

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	16MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/tsc87251g2d-16cbr

Pin Description

Pinout

Figure 1. TSC80251G2D 40-pin DIP package

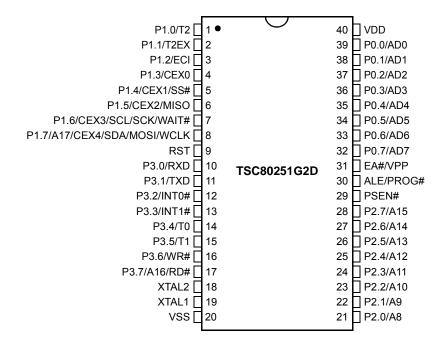


Figure 2. TSC80251G2D 44-pin PLCC Package

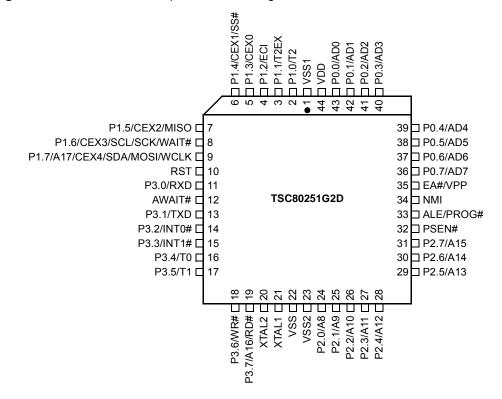


Table 1. TSC80251G2D Pin Assignment

DIP	PLCC	VQFP	Name	DIP	PLCC	VQFP	Name
	1	39	VSS1		23	17	VSS2
1	2	40	P1.0/T2	21	24	18	P2.0/A8
2	3	41	P1.1/T2EX	22	25	19	P2.1/A9
3	4	42	P1.2/ECI	23	26	20	P2.2/A10
4	5	43	P1.3/CEX0	24	27	21	P2.3/A11
5	6	44	P1.4/CEX1/SS#	25	28	22	P2.4/A12
6	7	1	P1.5/CEX2/MISO	26	29	23	P2.5/A13
7	8	2	P1.6/CEX3/SCL/SCK/WAIT#	27	30	24	P2.6/A14
8	9	3	P1.7/A17/CEX4/SDA/MOSI/WCLK	28	31	25	P2.7/A15
9	10	4	RST	29	32	26	PSEN#
10	11	5	P3.0/RXD	30	33	27	ALE/PROG#
	12	6	AWAIT#		34	28	NMI
11	13	7	P3.1/TXD	31	35	29	EA#/VPP
12	14	8	P3.2/INT0#	32	36	30	P0.7/AD7
13	15	9	P3.3/INT1#	33	37	31	P0.6/AD6
14	16	10	P3.4/T0	34	38	32	P0.5/AD5
15	17	11	P3.5/T1	35	39	33	P0.4/AD4
16	18	12	P3.6/WR#	36	40	34	P0.3/AD3
17	19	13	P3.7/A16/RD#	37	41	35	P0.2/AD2
18	20	14	XTAL2	38	42	36	P0.1/AD1
19	21	15	XTAL1	39	43	37	P0.0/AD0
20	22	16	VSS	40	44	38	VDD

Table 7. System Management SFRs

Mnemonic	Name
PCON	Power Control
POWM	Power Management

Mnemonic	Name
CKRL	Clock Reload
WCON	Synchronous Real-Time Wait State Control

Table 8. Interrupt SFRs

Mnemonic	Name
IE0	Interrupt Enable Control 0
IE1	Interrupt Enable Control 1
IPH0	Interrupt Priority Control High 0

Mnemonic	Name
IPL0	Interrupt Priority Control Low 0
IPH1	Interrupt Priority Control High 1
IPL1	Interrupt Priority Control Low 1

