

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	24MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/tsc87251g2d-24ce

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signals

Table 2. Product Name Signal Description

Signal Name	Туре	Description	Alternate Function
A17	0	18th Address Bit Output to memory as 18th external address bit (A17) in extended bus applications, depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).	P1.7
A16	0	17th Address Bit Output to memory as 17th external address bit (A16) in extended bus applications, depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).	P3.7
A15:8 ⁽¹⁾	0	Address Lines Upper address lines for the external bus.	P2.7:0
AD7:0 ⁽¹⁾	I/O	Address/Data Lines Multiplexed lower address lines and data for the external memory.	P0.7:0
ALE	0	Address Latch Enable ALE signals the start of an external bus cycle and indicates that valid address information are available on lines A16/A17 and A7:0. An external latch can use ALE to demultiplex the address from address/data bus.	_
AWAIT#	I	Real-time Asynchronous Wait States Input When this pin is active (low level), the memory cycle is stretched until it becomes high. When using the Product Name as a pin-for-pin replacement for a 8xC51 product, AWAIT# can be unconnected without loss of compatibility or power consumption increase (on-chip pull-up). Not available on DIP package.	_
CEX4:0	I/O	PCA Input/Output pins CEXx are input signals for the PCA capture mode and output signals for the PCA compare and PWM modes.	P1.7:3
EA#	I	External Access Enable EA# directs program memory accesses to on-chip or off-chip code memory. For EA# = 0, all program memory accesses are off-chip. For EA# = 1, an access is on-chip ROM if the address is within the range of the on-chip ROM; otherwise the access is off-chip. The value of EA# is latched at reset. For devices without ROM on-chip, EA# must be strapped to ground.	_
ECI	0	PCA External Clock input ECI is the external clock input to the 16-bit PCA timer.	P1.2
MISO	I/O	SPI Master Input Slave Output line When SPI is in master mode, MISO receives data from the slave peripheral. When SPI is in slave mode, MISO outputs data to the master controller.	P1.5
MOSI	I/O	SPI Master Output Slave Input line When SPI is in master mode, MOSI outputs data to the slave peripheral. When SPI is in slave mode, MOSI receives data from the master controller.	P1.7
INT1:0#	I	External Interrupts 0 and 1 INT1#/INT0# inputs set IE1:0 in the TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0 are set by a falling edge on INT1#/INT0#. If bits IT1:0 are cleared, bits IE1:0 are set by a low level on INT1#/INT0#.	P3.3:2

Table 2.	Product Name	Signal Description	(Continued)
----------	--------------	--------------------	-------------

Signal Name	Туре	Description	Alternate Function
NMI	I	Non Maskable Interrupt Holding this pin high for 24 oscillator periods triggers an interrupt. When using the Product Name as a pin-for-pin replacement for a 8xC51 product, NMI can be unconnected without loss of compatibility or power consumption increase (on-chip pull-down). Not available on DIP package.	_
P0.0:7	I/O	Port 0 P0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. To avoid any paraitic current consumption, Floating P0 inputs must be polarized to V_{DD} or V_{SS} .	AD7:0
P1.0:7	I/O	Port 1 P1 is an 8-bit bidirectional I/O port with internal pull-ups. P1 provides interrupt capability for a keyboard interface.	-
P2.0:7	I/O	Port 2 P2 is an 8-bit bidirectional I/O port with internal pull-ups.	A15:8
P3.0:7	I/O	Port 3 P3 is an 8-bit bidirectional I/O port with internal pull-ups.	-
PROG#	I	Programming Pulse input The programming pulse is applied to this input for programming the on-chip EPROM/OTPROM.	-
PSEN#	0	Program Store Enable/Read signal output PSEN# is asserted for a memory address range that depends on bits RD0 and RD1 in UCONFIG0 byte (see).	-
RD#	0	Read or 17 th Address Bit (A16) Read signal output to external data memory depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).	P3.7
RST	I	Reset input to the chip Holding this pin high for 64 oscillator periods while the oscillator is running resets the device. The Port pins are driven to their reset conditions when a voltage greater than V_{IH1} is applied, whether or not the oscillator is running. This pin has an internal pull-down resistor which allows the device to be reset by connecting a capacitor between this pin and VDD. Asserting RST when the chip is in Idle mode or Power-Down mode returns the chip to normal operation.	-
RXD	I/O	Receive Serial Data RXD sends and receives data in serial I/O mode 0 and receives data in serial I/O modes 1, 2 and 3.	P3.0
SCL	I/O	TWI Serial Clock When TWI controller is in master mode, SCL outputs the serial clock to slave peripherals. When TWI controller is in slave mode, SCL receives clock from the master controller.	P1.6
SCK	I/O	SPI Serial Clock When SPI is in master mode, SCK outputs clock to the slave peripheral. When SPI is in slave mode, SCK receives clock from the master controller.	P1.6
SDA	I/O	TWI Serial Data SDA is the bidirectional TWI data line.	P1.7
SS#	I	SPI Slave Select Input When in Slave mode, SS# enables the slave mode.	P1.4

