

Welcome to E-XFL.COM

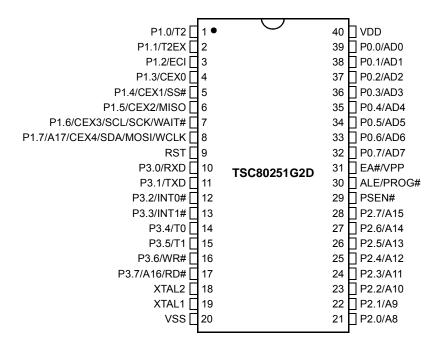
What is "Embedded - Microcontrollers"?

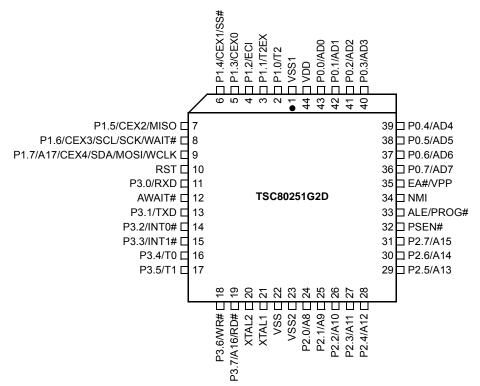
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

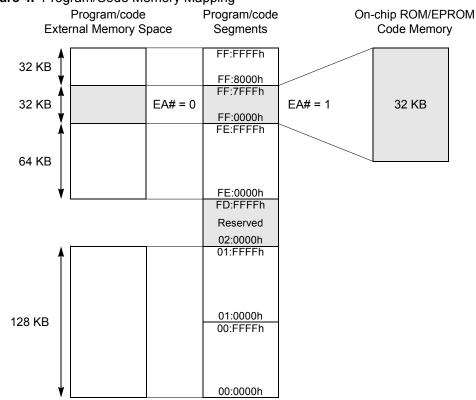
Details	
Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	24MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/tsc87251g2d-24ibr


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Pin Description

Pinout

Figure 1. TSC80251G2D 40-pin DIP package


Address Spaces

The TSC80251G2D derivatives implement four different address spaces:

- On-chip ROM program/code memory (not present in ROMless devices)
- On-chip RAM data memory
- Special Function Registers (SFRs)
- Configuration array

Program/Code Memory The TSC83251G2D and TSC87251G2D implement 32 KB of on-chip program/code memory. Figure 4 shows the split of the internal and external program/code memory spaces. If EA# is tied to a high level, the 32-Kbyte on-chip program memory is mapped in the lower part of segment FF: where the C251 core jumps after reset. The rest of the program/code memory space is mapped to the external memory. If EA# is tied to a low level, the internal program/code memory is not used and all the accesses are directed to the external memory.

The TSC83251G2D products provide the internal program/code memory in a masked ROM memory while the TSC87251G2D products provide it in an EPROM memory. For the TSC80251G2D products, there is no internal program/code memory and EA# must be tied to a low level.

Note:

Special care should be taken when the Program Counter (PC) increments:

If the program executes exclusively from on-chip code memory (not from external memory), beware of executing code from the upper eight bytes of the on-chip ROM (FF:7FF8h-FF:7FFh). Because of its pipeline capability, the TSC80251G2D derivative may attempt to prefetch code from external memory (at an address above FF:7FFFh) and thereby disrupt I/O Ports 0 and 2. Fetching code constants from these 8 bytes does not affect Ports 0 and 2.

When PC reaches the end of segment FF:, it loops to the reset address FF:0000h (for

compatibility with the C51 Architecture). When PC increments beyond the end of seqment FE:, it continues at the reset address FF:0000h (linearity). When PC increments beyond the end of segment 01:, it loops to the beginning of segment 00: (this prevents from its going into the reserved area).

Data Memory The TSC80251G2D derivatives implement 1 Kbyte of on-chip data RAM. Figure 5 shows the split of the internal and external data memory spaces. This memory is mapped in the data space just over the 32 bytes of registers area (see TSC80251 Programmers' Guide). Hence, the part of the on-chip RAM located from 20h to FFh is bit addressable. This on-chip RAM is not accessible through the program/code memory space.