Table 9. Keyboard Interface SFRs

Mnemonic	Name
P1IE	Port 1 Input Interrupt Enable
P1F	Port 1 Flag

Mnemonic	Name
P1LS	Port 1 Level Selection

Table 12. Configuration Byte 1 UCONFIG1

7	6	5	4	3	2	1	0
CSIZE	-	-	INTR	WSB	WSB1#	WSB0#	EMAP#

	i	
Bit Number	Bit Mnemonic	Description
7	CSIZE TSC87251G2D	On-Chip Code Memory Size bit ⁽¹⁾ Clear to select 16 KB of on-chip code memory (TSC87251G1D product). Set to select 32 KB of on-chip code memory (TSC87251G2D product).
	TSC80251G2D TSC83251G2D	Reserved Set this bit when writing to UCONFIG1.
6	-	Reserved Set this bit when writing to UCONFIG1.
5	-	Reserved Set this bit when writing to UCONFIG1.
4	INTR	Interrupt Mode bit ⁽²⁾ Clear so that the interrupts push two bytes onto the stack (the two lower bytes of the PC register). Set so that the interrupts push four bytes onto the stack (the three bytes of the PC register and the PSW1 register).
3	WSB	Wait State B bit ⁽³⁾ Clear to generate one wait state for memory region 01:. Set for no wait states for memory region 01:.
2	WSB1#	Wait State B bits
1	WSB0#	Select the number of wait states for RD#, WR# and PSEN# signals for external memory accesses (only region 01:). WSB1# WSB0# Number of Wait States 0 0 3 0 1 2 1 0 1 1 1 0
0	EMAP#	On-Chip Code Memory Map bit Clear to map the upper 16 KB of on-chip code memory (at FF:4000h-FF:7FFFh) to the data space (at 00:C000h-00:FFFFh). Set not to map the upper 16 KB of on-chip code memory (at FF:4000h-FF:7FFFh) to the data space.

- Notes: 1. The CSIZE is only available on EPROM/OTPROM products.
 - 2. Two or four bytes are transparently popped according to INTR when using the RETI instruction. INTR must be set if interrupts are used with code executing outside
 - 3. Use only for Step A compatibility; set this bit when WSB1:0# are used.

Table 25. Summary of Move Instructions (1/3)

Move to High wordMOVH <dest>, <src>dest opnd $_{31:16} \leftarrow$ src opnd

Move with Sign extensionMOVS <dest>, <src>dest opnd ← src opnd with sign extend

Move with Zero extensionMOVZ <dest>, <src>dest opnd \leftarrow src opnd with zero extend

Move CodeMOVC A, <src>(A) \leftarrow src opnd

Move eXtendedMOVX <dest>, <src>dest opnd \leftarrow src opnd

	<dest>,</dest>		Binary	Mode	Source Mode	
Mnemonic	<src>⁽²⁾</src>	Comments	Bytes	States	Bytes	States
MOVH	DRk, #data16	16-bit immediate data into upper word of dword register	5	3	4	2
MOVS	WRj, Rm	Byte register to word register with sign extension	3	2	2	1
MOVZ	WRj, Rm	Byte register to word register with zeros extension	3	2	2	1
MOVC	A, at A +DPTR	Code byte relative to DPTR to ACC	1	6 ⁽³⁾	1	6 ⁽³⁾
	A, at A +PC	Code byte relative to PC to ACC	1	6 ⁽³⁾	1	6 ⁽³⁾
	A, at Ri	Extended memory (8-bit address) to ACC ⁽²⁾	1	4	1	5
MOVX	A, at DPTR	Extended memory (16-bit address) to ACC ⁽²⁾	1	3 ⁽⁴⁾	1	3 ⁽⁴⁾
IVIOVA	at Ri, A	ACC to extended memory (8-bit address) ⁽²⁾	1	4	1	4
	at DPTR, A	ACC to extended memory (16-bit address) ⁽²⁾	1	4 ⁽³⁾	1	4 ⁽³⁾

Notes:

- 1. A shaded cell denotes an instruction in the C51 Architecture.
- 2. Extended memory addressed is in the region specified by DPXL (reset value = 01h).
- 3. If this instruction addresses external memory location, add N+1 to the number of states (N: number of wait states).
- 4. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).

Table 27. Summary of Bit Instructions

Clear BitCLR <dest>dest opnd $\leftarrow 0$

Set BitSETB <dest>dest opnd \leftarrow 1

Complement BitCPL <dest>dest opnd $\leftarrow \emptyset$ bit

AND Carry with BitANL CY, $\langle Src \rangle(CY) \leftarrow (CY) \land src opnd$

AND Carry with Complement of BitANL CY, /<src>(CY) \leftarrow (CY) \wedge \varnothing src opnd

OR Carry with BitORL CY, $\langle Src \rangle(CY) \leftarrow (CY) \vee src opnd$

OR Carry with Complement of BitORL CY, /<src>(CY) \leftarrow (CY) \vee Ø src opnd

Move Bit to CarryMOV CY, <src>(CY) ← src opnd

Move Bit from CarryMOV <dest>, CYdest opnd \leftarrow (CY)

	<dest>,</dest>		Binary	Mode	Source Mode	
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
	CY	Clear carry	1	1	1	1
CLR	bit51	Clear direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit	Clear direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾
	CY	Set carry	1	1	1	1
SETB	bit51	Set direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit	Set direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾
	CY	Complement carry	1	1	1	1
CPL	bit51	Complement direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit	Complement direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾
	CY, bit51	And direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	CY, bit	And direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
ANL	CY, /bit51	And complemented direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	CY, /bit	And complemented direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
	CY, bit51	Or direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	CY, bit	Or direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
ORL	CY, /bit51	Or complemented direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	CY, /bit	Or complemented direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
	CY, bit51	Move direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
MOV	CY, bit	Move direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
IVIOV	bit51, CY	Move carry to direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit, CY	Move carry to direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾

- Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.
 - 2. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
 - 3. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Table 30. Summary of Conditional Jump Instructions (2/2)

```
Jump if bitJB <src>, rel(PC) \leftarrow (PC) + size (instr);
     IF [src opnd = 1] THEN (PC) \leftarrow (PC) + rel
Jump if not bitJNB <src>, rel(PC) \leftarrow (PC) + size (instr);
     IF [src opnd = 0] THEN (PC) \leftarrow (PC) + rel
Jump if bit and clearJBC <dest>, rel(PC) \leftarrow (PC) + size (instr);
     IF [dest opnd = 1] THEN
        dest opnd \leftarrow 0
        (PC) \leftarrow (PC) + rel
Jump if accumulator is zeroJZ rel(PC) \leftarrow (PC) + size (instr);
     IF [(A) = 0] THEN (PC) \leftarrow (PC) + rel
Jump if accumulator is not zeroJNZ rel(PC) \leftarrow (PC) + size (instr);
     IF [(A) \neq 0] THEN (PC) \leftarrow (PC) + rel
Compare and jump if not equalCJNE <src1>, <src2>, rel(PC) \leftarrow (PC) + size (instr);
     IF [src opnd1 < src opnd2] THEN (CY) \leftarrow 1
     IF [src opnd1 \geq src opnd2] THEN (CY) \leftarrow 0
     IF [src opnd1 \neq src opnd2] THEN (PC) \leftarrow (PC) + rel
Decrement and jump if not zeroDJNZ <dest>, rel(PC) \leftarrow (PC) + size (instr); dest opnd \leftarrow dest opnd -1;
     IF [\phi(Z)] THEN (PC) \leftarrow (PC) + rel
```

			Binary	Mode ⁽²⁾	Source	Mode ⁽²⁾
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	States
	bit51, rel	Jump if direct bit is set	3	2/5 ⁽³⁾⁽⁶⁾	3	2/5 ⁽³⁾⁽⁶⁾
JB	bit, rel	Jump if direct bit of 8-bit address location is set	5	4/7 ⁽³⁾⁽⁶⁾	4	3/6 ⁽³⁾⁽⁶⁾
	bit51, rel	Jump if direct bit is not set	3	2/5 ⁽³⁾⁽⁶⁾	3	2/5 ⁽³⁾⁽⁶⁾
JNB	bit, rel	Jump if direct bit of 8-bit address location is not set	5	4/7 ⁽³⁾⁽⁶⁾	4	3/6 ⁽³⁾
	bit51, rel	Jump if direct bit is set & clear bit	3	4/7 ⁽⁵⁾⁽⁶⁾	3	4/7 ⁽⁵⁾⁽⁶⁾
JBC	bit, rel	Jump if direct bit of 8-bit address location is set and clear	5	7/10 ⁽⁵⁾⁽	4	6/9 ⁽⁵⁾⁽⁶⁾
JZ	rel	Jump if ACC is zero	2	2/5 ⁽⁶⁾	2	2/5 ⁽⁶⁾
JNZ	rel	Jump if ACC is not zero	2	2/5 ⁽⁶⁾	2	2/5 ⁽⁶⁾
	A, dir8, rel	Compare direct address to ACC and jump if not equal	3	2/5 ⁽³⁾⁽⁶⁾	3	2/5 ⁽³⁾⁽⁶⁾
CJNE	A, #data, rel	Compare immediate to ACC and jump if not equal	3	2/5 ⁽⁶⁾	3	2/5 ⁽⁶⁾
CJINE	Rn, #data, rel	Compare immediate to register and jump if not equal	3	2/5 ⁽⁶⁾	4	3/6 ⁽⁶⁾
	at Ri, #data, rel	Compare immediate to indirect and jump if not equal	3	3/6 ⁽⁶⁾	4	4/7 ⁽⁶⁾
DJNZ	Rn, rel	Decrement register and jump if not zero	2	2/5 ⁽⁶⁾	3	3/6 ⁽⁶⁾
DJINZ	dir8, rel	Decrement direct address and jump if not zero	3	3/6 ⁽⁴⁾⁽⁶⁾	3	3/6 ⁽⁴⁾⁽⁶⁾

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

- 2. States are given as jump not-taken/taken.
- 3. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
- 4. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states.

- Add 3 if it addresses a Peripheral SFR.
- 5. If this instruction addresses an I/O Port (Px, x = 0-3), add 3 to the number of states. Add 5 if it addresses a Peripheral SFR.
- 6. In internal execution only, add 1 to the number of states of the 'jump taken' if the destination address is internal and odd.