Table 10. SFR Descriptions

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h		CH 0000 0000	CCAP0H 0000 0000	CCAP1H 0000 0000	CCAP2H 0000 0000	CCAP3H 0000 0000	CCAP4H 0000 0000		FFh
F0h	B ⁽¹⁾ 0000 0000								F7h
E8h		CL 0000 0000	CCAP0L 0000 0000	CCAP1L 0000 0000	CCAP2L 0000 0000	CCAP3L 0000 0000	CCAP4L 0000 0000		EFh
E0h	ACC ⁽¹⁾ 0000 0000								E7h
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		DFh
D0h	PSW ⁽¹⁾ 0000 0000	PSW1 ⁽¹⁾ 0000 0000							D7h
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh
C0h									C7h
B8h	IPL0 X000 0000	SADEN 0000 0000					SPH ⁽¹⁾ 0000 0000		BFh
B0h	P3 1111 1111	IE1 XX0X XXX0	IPL1 XX0X XXX0	IPH1 XX0X XXX0				IPH0 X000 0000	B7h
A8h	IE0 0000 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111						WDTRST 1111 1111	WCON XXXX XX00	A7h
98h	SCON 0000 0000	SBUF XXXX XXXX	BRL 0000 0000	BDRCON XXX0 0000	P1LS 0000 0000	P1IE 0000 0000	P1F 0000 0000		9Fh
90h	P1 1111 1111		SSBR 0000 0000	SSCON ⁽²⁾	SSCS ⁽³⁾	SSDAT 0000 0000	SSADR 0000 0000		97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	CKRL 0000 1000	POWM 0XXX XXXX	8Fh
80h	P0 1111 1111	SP ⁽¹⁾ 0000 0111	DPL ⁽¹⁾ 0000 0000	DPH ⁽¹⁾ 0000 0000	DPXL ⁽¹⁾ 0000 0001			PCON 0000 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Reserved

Notes: 1. These registers are described in the TSC80251 Programmer's Guide (C251 core registers).

- 2. In TWI and SPI modes, SSCON is splitted in two separate registers. SSCON reset value is 0000 0000 in TWI mode and 0000 0100 in SPI mode.
- 3. In read and write modes, SSCS is splitted in two separate registers. SSCS reset value is 1111 1000 in read mode and 0000 0000 in write mode.

Table 11. Configuration Byte 0UCONFIG0

7	6	5	4	3	2	1	0	
-	WSA1#	WSA0#	XALE#	RD1	RD0	PAGE#	SRC	
Bit Number	Bit Mnemonic	Descriptio	n					
7	-	Reserved Set this bit	when writing	to UCONFIG0				
6	WSA1#	Wait State	A bits				for automal	
5	WSA0#	Select the r memory ac WSA1# V 0 0 0 1 1 0	Select the number of wait states for RD#, WR# and PSEN# signals for external nemory accesses (all regions except 01:). VSA1# WSA0# Number of Wait States 0 0 3 1 2 0 1 0 1					
4	XALE#	Extend AL Clear to ex Set to minin	E bit tend the durat mize the durat	ion of the ALE tion of the ALE	E pulse from T E pulse to 1·T	_{OSC} to 3⋅T _{OSC.} DSC·		
3	RD1	Memory Si	ignal Select k	oits				
2	RD0	WR# and F	SEN# signals	s (see Table 1	ai address bu 3).	s and the usag	je of RD#,	
1	PAGE#	Page Mode Clear to se Port 0. Set to selec 0.	age Mode Select bit ⁽¹⁾ lear to select the faster Page mode with A15:8/D7:0 on Port 2 and A7:0 on ort 0. et to select the non-Page mode ⁽²⁾ with A15:8 on Port 2 and A7:0/D7:0 on Port					
0	SRC	Source Mo Clear to se Set to selec	de/Binary Mo lect the binary ct the source i	ode Select bi mode. mode.	t			