> For faster computation with the on-chip ROM/EPROM code of the TSC83251G2D/TSC87251G2D, its upper 16 KB are also mapped in the upper part of the region 00: if the On-Chip Code Memory Map configuration bit is cleared (EMAP# bit in UCONFIG1 byte, see Figure). However, if EA# is tied to a low level, the TSC80251G2D derivative is running as a ROMless product and the code is actually fetched in the corresponding external memory (i.e. the upper 16 KB of the lower 32 KB of the segment FF:). If EMAP# bit is set, the on-chip ROM is not accessible through the region 00:.

> All the accesses to the portion of the data space with no on-chip memory mapped onto are redirected to the external memory.

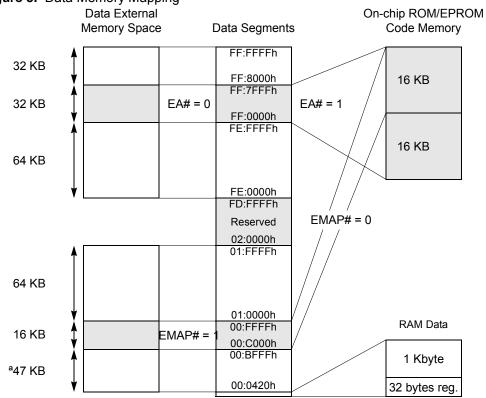


Figure 5. Data Memory Mapping

Special Function Registers

The Special Function Registers (SFRs) of the TSC80251G2D derivatives fall into the categories detailed in Table 1 to Table 9.

SFRs are placed in a reserved on-chip memory region S: which is not represented in the data memory mapping (Figure 5). The relative addresses within S: of these SFRs are provided together with their reset values in Table . They are upward compatible with the SFRs of the standard 80C51 and the Intel's 80C251Sx family. In this table, the C251 core registers are identified by Note 1 and are described in the TSC80251 Programmer's Guide. The other SFRs are described in the TSC80251G1D Design Guide. All the SFRs are bit-addressable using the C251 instruction set.

Table 1. C251 Core SFRs

Mnemonic	Name			
ACC ⁽¹⁾	Accumulator			
B ⁽¹⁾	B Register			
PSW	Program Status Word			
PSW1	Program Status Word 1			
SP ⁽¹⁾	Stack Pointer - LSB of SPX			

Mnemonic	Name
SPH ⁽¹⁾	Stack Pointer High - MSB of SPX
DPL ⁽¹⁾	Data Pointer Low byte - LSB of DPTR
DPH ⁽¹⁾	Data Pointer High byte - MSB of DPTR
DPXL ⁽¹⁾	Data Pointer Extended Low byte of DPX - Region number

Note: 1. These SFRs can also be accessed by their corresponding registers in the register file.

Table 2. I/O Port SFRs

Mnemonic	Name
P0	Port 0
P1	Port 1

MnemonicNameP2Port 2P3Port 3

Table 3. Timers SFRs

Mnemonic	Name		
TL0	Timer/Counter 0 Low Byte		
TH0	Timer/Counter 0 High Byte		
TL1	Timer/Counter 1 Low Byte		
TH1	Timer/Counter 1 High Byte		
TL2	Timer/Counter 2 Low Byte		
TH2	Timer/Counter 2 High Byte		
TCON	Timer/Counter 0 and 1 Control		

Mnemonic	Name
TMOD	Timer/Counter 0 and 1 Modes
T2CON	Timer/Counter 2 Control
T2MOD	Timer/Counter 2 Mode
RCAP2L	Timer/Counter 2 Reload/Capture Low Byte
RCAP2H	Timer/Counter 2 Reload/Capture High Byte
WDTRST	WatchDog Timer Reset