Table 31. Summary of Unconditional Jump Instructions

Absolute jumpAJMP <src>(PC) \leftarrow (PC) +2; (PC)_{10:0} \leftarrow src opnd Extended jumpEJMP <src>(PC) \leftarrow (PC) + size (instr); (PC)_{23:0} \leftarrow src opnd Long jumpLJMP <src>(PC) \leftarrow (PC) + size (instr); (PC)_{15:0} \leftarrow src opnd Short jumpSJMP rel(PC) \leftarrow (PC) +2; (PC) \leftarrow (PC) +rel Jump indirectJMP at A +DPTR(PC)_{23:16} \leftarrow FFh; (PC)_{15:0} \leftarrow (A) + (DPTR) No operationNOP(PC) \leftarrow (PC) +1

	<dest>,</dest>		Binary	Binary Mode		Source Mode	
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States	
AJMP	addr11	Absolute jump	2	3 ⁽²⁾⁽³⁾	2	3 ⁽²⁾⁽³⁾	
EJMP	addr24	Extended jump	5	6 ⁽²⁾⁽⁴⁾	4	5 ⁽²⁾⁽⁴⁾	
EJIVIF	at DRk	Extended jump (indirect)	3	7 ⁽²⁾⁽⁴⁾	2	6 ⁽²⁾⁽⁴⁾	
LJMP	at WRj	Long jump (indirect)	3	6 ⁽²⁾⁽⁴⁾	2	5 ⁽²⁾⁽⁴⁾	
LJIVIF	addr16	Long jump (direct address)	3	5 ⁽²⁾⁽⁴⁾	3	5 ⁽²⁾⁽⁴⁾	
SJMP	rel	Short jump (relative address)	2	4 ⁽²⁾⁽⁴⁾	2	4 ⁽²⁾⁽⁴⁾	
JMP	at A +DPTR	Jump indirect relative to the DPTR	1	5 ⁽²⁾⁽⁴⁾	1	5 ⁽²⁾⁽⁴⁾	
NOP		No operation (Jump never)	1	1	1	1	

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

- 2. In internal execution only, add 1 to the number of states if the destination address is internal and odd.
- 3. Add 2 to the number of states if the destination address is external.
- 4. Add 3 to the number of states if the destination address is external.

38

Programming and Verifying Non-volatile Memory

Internal Features

The internal non-volatile memory of the TSC80251G2D derivatives contains five different areas:

- Code Memory
- Configuration Bytes
- Lock Bits
- **Encryption Array**
- Signature Bytes

EPROM/OTPROM Devices

All the internal non-volatile memory but the Signature Bytes of the TSC87251G2D products is made of EPROM cells. The Signature Bytes of the TSC87251G2D products are made of Mask ROM.

The TSC87251G2D products are programmed and verified in the same manner as Atmel's TSC87251G1A, using a SINGLE-PULSE algorithm, which programs at V_{pp} = 12.75V using only one 100µs pulse per byte. This results in a programming time of less than 10 seconds for the 32 kilobytes on-chip code memory.

The EPROM of the TSC87251G2D products in Window package is erasable by Ultra-Violet radiation⁽¹⁾ (UV). UV erasure set all the EPROM memory cells to one and allows reprogramming. The quartz window must be covered with an opaque label⁽²⁾ when the device is in operation. This is not so much to protect the EPROM array from inadvertent erasure, as to protect the RAM and other on-chip logic. Allowing light to impinge on the silicon die during device operation may cause a logical malfunction.

The TSC87251G2D products in plastic packages are One Time Programmable (OTP). An EPROM cell cannot be reset by UV once programmed to zero.

- Notes: 1. The recommended erasure procedure is exposure to ultra-violet light (at 2537 Å) to an integrated dose of at least 20 W-sec/cm². Exposing the EPROM to an ultra-violet lamp of 12000 µW/cm² rating for 30 minutes should be sufficient.
 - 2. Erasure of the EPROM begins to occur when the chip is exposed to light wavelength shorter than 4000 Å. Since sunlight and fluorescent light have wavelength in this range, exposure to these light sources over an extended time (1 week in sunlight or 3 years in room-level fluorescent lighting) could cause inadvertent erasure.

Mask ROM Devices

All the internal non-volatile memory of TSC83251G2D products is made of Mask ROM cells. They can only be verified by the user, using the same algorithm as the EPROM/OTPROM devices.

ROMIess Devices

The TSC80251G2D products do not include on-chip Configuration Bytes, Code Memory and Encryption Array. They only include Signature Bytes made of Mask ROM cells which can be read using the same algorithm as the EPROM/OTPROM devices.

Security Features

In some microcontroller applications, it is desirable that the user's program code be secured from unauthorized access. The TSC83251G2D and TSC87251G2D offer two kinds of protection for program code stored in the on-chip array:

- Program code in the on-chip Code Memory is encrypted when read out for verification if the Encryption Array isprogrammed.
- A three-level lock bit system restricts external access to the on-chip code memory.

Lock Bit System

The TSC87251G2D products implement 3 levels of security for User's program as described in Table 33. The TSC83251G2D products implement only the first level of security.

Level 0 is the level of an erased part and does not enable any security features.

Level 1 locks the programming of the User's internal Code Memory, the Configuration Bytes and the Encryption Array.