Notes: 1. UCONFIG0 is fetched twice so it can be properly read both in Page or Non-Page modes. If P2.1 is cleared during the first data fetch, a Page mode configuration is used, otherwise the subsequent fetches are performed in Non-Page mode.

2. This selection provides compatibility with the standard 80C51 hardware which is multiplexing the address LSB and the data on Port 0.

Table 12.Configuration Byte 1UCONFIG1

7	6	5	4	3	2	1	0
CSIZE	-	-	INTR	WSB	WSB1#	WSB0#	EMAP#
Bit Number	Bit Mnem	ionic [Description				
7	CSIZE TSC87251G2D		On-Chip Code Memory Size bit ⁽¹⁾ Clear to select 16 KB of on-chip code memory (TSC87251G1D product). Set to select 32 KB of on-chip code memory (TSC87251G2D product				
	TSC8025 TSC8325	1G2D F 1G2D \$	Reserved Set this bit when	writing to UCC	ONFIG1.		
6	-	F	Reserved Set this bit when	writing to UCC	DNFIG1.		
5	-		Reserved Set this bit when	writing to UCC	DNFIG1.		
4	INTF	۲ ۲ ۲ ۲	Interrupt Mode bit ⁽²⁾ Clear so that the interrupts push two bytes onto the stack (the two lower bytes of the PC register). Set so that the interrupts push four bytes onto the stack (the three bytes of the PC register and the PSW1 register).				
3	WSE	3	Wait State B bit Clear to generate Set for no wait st	3) e one wait state ates for memo	e for memory ory region 01:.	region 01:.	
2	WSB	1# \	Vait State B bits	5			
1	WSB)# () }	Wait State B bitsSelect the number of wait states for RD#, WR# and PSEN# signals for external memory accesses (only region 01:).WSB1#WSB0#Number of Wait States003012101110				
0	EMAF	2# F 5 F	Dn-Chip Code N Clear to map the FF:7FFFh) to the Set not to map the FF:7FFFh) to the	lemory Map t upper 16 KB (data space (a le upper 16 KE data space.	bit of on-chip cod it 00:C000h-0 3 of on-chip co	e memory (at 0:FFFFh). ode memory (a	FF:4000h- at FF:4000h-

Notes: 1. The CSIZE is only available on EPROM/OTPROM products.

2. Two or four bytes are transparently popped according to INTR when using the RETI instruction. INTR must be set if interrupts are used with code executing outside region FF:.

3. Use only for Step A compatibility; set this bit when WSB1:0# are used.

- Notes: 1. Logical instructions that affect a bit are in Table 27.
 - 2. A shaded cell denotes an instruction in the C51 Architecture.
 - 3. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
 - 4. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.
 - 5. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
 - 6. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

Table 23.	Summar	y of Logical	Instructions	(2/2))
-----------	--------	--------------	--------------	-------	---