Table 10. SFR Descriptions

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h		CH 0000 0000	CCAP0H 0000 0000	CCAP1H 0000 0000	CCAP2H 0000 0000	CCAP3H 0000 0000	CCAP4H 0000 0000		FFh
F0h	B ⁽¹⁾ 0000 0000								F7h
E8h		CL 0000 0000	CCAP0L 0000 0000	CCAP1L 0000 0000	CCAP2L 0000 0000	CCAP3L 0000 0000	CCAP4L 0000 0000		EFh
E0h	ACC ⁽¹⁾ 0000 0000								E7h
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		DFh
D0h	PSW ⁽¹⁾ 0000 0000	PSW1 ⁽¹⁾ 0000 0000							D7h
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh
C0h									C7h
B8h	IPL0 X000 0000	SADEN 0000 0000					SPH ⁽¹⁾ 0000 0000		BFh
B0h	P3 1111 1111	IE1 XX0X XXX0	IPL1 XX0X XXX0	IPH1 XX0X XXX0				IPH0 X000 0000	B7h
A8h	IE0 0000 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111						WDTRST 1111 1111	WCON XXXX XX00	A7h
98h	SCON 0000 0000	SBUF XXXX XXXX	BRL 0000 0000	BDRCON XXX0 0000	P1LS 0000 0000	P1IE 0000 0000	P1F 0000 0000		9Fh
90h	P1 1111 1111		SSBR 0000 0000	SSCON ⁽²⁾	SSCS ⁽³⁾	SSDAT 0000 0000	SSADR 0000 0000		97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	CKRL 0000 1000	POWM 0XXX XXXX	8Fh
80h	P0 1111 1111	SP ⁽¹⁾ 0000 0111	DPL ⁽¹⁾ 0000 0000	DPH ⁽¹⁾ 0000 0000	DPXL ⁽¹⁾ 0000 0001			PCON 0000 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Reserved

Notes: 1. These registers are described in the TSC80251 Programmer's Guide (C251 core registers).

- 2. In TWI and SPI modes, SSCON is splitted in two separate registers. SSCON reset value is 0000 0000 in TWI mode and 0000 0100 in SPI mode.
- 3. In read and write modes, SSCS is splitted in two separate registers. SSCS reset value is 1111 1000 in read mode and 0000 0000 in write mode.

Configuration Bytes

The TSC80251G2D derivatives provide user design flexibility by configuring certain operating features at device reset. These features fall into the following categories:

- external memory interface (Page mode, address bits, programmed wait states and the address range for RD#, WR#, and PSEN#)
- source mode/binary mode opcodes
- selection of bytes stored on the stack by an interrupt
- mapping of the upper portion of on-chip code memory to region 00:

Two user configuration bytes UCONFIG0 (see Table 11) and UCONFIG1 (see Table 12) provide the information.

When EA# is tied to a low level, the configuration bytes are fetched from the external address space. The TSC80251G2D derivatives reserve the top eight bytes of the memory address space (FF:FFF8h-FF:FFFh) for an external 8-byte configuration array. Only two bytes are actually used: UCONFIG0 at FF:FFF8h and UCONFIG1 at FF:FFF9h.

For the mask ROM devices, configuration information is stored in on-chip memory (see ROM Verifying). When EA# is tied to a high level, the configuration information is retrieved from the on-chip memory instead of the external address space and there is no restriction in the usage of the external memory.

	<dest>,</dest>		Binary	Mode	Source Mode	
Mnemonic	<src>⁽²⁾</src>	Comments	Bytes	States	Bytes	States
	Rmd, Rms	Register with register	3	2	2	1
	WRjd, WRjs	Word register with word register	3	3	2	2
	DRkd, DRks	Dword register with dword register	3	5	2	4
	Rm, #data	Register with immediate data	4	3	3	2
	WRj, #data16	Word register with immediate 16-bit data	5	4	4	3
	DRk, #0data16	Dword register with zero-extended 16-bit immediate data	5	6	4	5
CMP	DRk, #1data16	Dword register with one-extended 16-bit immediate data	5	6	4	5
	Rm, dir8	Direct address (on-chip RAM or SFR) with byte register	4	3 ⁽¹⁾	3	2 ⁽¹⁾
	WRj, dir8	Direct address (on-chip RAM or SFR) with word register	4	4	3	3
	Rm, dir16	Direct address (64K) with byte register	5	3 ⁽²⁾	4	2 ⁽²⁾
	WRj, dir16	Direct address (64K) with word register	5	4 ⁽³⁾	4	3 ⁽³⁾
	Rm, at WRj	Indirect address (64K) with byte register	4	3 ⁽²⁾	3	2 ⁽²⁾
	Rm, at DRk	Indirect address (16M) with byte register	4	4 ⁽²⁾	3	3(2)

