA#)	0		0.2·V _{DD} - 0.3	V	
V _{IH}	Input high Voltage (except XTAL1, RST, SCL, SDA)	0.2·V _{DD} + 0.9		V _{DD} + 0.5	V	
$V_{IH1}^{(5)}$	Input high Voltage (XTAL1, RST, SCL, SDA)	0.7·V _{DD}		V _{DD} + 0.5	V	
V _{OL}	Output Low Voltage (Ports 1, 2, 3)			0.3 0.45 1.0	V	$I_{OL} = 100 \ \mu A^{(1)(2)}$ $I_{OL} = 1.6 \ m A^{(1)(2)}$ $I_{OL} = 3.5 \ m A^{(1)(2)}$
V _{OL1}	Output Low Voltage (Ports 0, ALE, PSEN#, Port 2 in Page Mode during External Address)			0.3 0.45 1.0	V	$I_{OL} = 200 \ \mu A^{(1)(2)}$ $I_{OL} = 3.2 \ m A^{(1)(2)}$ $I_{OL} = 7.0 \ m A^{(1)(2)}$
V _{OH}	Output high Voltage (Ports 1, 2, 3, ALE, PSEN#)	V _{DD} - 0.3 V _{DD} - 0.7 V _{DD} - 1.5			V	$\begin{split} I_{OH} &= -10 \ \mu A^{(3)} \\ I_{OH} &= -30 \ \mu A^{(3)} \\ I_{OH} &= -60 \ \mu A^{(3)} \end{split}$
V _{OH1}	Output high Voltage (Port 0, Port 2 in Page Mode during External Address)	V _{DD} - 0.3 V _{DD} - 0.7 V _{DD} - 1.5			V	I _{OH} = -200 μA I _{OH} = -3.2 mA I _{OH} = -7.0 mA
V_{RET}	V _{DD} data retention limit			1.8	V	
I _{IL0}	Logical 0 Input Current (Ports 1, 2, 3)			- 50	μA	V _{IN} = 0.45 V
I _{IL1}	Logical 1 Input Current (NMI)			+ 50	μA	V _{IN} = V _{DD}
I _{LI}	Input Leakage Current (Port 0)			± 10	μA	0.45 V < V _{IN} < V _{DD}
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3 - AWAIT#)			- 650	μA	V _{IN} = 2.0 V
R _{RST}	RST Pull-Down Resistor	40	110	225	kΩ	
CIO	Pin Capacitance		10		pF	T _A = 25°C
I _{DD}	Operating Current		20 25 35	25 30 40	mA	F_{OSC} = 12 MHz F_{OSC} = 16 MHz F_{OSC} = 24 MHz
I _{DL}	Idle Mode Current		5 6.5 9.5	8 10 14	mA	F_{OSC} = 12 MHz F_{OSC} = 16 MHz F_{OSC} = 24 MHz
I _{PD}	Power-Down Current		2	20	μA	$V_{RET} < V_{DD} < 5.5 V$
V_{PP}	Programming supply voltage	12.5		13	V	$T_A = 0$ to +40°C
I _{PP}	Programming supply current	1		75	mA	T _A = 0 to +40°C

VQFP 44 (10x10) -Mechanical Outline

Figure 37. Shrink Quad Flat Pack (Plastic)

Table 61.	VQFP	Package Size
-----------	------	--------------

	М	М	Inch		
	Min	Мах	Min	Max	
A	-	1.60	-	.063	
A1	0.64 REF		.025 REF		
A2	0.64 REF		.025REF		
A3	1.35	1.45	.053	.057	
D	11.90	12.10	.468	.476	
D1	9.90	10.10	.390	.398	
E	11.90	12.10	.468	.476	
E1	9.90	10.10	.390	.398	
J	0.05	-	.002	6	
L	0.45	0.75	.018	.030	
е	0.80 BSC		.0315 BSC		
f	0.35 BSC		.014 BSC		

AT/TSC87251G2D OTPROM

Part Number	ROM	Description				
High Speed Versions 4.5 to 5.5 V, Commercial and Industrial						
TSC87251G2D-16CB	32K OTPROM	16 MHz, Commercial 0° to 70°C, PLCC 44				
TSC87251G2D-24CB	32K OTPROM	24 MHz, Commercial 0° to 70°C, PLCC 44				
TSC87251G2D-24CED	32K OTPROM	24 MHz, Commercial 0° to 70°C, VQFP 44				
TSC87251G2D-24IA	32K OTPROM	24 MHz, Industrial -40° to 85°C, PDIL 40				
TSC87251G2D-24IB	32K OTPROM	24 MHz, Industrial -40° to 85°C, PLCC 44				
AT87251G2D-SLSUM	32K OTPROM	24 MHz, Industrial & Green -40° to 85°C, PLCC 44				
AT87251G2D-3CSUM	32K OTPROM	24 MHz, Industrial & Green -40° to 85°C, PDIL 40				
AT87251G2D-RLTUM	32K OTPROM	24 MHz, Industrial & Green -40° to 85°C, VQFP 44				
Low Voltage Versions 2.7 to 5.5 V						
TSC87251G2D-L16CB	32K OTPROM	16 MHz, Commercial 0° to 70°C, PLCC 44				
TSC87251G2D-L16CED	32K OTPROM	16 MHz, Commercial 0° to 70°C, VQFP 44				
AT87251G2D-SLSUL	32K OTPROM	16 MHz, Industrial & Green, 0° to 70°C, PLCC 44				
AT87251G2D-RLTUL	32K OTPROM	16 MHz, Industrial & Green, 0° to 70°C, VQFP 44				

Document Revision History

Changes from 1. Added automotive qualification, and ordering information for ROM product version.

- 4135D to 4135E
- 1. Absolute Maximum Ratings added for automotive product version.

Changes from 4135E to 4135F

AIMEL