$\begin{array}{l} \mbox{Shift Left LogicalS} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	LL <dest><de <dest>_n, n = t_{msb} eticSRA <des <dest>_n, n = 1 t_{0} (SRL <dest>< <dest>_n, n = 1 t_{0} $dest>_n, n = 1$ t_{0} $A_{7:4}$</dest></dest></dest></des </dest></de </dest>	$est>_{0} \leftarrow 0$ 0msb-1 at> <dest>_{msb} \leftarrow <dest>_{msb} msb1 edest>_{msb} $\leftarrow 0$ msb1</dest></dest>				
	<dost></dost>		Binary	Mode	Source Mode	
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
	Rm	Shift byte register left through the MSB	3	2	2	1
SLL	WRj	Shift word register left through the MSB	3	2	2	1
CDA	Rm	Shift byte register right	3	2	2	1
SKA	WRj	Shift word register right	3	2	2	1
S DI	Rm	Shift byte register left	3	2	2	1
JKL	WRj	Shift word register left	3	2	2	1
SWAP	А	Swap nibbles within ACC	1	2	1	2

Note: 1. A shaded cell denotes an instruction in the C51 Architecture.

Table 27. Summary of Bit Instructions

Clear B	BitCLR <dest>dest opn</dest>	d ← 0

Set BitSETB <dest>dest opnd \leftarrow 1

 $\textbf{Complement BitCPL <dest>dest opnd} \leftarrow \varnothing \textbf{ bit}$

AND Carry with BitANL CY, $\langle src \rangle(CY) \leftarrow (CY) \land src opnd$

AND Carry with Complement of BitANL CY, /<src>(CY) \leftarrow (CY) $\land \varnothing$ src opnd

OR Carry with BitORL CY, <src>(CY) \leftarrow (CY) \lor src opnd

OR Carry with Complement of BitORL CY, /<src>(CY) \leftarrow (CY) $\vee \varnothing$ src opnd

Move Bit to CarryMOV CY, $\langle crc \rangle (CY) \leftarrow src opnd$

Move Bit from CarryMOV <dest>, CYdest opnd \leftarrow (CY)

	<dest></dest>		Binary	Mode	Source	Mode
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
	CY	Clear carry	1	1	1	1
CLR	bit51	Clear direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit	Clear direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾
	CY	Set carry	1	1	1	1
SETB	bit51	Set direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit	Set direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾
	CY	Complement carry	1	1	1	1
CPL	bit51	Complement direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit	Complement direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾
	CY, bit51	And direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	CY, bit	And direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
ANL	CY, /bit51	And complemented direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
CLR SETB CPL ANL ORL	CY, /bit	And complemented direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
	CY, bit51	Or direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	CY, bit	Or direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
ORL	CY, /bit51	Or complemented direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	CY, /bit	Or complemented direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
	CY, bit51	Move direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
MOV	CY, bit	Move direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
ANL ORL	bit51, CY	Move carry to direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit, CY	Move carry to direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

3. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

dest opn	d ← ((SP)); (SF	P) ← (SP) -1	Dimon	Mada	Course	Mada
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Binary	States	Bytes	States
	A, Rn	ACC and register	1	3	2	4
ХСН	A, dir8	ACC and direct address (on-chip RAM or SFR)	2	3 ⁽³⁾	2	3 ⁽³⁾
	A, at Ri	ACC and indirect address	1	4	2	5
XCHD	A, at Ri	ACC low nibble and indirect address (256 bytes)	1	4	2	5
	dir8	Push direct address onto stack	2	2 ⁽²⁾	2	2 ⁽²⁾
	#data	Push immediate data onto stack	4	4	3	3
DUCU	#data16	Push 16-bit immediate data onto stack	5	5	4	5
PU3H	Rm	Push byte register onto stack	3	4	2	3
	WRj	Push word register onto stack	3	5	2	4
	DRk	Push double word register onto stack	3	9	2	8
	dir8	Pop direct address (on-chip RAM or SFR) from stack	2	3 ⁽²⁾	2	3(2)
POP	Rm	Pop byte register from stack	3	3	2	2
	WRj	Pop word register from stack	3	5	2	4
	DRk	Pop double word register from stack	3	9	2	8

Table 28. Summary of Exchange, Push and Pop Instructions

Exchange bytesXCH A, <src>(A) \leftrightarrow src opnd

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

3. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

- Then device is driving the data on Port 2.
- It is possible to alternate programming and verification operation (see Paragraph Programming Algorithm). Please make sure the voltage on the EA# pin has actually been lowered to V_{DD} before performing the verifying operation.
- PSEN# and the other control signals have to be released to complete a sequence of verifying operations or a sequence of programming and verifying operations.