Table 22. Summary of Compare Instructions

Notes: 1. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

- 2. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
- 3. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

- Notes: 1. Logical instructions that affect a bit are in Table 27.
 - 2. A shaded cell denotes an instruction in the C51 Architecture.
 - 3. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
 - 4. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.
 - 5. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
 - 6. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

Table 23.	Summar	of Logical	Instructions	(2/2)

$ Shift Left LogicalSLL _{0} \leftarrow 0 _{n+1} \leftarrow _{n}, n = 0msb-1 (CY) \leftarrow _{msb} \\ Shift Right ArithmeticSRA _{msb} \leftarrow _{msb} \\ _{n-1} \leftarrow _{n}, n = msb1 (CY) \leftarrow _{0} \\ Shift Right LogicalSRL _{msb} \leftarrow 0 \\ _{n-1} \leftarrow _{n}, n = msb1 \\ (CY) \leftarrow _{0} \\ SwapSWAP AA_{3:0} A_{7:4} \\ $								
	Binary Mode Source Mode							
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	States		
	Rm	Shift byte register left through the MSB	3	2	2	1		
SLL	WRj	Shift word register left through the MSB	3	2	2	1		
SRA	Rm	Shift byte register right	3	2	2	1		
SKA	WRj	Shift word register right	3	2	2	1		
SRL	Rm	Shift byte register left	3	2	2	1		
JRL	WRj	Shift word register left	3	2	2	1		
SWAP	А	Swap nibbles within ACC	1	2	1	2		

Note: 1. A shaded cell denotes an instruction in the C51 Architecture.

Binary Mode Source Mode									
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	State			
	A, Rn	ACC and register	1	3	2	4			
ХСН	A, dir8	ACC and direct address (on-chip RAM or SFR)	2	3 ⁽³⁾	2	3 ⁽³⁾			
	A, at Ri	ACC and indirect address	1	4	2	5			
XCHD	A, at Ri	ACC low nibble and indirect address (256 bytes)	1	4	2	5			
	dir8	Push direct address onto stack	2	2 ⁽²⁾	2	2(2			
	#data	Push immediate data onto stack	4	4	3	3			
PUSH	#data16	Push 16-bit immediate data onto stack	5	5	4	5			
F 0311	Rm	Push byte register onto stack	3	4	2	3			
	WRj	Push word register onto stack	3	5	2	4			
	DRk	Push double word register onto stack	3	9	2	8			
	dir8	Pop direct address (on-chip RAM or SFR) from stack	2	3 ⁽²⁾	2	3(2			
POP	Rm	Pop byte register from stack	3	3	2	2			
	WRj	Pop word register from stack	3	5	2	4			
	DRk	Pop double word register from stack	3	9	2	8			

Table 28. Summary of Exchange, Push and Pop Instructions

Exchange bytesXCH A, <src>(A) \leftrightarrow src opnd

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

3. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Lock Bit System

The TSC87251G2D products implement 3 levels of security for User's program as described in Table 33. The TSC83251G2D products implement only the first level of security.

Level 0 is the level of an erased part and does not enable any security features.

Level 1 locks the programming of the User's internal Code Memory, the Configuration Bytes and the Encryption Array.

Level 2 locks the verifying of the User's internal Code Memory. It is always possible to verify the Configuration Bytes and the Lock Bits. It is not possible to verify the Encryption Array.

Level 3 locks the external execution.

Level	Lock bits LB[2:0]	Internal Execution	External Execution	Verification	Programming	External PROM read (MOVC)
0	000	Enable	Enable	Enable ⁽¹⁾	Enable	Enable ⁽²⁾
1	001	Enable	Enable	Enable ⁽¹⁾	Disable	Disable
2	01x ⁽³⁾	Enable	Enable	Disable	Disable	Disable
3	1xx ⁽³⁾	Enable	Disable	Disable	Disable	Disable

Table 33. Lock Bits Programming

Notes: 1. Returns encrypted data if Encryption Array is programmed.