Level 2 locks the verifying of the User's internal Code Memory. It is always possible to verify the Configuration Bytes and the Lock Bits. It is not possible to verify the Encryption Array.

Level 3 locks the external execution.

Table 33. Lock Bits Programming

Level	Lock bits LB[2:0]	Internal Execution	External Execution	Verification	Programming	External PROM read (MOVC)
0	000	Enable	Enable	Enable ⁽¹⁾	Enable	Enable ⁽²⁾
1	001	Enable	Enable	Enable ⁽¹⁾	Disable	Disable
2	01x ⁽³⁾	Enable	Enable	Disable	Disable	Disable
3	1xx ⁽³⁾	Enable	Disable	Disable	Disable	Disable

Notes: 1. Returns encrypted data if Encryption Array is programmed.

- 2. Returns non encrypted data.
- 3. x means don't care. Level 2 always enables level 1, and level 3 always enables levels 1 and 2.

The security level may be verified according to Table 34.

Table 34. Lock Bits Verifying

Level	Lock bits Data ⁽¹⁾
0	xxxxx000
1	xxxxx001
2	xxxxx01x
3	xxxxx1xx

Note: 1. x means don't care.

Encryption Array

The TSC83251G2D and TSC87251G2D products include a 128-byte Encryption Array located in non-volatile memory outside the memory address space. During verification of the on-chip code memory, the seven low-order address bits also address the Encryption Array. As the byte of the code memory is read, it is exclusive-NOR'ed (XNOR) with the key byte from the Encryption Array. If the Encryption Array is not programmed (still all 1s), the user program code is placed on the data bus in its original, unencrypted form. If the Encryption Array is programmed with key bytes, the user program code is encrypted and cannot be used without knowledge of the key byte sequence.

To preserve the secrecy of the encryption key byte sequence, the Encryption Array can not be verified.

- Notes: 1. When a MOVC instruction is executed, the content of the ROM is not encrypted. In order to fully protect the user program code, the lock bit level 1 (see Table 33) must always be set when encryption is used.
 - 2. If the encryption feature is implemented, the portion of the on-chip code memory that does not contain program code should be filled with "random" byte values to prevent the encryption key sequence from being revealed.

Signature Bytes

The TSC80251G2D derivatives contain factory-programmed Signature Bytes. These bytes are located in non-volatile memory outside the memory address space at 30h, 31h, 60h and 61h. To read the Signature Bytes, perform the procedure described in section Verify Algorithm, using the verify signature mode (see Table 37). Signature byte values are listed in Table 35.

Table 35. Signature Bytes (Electronic ID)

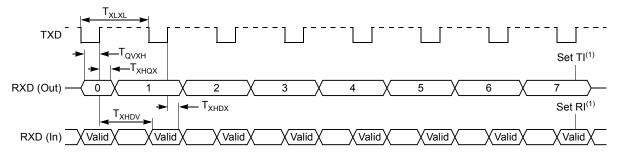
		Signature Address	Signature Data
Vendor	Atmel	30h	58h
Architecture	C251	31h	40h
Memory	32 kilobytes EPROM or OTPROM	60h	F7h
Memory	32 kilobytes MaskROM or ROMless	6011	77h
Revision	TSC80251G2D derivative	61h	FDh

Programming Algorithm

Figure 6 shows the hardware setup needed to program the TSC87251G2D EPROM/OTPROM areas:

- The chip has to be put under reset and maintained in this state until completion of the programming sequence.
- PSEN# and the other control signals (ALE and Port 0) have to be set to a high level.
- Then PSEN# has to be to forced to a low level after two clock cycles or more and it has to be maintained in this state until the completion of the programming sequence (see below).
- The voltage on the EA# pin must be set to V_{DD} .
- The programming mode is selected according to the code applied on Port 0 (see Table 36). It has to be applied until the completion of this programming operation.
- The programming address is applied on Ports 1 and 3 which are respectively the Most Significant Byte (MSB) and the Least Significant Byte (LSB) of the address.
- The programming data are applied on Port 2.
- The EPROM Programming is done by raising the voltage on the EA# pin to $V_{\mbox{\tiny PP}}$, then by generating a low level pulse on ALE/PROG# pin.
- The voltage on the EA# pin must be lowered to V_{DD} before completing the programming operation.
- It is possible to alternate programming and verifying operation (See Paragraph Verify Algorithm). Please make sure the voltage on the EA# pin has actually been lowered to V_{DD} before performing the verifying operation.

Timings


Table 46. Serial Port AC Timing -Shift Register Mode; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C

		12 MHz		16 MHz		24 MHz ⁽¹⁾		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
T _{XLXL}	Serial Port Clock Cycle Time	998		749		500		ns
T _{QVXH}	Output Data Setup to Clock Rising Edge	833		625		417		ns
T _{XHQX}	Output Data hold after Clock Rising Edge	165		124		82		ns
T _{XHDX}	Input Data Hold after Clock Rising Edge	0		0		0		ns
T _{XHDV}	Clock Rising Edge to Input Data Valid		974		732		482	ns

Note: 1. For high speed versions only.