ROM Area ⁽¹⁾	RST	EA#/VPP	PSEN#	ALE/PROG#	P0	P2	P1(MSB) P3(LSB)
On-chip code memory	1	1	0	1	28h	Data	16-bit Address 0000h-7FFFh (32 kilobytes)
Configuration Bytes	1	1	0	1	29h	Data	CONFIG0: FFF8h CONFIG1: FFF9h
Lock Bits	1	1	0	1	2Bh	Data	0000h
Signature Bytes	1	1	0	1	29h	Data	0030h, 0031h, 0060h, 0061h

Notes: 1. To preserve the secrecy of on-chip code memory when encrypted, the Encryption Array can not be verified.

Figure 10. External Bus Cycle: Data Write (Non-Page Mode)

Waveforms in Page Mode

Figure 11. External Bus Cycle: Code Fetch (Page Mode)

- Note: 1. The value of this parameter depends on wait states. See Table 39 and Table 40.
 - A page hit (i.e., a code fetch to the same 256-byte "page" as the previous code fetch) requires one state (2·T_{OSC});

a page miss requires two states ($4 \cdot T_{OSC}$).

During a sequence of page hits, PSEN# remains low until the end of the last page-hit cycle.

AC Characteristics - SSLC: SPI Interface

Definition of Symbols

Table 48. SPI Interface Timing Symbol Definitions

Signals			
С	Clock		
I	Data In		
0	Data Out		
S	SS#		

Conditions				
Н	High			
L	Low			
V Valid				
Х	No Longer Valid			
Z Floating				

Timings

Symbol	Parameter	Min	Мах	Unit
T _{osc}	XTAL1 Period	83.5	250	ns
T _{AVGL}	Address Setup to PROG# low	48		T _{osc}
T _{GHAX}	Address Hold after PROG# low	48		T _{osc}
T _{DVGL}	Data Setup to PROG# low	48		T _{osc}
T _{GHDX}	Data Hold after PROG#	48		T _{osc}
T _{ELSH}	ENABLE High to V _{PP}	48		T _{osc}
T _{SHGL}	V _{PP} Setup to PROG# low	10		μs
T _{GHSL}	V _{PP} Hold after PROG#	10		μs
T _{SLEH}	ENABLE Hold after V _{PP}	0		ns
T _{GLGH}	PROG# Width	90	110	μs

Table 51. EPROM Programming AC timings; V_{DD} = 4.5 to 5.5 V, T_A = 0 to 40°C

Table 52. EPROM Verifying AC timings; V_{DD} = 4.5 to 5.5 V, V_{DD} = 2.7 to 5.5 V, T_A = 0 to 40°C

Symbol	Parameter	Min	Max	Unit
T _{OSC}	XTAL1 Period	83.5	250	ns
T _{AVQV}	Address to Data Valid		48	T _{osc}
T _{AXQX}	Address to Data Invalid	0		ns
T _{ELQV}	ENABLE low to Data Valid	0	48	T _{osc}
T _{EHQZ}	Data Float after ENABLE	0	48	T _{osc}

Waveforms

Absolute Maximum Rating and Operating Conditions

Absolute Maximum Ratings

Storage Temperature65 to +150°C	*NOTICE: Stressing the device beyond the "Absolute Maxi-
Voltage on any other Pin to VSS0.5 to +6.5 V	These are stress ratings only. Operation beyond
I _{OL} per I/O Pin 15 mA	and extended exposure beyond the "Operating
Power Dissipation 1.5 W	Conditions" may affect device reliability.
Ambient Temperature Under Bias	
Commercial0 to +70°C	
Industrial40 to +85°C	
Automotive40 to +85°C	
V _{DD} High Speed versions	

Low Voltage Versions - Commercial & Industrial

Table 50. DC Characteristics, $v_{DD} = 2.7$ to 5.5 v, $T_A = -40$ to $+65^{\circ}$	Table 56.	DC Characteristics; V_{DD} = 2.7 to 5.5 V, T_A = -40 to +85°
--	-----------	--