2. Returns non encrypted data.

3. x means don't care. Level 2 always enables level 1, and level 3 always enables levels 1 and 2.

The security level may be verified according to Table 34.

Table 34. Lock Bits Verifying

Level	Lock bits Data ⁽¹⁾		
0	xxxxx000		
1	xxxxx001		
2	xxxxx01x		
3	xxxxx1xx		

Note: 1. x means don't care.

Encryption Array

The TSC83251G2D and TSC87251G2D products include a 128-byte Encryption Array located in non-volatile memory outside the memory address space. During verification of the on-chip code memory, the seven low-order address bits also address the Encryption Array. As the byte of the code memory is read, it is exclusive-NOR'ed (XNOR) with the key byte from the Encryption Array. If the Encryption Array is not programmed (still all 1s), the user program code is placed on the data bus in its original, unencrypted form. If the Encryption Array is programmed with key bytes, the user program code is encrypted and cannot be used without knowledge of the key byte sequence.

AC Characteristics - SSLC: SPI Interface

Definition of Symbols

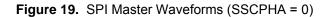
Table 48. SPI Interface Timing Symbol Definitions

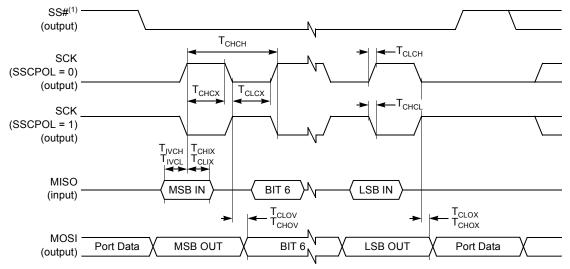
Signals				
С	Clock			
I	Data In			
0	Data Out			
S	SS#			

	Conditions				
Н	High				
L Low					
V	Valid				
Х	No Longer Valid				
Z	Floating				

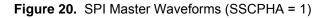
Timings

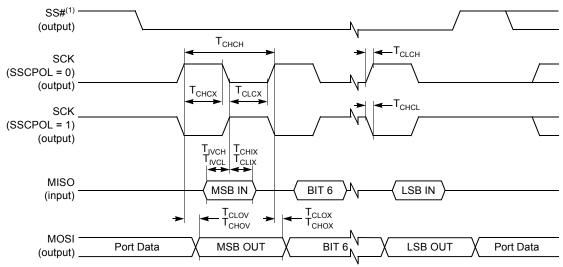
Table 49. SPI Interface AC Timing; V_{DD} = 2.7 to 5.5 V, T_A = -40 to 85°C


Symbol	Parameter	Min	Max	Unit
	Slave Mode ⁽¹)		1
Тснсн	Clock Period	8		T _{OSC}
T _{CHCX}	Clock High Time	3.2		T _{osc}
T _{CLCX}	Clock Low Time	3.2		T _{osc}
T _{SLCH} , T _{SLCL}	SS# Low to Clock edge	200		ns
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	100		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	100		ns
T _{CLOV,} T _{CHOV}	Output Data Valid after Clock Edge		100	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns
T _{CLSH} , T _{CHSH}	SS# High after Clock Edge	0		ns
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	100		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	100		ns
T _{SLOV}	SS# Low to Output Data Valid		130	ns
Т _{знох}	Output Data Hold after SS# High		130	ns
T _{SHSL}	SS# High to SS# Low	(2)		
T _{ILIH}	Input Rise Time		2	μs
T _{IHIL}	Input Fall Time		2	μs
Т _{огон}	Output Rise time		100	ns
Т _{ОНОL}	Output Fall Time		100	ns
	Master Mode	(3)		
Тснсн	Clock Period	4		T _{osc}
Т _{снсх}	Clock High Time	1.6		T _{osc}
T _{CLCX}	Clock Low Time	1.6		T _{osc}
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	50		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	50		ns
T _{CLOV,} T _{CHOV}	Output Data Valid after Clock Edge		65	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns
T _{ILIH}	Input Data Rise Time		2	μs
T _{IHIL}	Input Data Fall Time		2	μs
Т _{оloн}	Output Data Rise time		50	ns
Т _{оноь}	Output Data Fall Time		50	ns