Waveforms

Figure 17. Serial Port Waveforms - Shift Register Mode

Note: 1. TI and RI are set during S1P1 of the peripheral cycle following the shift of the eight bit.

Timings

Table 51. EPROM Programming AC timings; V_{DD} = 4.5 to 5.5 V, T_A = 0 to 40°C

Symbol	Parameter	Min	Max	Unit
T _{osc}	XTAL1 Period	83.5	250	ns
T _{AVGL}	Address Setup to PROG# low	48		T _{osc}
T _{GHAX}	Address Hold after PROG# low	48		T _{osc}
T _{DVGL}	Data Setup to PROG# low	48		T _{osc}
T _{GHDX}	Data Hold after PROG#	48		T _{osc}
T _{ELSH}	ENABLE High to V _{PP}	48		T _{osc}
T _{SHGL}	V _{PP} Setup to PROG# low	10		μs
T _{GHSL}	V _{PP} Hold after PROG#	10		μs
T _{SLEH}	ENABLE Hold after V _{PP}	0		ns
T _{GLGH}	PROG# Width	90	110	μs

Table 52. EPROM Verifying AC timings; V_{DD} = 4.5 to 5.5 V, V_{DD} = 2.7 to 5.5 V, T_A = 0 to 40°C

Symbol	Parameter	Min	Max	Unit
T _{OSC}	XTAL1 Period	83.5	250	ns
T _{AVQV}	Address to Data Valid		48	T _{osc}
T _{AXQX}	Address to Data Invalid	0		ns
T _{ELQV}	ENABLE low to Data Valid	0	48	T _{osc}
T _{EHQZ}	Data Float after ENABLE	0	48	T _{osc}

Waveforms

Figure 23. EPROM Programming Waveforms

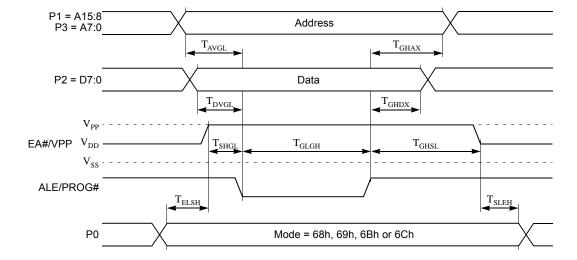
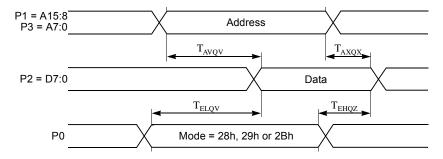



Figure 24. EPROM Verifying Waveforms

AC Characteristics - External Clock Drive and Logic Level References

Definition of Symbols

Table 53. External Clock Timing Symbol Definitions

Signals					
С	Clock				
C	Clock				

Conditions				
Н	High			
L	Low			
Х	No Longer Valid			

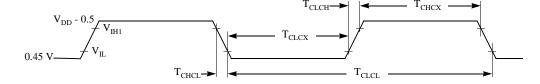

Timings

Table 54. External Clock AC Timings; $V_{DD} = 4.5$ to 5.5 V, $T_A = -40$ to $+85^{\circ}$ C

Symbol	Parameter	Min	Max	Unit
F _{osc}	Oscillator Frequency		24	MHz
T _{CHCX}	High Time	10		ns
T _{CLCX}	Low Time	10		ns
T _{CLCH}	Rise Time	3		ns
T _{CHCL}	Fall Time	3		ns

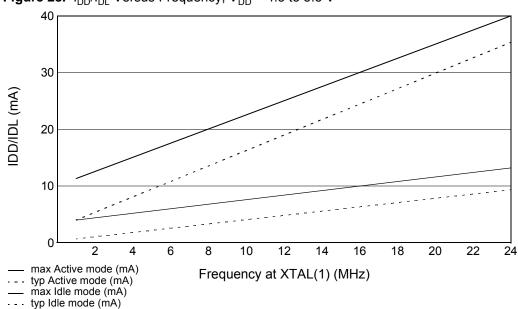
Waveforms

Figure 25. External Clock Waveform

- Notes: 1. During AC testing, all inputs are driven at V_{DD} -0.5 V for a logic 1 and 0.45 V for a
 - 2. Timing measurements are made on all outputs at V_{IH} min for a logic 1 and V_{IL} max for a logic 0.