Symbol	Parameter	Min	Typical ⁽⁴⁾	Max	Units	Test Conditions
V _{IL}	Input Low Voltage (except EA#, SCL, SDA)	-0.5		0.2·V _{DD} - 0.1	v	
V _{IL1} ⁽⁵⁾	Input Low Voltage (SCL, SDA)	-0.5		0.3·V _{DD}	v	
V _{IL2}	Input Low Voltage (EA#)	0		0.2·V _{DD} - 0.3	v	
V _{IH}	Input high Voltage (except XTAL1, RST, SCL, SDA)	0.2·V _{DD} + 0.9		V _{DD} + 0.5	V	
V _{IH1} ⁽⁵⁾	Input high Voltage (XTAL1, RST, SCL, SDA)	0.7·V _{DD}		V _{DD} + 0.5	v	
V _{OL}	Output Low Voltage (Ports 1, 2, 3)			0.45	V	I _{OL} = 0.8 mA ⁽¹⁾⁽²⁾
V _{OL1}	Output Low Voltage (Ports 0, ALE, PSEN#, Port 2 in Page Mode during External Address)			0.45	v	I _{OL} = 1.6 mA ⁽¹⁾⁽²⁾
V _{OH}	Output high Voltage (Ports 1, 2, 3, ALE, PSEN#)	0.9·V _{DD}			V	I _{OH} = -10 μA ⁽³⁾
V _{OH1}	Output high Voltage (Port 0, Port 2 in Page Mode during External Address)	0.9·V _{DD}			v	I _{OH} = -40 μA
V _{RET}	V _{DD} data retention limit			1.8	V	
I _{ILO}	Logical 0 Input Current (Ports 1, 2, 3 - AWAIT#)			- 50	μA	V _{IN} = 0.45 V
I _{IL1}	Logical 1 Input Current (NMI)			+ 50	μA	V _{IN} = V _{DD}
I _{LI}	Input Leakage Current (Port 0)			± 10	μA	0.45 V < V _{IN} < V _{DD}
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3)			- 650	μA	V _{IN} = 2.0 V
R _{RST}	RST Pull-Down Resistor	40	110	225	kΩ	
C _{IO}	Pin Capacitance		10		pF	T _A = 25°C
I _{DD}	Operating Current		4 8 9 11	8 11 12 14	mA	5 MHz, V _{DD} < 3.6 V 10 MHz, V _{DD} < 3.6 V 12 MHz, V _{DD} < 3.6 V 16 MHz, V _{DD} < 3.6 V
I _{DL}	Idle Mode Current		0.5 1.5 2 3	1 4 5 7	mA	
I _{PD}	Power-Down Current		1	10	μA	$V_{RET} < V_{DD} < 3.6 V$

Notes: 1. Under steady-state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum IOL per port pin: 10 mA

Maximum IOL per 8-bit port: Port 0 26 mA

Ports 1-315 mA

Figure 31. I_{DL} Test Condition, Idle Mode

Figure 32. I_{PD} Test Condition, Power-Down Mode

Packages

List of Packages

- PDIL 40
- CDIL 40 with window
- PLCC 44
- CQPJ 44 with window
- VQFP 44 (10x10)

PDIL 40 - Mechanical Outline

Figure 33. Plastic Dual In Line

Table 57. PDIL Package Size

	ММ		Inch	
	Min	Мах	Min	Мах
A	-	5.08	-	.200
A1	0.38	-	.015	-
A2	3.18	4.95	.125	.195
В	0.36	0.56	.014	.022
B1	0.76	1.78	.030	.070
С	0.20	0.38	.008	.015
D	50.29	53.21	1.980	2.095
E	15.24	15.87	.600	.625
E1	12.32	14.73	.485	.580
е	2.54 [B.S.C.	.100 B.S.C.	
eA	15.24 B.S.C.		.600	B.S.C.
eB	-	17.78	-	.700
L	2.93	3.81	.115	.150
D1	0.13	-	.005	-

PLCC 44 - Mechanical Outline

Table 59. PLCC Package Size

	мм		Inch	
	Min	Мах	Min	Мах
A	4.20	4.57	.165	.180
A1	2.29	3.04	.090	.120
D	17.40	17.65	.685	.695
D1	16.44	16.66	.647	.656
D2	14.99	16.00	.590	.630
E	17.40	17.65	.685	.695
E1	16.44	16.66	.647	.656
E2	14.99	16.00	.590	.630
е	1.27 BSC		.050 BSC	
G	1.07	1.22	.042	.048
Н	1.07	1.42	.042	.056
J	0.51	-	.020	-
к	0.33	0.53	.013	.021
Nd	11		11	
Ne	11		11	

VQFP 44 (10x10) -Mechanical Outline

Figure 37. Shrink Quad Flat Pack (Plastic)

Table 61.	VQFP Pad	ckage Size
-----------	----------	------------

	ММ		Inch	
	Min	Max	Min	Max
А	-	1.60	-	.063
A1	0.64 REF		.025 REF	
A2	0.64 REF		.025REF	
A3	1.35	1.45	.053	.057
D	11.90	12.10	.468	.476
D1	9.90	10.10	.390	.398
E	11.90	12.10	.468	.476
E1	9.90	10.10	.390	.398
J	0.05	-	.002	6
L	0.45	0.75	.018	.030
e	0.80 BSC		.0315 BSC	
f	0.35 BSC		.014 BSC	

Ordering Information

AT/TSC80251G2D ROMIess

Part Number	ROM	Description			
High Speed Versions 4.5 to 5.5 V, Commercial and Industrial					
TSC80251G2D-16CB	ROMless	16 MHz, Commercial 0° to 70°C, PLCC 44			
TSC80251G2D-24CB	ROMless	24 MHz, Commercial 0° to 70°C, PLCC 44			
TSC80251G2D-24CE	ROMless	24 MHz, Commercial 0° to 70°C, VQFP 44			
TSC80251G2D-24IA	ROMless	24 MHz, Industrial -40° to 85°C, PDIL 40			
TSC80251G2D-24IB	ROMless	24 MHz, Industrial -40° to 85°C, PLCC 44			
AT80251G2D-SLSUM	ROMless	24 MHz, Industrial & Green -40° to 85°C, PLCC 44			
AT80251G2D-3CSUM	ROMless	24 MHz, Industrial & Green -40° to 85°C, PDIL 40			
AT80251G2D-RLTUM	ROMless	24 MHz, Industrial & Green -40° to 85°C, VQFP 44			
Low Voltage Versions 2.7 to 5.5 V					
TSC80251G2D-L16CB	ROMless	16 MHz, Commercial, PLCC 44			
TSC80251G2D-L16CE	ROMless	16 MHz, Commercial, VQFP 44			
AT80251G2D-SLSUL	ROMless	16 MHz, Industrial & Green, PLCC 44			
AT80251G2D-RLTUL	ROMless	16 MHz, Industrial & Green, VQFP 44			

AT/TSC83251G2D 32 kilobytes MaskROM

ROM	Description			
High Speed Versions 4.5 to 5.5 V, Commercial and Industrial				
32K MaskROM	16 MHz, Commercial 0° to 70°C, PLCC 44			
32K MaskROM	24 MHz, Commercial 0° to 70°C, PLCC 44			
32K MaskROM	24 MHz, Commercial 0° to 70°C, VQFP 44			
32K MaskROM	24 MHz, Industrial -40° to 85°C, PDIL 40			
32K MaskROM	24 MHz, Industrial -40° to 85°C, PLCC 44			
32K MaskROM	24 MHz, Industrial & Green -40° to 85°C, PLCC 44			
32K MaskROM	24 MHz, Industrial & Green -40° to 85°C, PDIL 40			
32K MaskROM	24 MHz, Industrial & Green -40° to 85°C, VQFP 44			
32K MaskROM	24 MHz, Automotive & Green -40° to 85°C, PLCC 44			
	ROM Speed Versions 4.5 32K MaskROM 32K MaskROM 32K MaskROM 32K MaskROM 32K MaskROM 32K MaskROM 32K MaskROM			