Notes: 1. Under steady-state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum IOL per port pin: 10 mA


Maximum IOL per 8-bit port:Port 0 26 mA

Ports 1-3 15 mA

Maximum Total IOL for all: Output Pins 71 mA

If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 2. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low-level outputs of ALE and Ports 1, 2, and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from high to low. In applications where capacitive loading exceeds 100 pF, the noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify ALE or other signals with a Schmitt Trigger or CMOS-level input logic.
- 3. Capacitive loading on Ports 0 and 2 causes the V_{OH} on ALE and PSEN# to drop below the specification when the address lines are stabilizing.
- 4. Typical values are obtained using V_{DD} = 5 V and T_A = 25°C. They are not tested and there is not guarantee on these values.
- 5. The input threshold voltage of SCL and SDA meets the TWI specification, so an input voltage below 0.3·V_{DD} will be recognized as a logic 0 while an input voltage above 0.7·V_{DD} will be recognized as a logic 1.

Figure 28. I_{DD}/I_{DL} Versus Frequency; V_{DD} = 4.5 to 5.5 V

Note: 1. The clock prescaler is not used: $F_{OSC} = F_{XTAL}$.

Low Voltage Versions - Commercial & Industrial

Table 56. DC Characteristics; V_{DD} = 2.7 to 5.5 V, T_A = -40 to +85°C

Symbol	Parameter	Min	Typical ⁽⁴⁾	Max	Units	Test Conditions
V _{IL}	Input Low Voltage (except EA#, SCL, SDA)	-0.5		0.2·V _{DD} - 0.1	V	
V _{IL1} ⁽⁵⁾	Input Low Voltage (SCL, SDA)	-0.5		0.3·V _{DD}	V	
V_{IL2}	Input Low Voltage (EA#)	0		0.2·V _{DD} - 0.3	V	
V _{IH}	Input high Voltage (except XTAL1, RST, SCL, SDA)	0.2·V _{DD} + 0.9		V _{DD} + 0.5	V	
V _{IH1} ⁽⁵⁾	Input high Voltage (XTAL1, RST, SCL, SDA)	0.7·V _{DD}		V _{DD} + 0.5	V	
V _{OL}	Output Low Voltage (Ports 1, 2, 3)			0.45	V	I _{OL} = 0.8 mA ⁽¹⁾⁽²⁾
V _{OL1}	Output Low Voltage (Ports 0, ALE, PSEN#, Port 2 in Page Mode during External Address)			0.45	V	I _{OL} = 1.6 mA ⁽¹⁾⁽²⁾
V_{OH}	Output high Voltage (Ports 1, 2, 3, ALE, PSEN#)	0.9·V _{DD}			V	I _{OH} = -10 μA ⁽³⁾
V _{OH1}	Output high Voltage (Port 0, Port 2 in Page Mode during External Address)	0.9·V _{DD}			V	I _{OH} = -40 μA
V_{RET}	V _{DD} data retention limit			1.8	V	
I _{ILO}	Logical 0 Input Current (Ports 1, 2, 3 - AWAIT#)			- 50	μА	V _{IN} = 0.45 V
I _{IL1}	Logical 1 Input Current (NMI)			+ 50	μА	$V_{IN} = V_{DD}$
I _{LI}	Input Leakage Current (Port 0)			± 10	μА	0.45 V < V _{IN} < V _{DD}
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3)			- 650	μА	V _{IN} = 2.0 V
R _{RST}	RST Pull-Down Resistor	40	110	225	kΩ	
C _{IO}	Pin Capacitance		10		pF	T _A = 25°C
I _{DD}	Operating Current		4 8 9 11	8 11 12 14	mA	$\begin{array}{l} 5 \text{ MHz, V}_{\rm DD} < 3.6 \text{ V} \\ 10 \text{ MHz, V}_{\rm DD} < 3.6 \text{ V} \\ 12 \text{ MHz, V}_{\rm DD} < 3.6 \text{ V} \\ 16 \text{ MHz, V}_{\rm DD} < 3.6 \text{ V} \\ \end{array}$
I _{DL}	Idle Mode Current		0.5 1.5 2 3	1 4 5 7	mA	5 MHz, V _{DD} < 3.6 V 10 MHz, V _{DD} < 3.6 V 12 MHz, V _{DD} < 3.6 V 16 MHz, V _{DD} < 3.6 V
I _{PD}	Power-Down Current		1	10	μΑ	V _{RET} < V _{DD} < 3.6 V

Notes: 1. Under steady-state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum IOL per port pin: 10 mA

Maximum IOL per 8-bit port: Port 0 26 mA

Ports 1-315 mA

Packages

List of Packages

- PDIL 40
- CDIL 40 with window
- PLCC 44
- CQPJ 44 with window
- VQFP 44 (10x10)

PDIL 40 - Mechanical Outline

Figure 33. Plastic Dual In Line

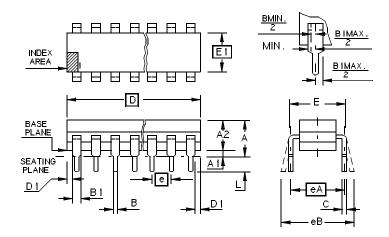


Table 57. PDIL Package Size

	ММ		Inch	
	Min	Max	Min	Max
А	-	5.08	-	.200
A1	0.38	-	.015	-
A2	3.18	4.95	.125	.195
В	0.36	0.56	.014	.022
B1	0.76	1.78	.030	.070
С	0.20	0.38	.008	.015
D	50.29	53.21	1.980	2.095
E	15.24	15.87	.600	.625
E1	12.32	14.73	.485	.580
е	2.54 B.S.C.		.100 B.S.C.	
eA	15.24 B.S.C.		.600 B.S.C.	
eB	-	17.78	-	.700
L	2.93	3.81	.115	.150
D1	0.13	-	.005	-

CDIL 40 with Window - Mechanical Outline

Figure 34. Ceramic Dual In Line

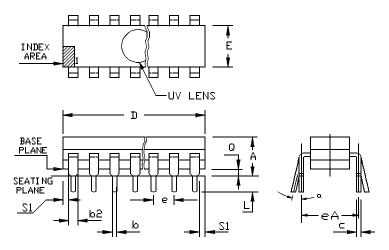


Table 58. CDIL Package Size

	MM		Inch	
	Min	Max	Min	Max
А	-	5.71	-	.225
b	0.36	0.58	.014	.023
b2	1.14	1.65	.045	.065
С	0.20	0.38	.008	.015
D	-	53.47	-	2.105
E	13.06	15.37	.514	.605
е	2.54 B.S.C.		.100 B.S.C.	
eA	15.24 B.S.C.		.600 B.S.C.	
L	3.18	5.08	.125	.200
Q	0.38	1.40	.015	.055
S1	0.13	-	.005	-
а	0 - 15		0 - 15	
N	40			

VQFP 44 (10x10) - Mechanical Outline

Figure 37. Shrink Quad Flat Pack (Plastic)

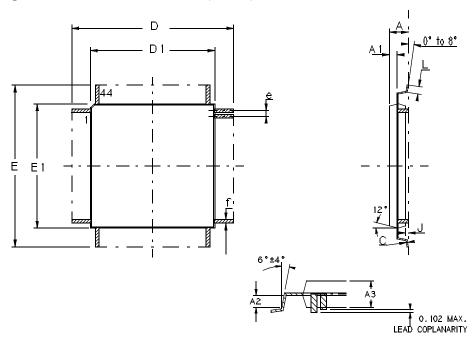


Table 61. VQFP Package Size

	ММ		Inch	
	Min	Max	Min	Max
А	-	1.60	-	.063
A1	0.64 REF		.025 REF	
A2	0.64 REF		.025REF	
A3	1.35	1.45	.053	.057
D	11.90	12.10	.468	.476
D1	9.90	10.10	.390	.398
E	11.90	12.10	.468	.476
E1	9.90	10.10	.390	.398
J	0.05	-	.002	6
L	0.45	0.75	.018	.030
е	0.80 BSC		.0315 BSC	
f	0.35 BSC		.014 BSC	

AT/TSC87251G2D OTPROM

Part Number	ROM	Description		
High Speed Versions 4.5 to 5.5 V, Commercial and Industrial				
TSC87251G2D-16CB	32K OTPROM	16 MHz, Commercial 0° to 70°C, PLCC 44		
TSC87251G2D-24CB	32K OTPROM	24 MHz, Commercial 0° to 70°C, PLCC 44		
TSC87251G2D-24CED	32K OTPROM	24 MHz, Commercial 0° to 70°C, VQFP 44		
TSC87251G2D-24IA	32K OTPROM	24 MHz, Industrial -40° to 85°C, PDIL 40		
TSC87251G2D-24IB	32K OTPROM	24 MHz, Industrial -40° to 85°C, PLCC 44		
AT87251G2D-SLSUM	32K OTPROM	24 MHz, Industrial & Green -40° to 85°C, PLCC 44		
AT87251G2D-3CSUM	32K OTPROM	24 MHz, Industrial & Green -40° to 85°C, PDIL 40		
AT87251G2D-RLTUM	32K OTPROM	24 MHz, Industrial & Green -40° to 85°C, VQFP 44		
Low Voltage Versions 2.7 to 5.5 V				
TSC87251G2D-L16CB	32K OTPROM	16 MHz, Commercial 0° to 70°C, PLCC 44		
TSC87251G2D-L16CED	32K OTPROM	16 MHz, Commercial 0° to 70°C, VQFP 44		
AT87251G2D-SLSUL	32K OTPROM	16 MHz, Industrial & Green, 0° to 70°C, PLCC 44		
AT87251G2D-RLTUL	32K OTPROM	16 MHz, Industrial & Green, 0° to 70°C, VQFP 44		

Document Revision History

Changes from 4135D to 4135E

1. Added automotive qualification, and ordering information for ROM product version.

Changes from 4135E to 4135F

1. Absolute Maximum Ratings added for automotive product version.