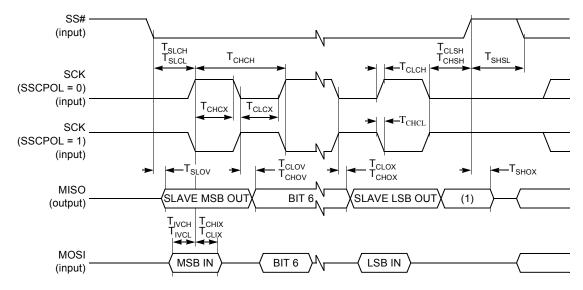

Notes: 1. Capacitive load on all pins = 200 pF in slave mode.

2. The value of this parameter depends on software.


3. Capacitive load on all pins = 100 pF in master mode.



Note: 1. SS# handled by software.



Note: 1. Not Defined but normally MSB of character just received.

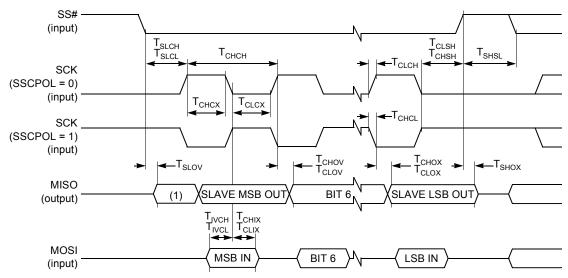


Figure 21. SPI Slave Waveforms (SSCPHA = 0)

Note: 1. Not Defined but generally the LSB of the character which has just been received.

Figure 22. SPI Slave Waveforms (SSCPHA = 1)

AC Characteristics - EPROM Programming and Verifying

Definition of Symbols

Table 50. EPROM Programming and Verifying Timing Symbol Definitions

Signals				
A Address				
E	Enable: mode set on Port 0			
G	G Program			
Q	Data Out			
S	Supply (V _{PP})			


Conditions				
н	High			
L	Low			
V	Valid			
Х	No Longer Valid			
Z	Floating			

58 AT/TSC8x251G2D

4135F-8051-11/06

Figure 24. EPROM Verifying Waveforms

AC Characteristics - External Clock Drive and Logic Level References

Definition of Symbols

Table 53. External Clock Timing Symbol Definitions

Signals		
С	Clock	

Conditions				
H High				
L Low				
Х	No Longer Valid			

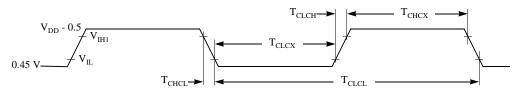

Timings

Table 54. External Clock AC Timings; V_{DD} = 4.5 to 5.5 V, T_A = -40 to +85°C

Symbol	Parameter	Min	Max	Unit
F _{osc}	Oscillator Frequency		24	MHz
T _{CHCX}	High Time	10		ns
T _{CLCX}	Low Time	10		ns
T _{CLCH}	Rise Time	3		ns
T _{CHCL}	Fall Time	3		ns

Waveforms

Figure 25. External Clock Waveform

- Notes: 1. During AC testing, all inputs are driven at V_{DD} -0.5 V for a logic 1 and 0.45 V for a logic 0.
 - 2. Timing measurements are made on all outputs at $V_{\rm IH}$ min for a logic 1 and $V_{\rm IL}$ max for a logic 0.

DC Characteristics

High Speed Versions - Commercial, Industrial, and Automotive

Symbol	Parameter	Min	Typical ⁽⁴⁾	Max	Units	Test Conditions
V _{IL}	Input Low Voltage (except EA#, SCL, SDA)	-0.5		0.2·V _{DD} - 0.1	V	
$V_{IL1}^{(5)}$	Input Low Voltage (SCL, SDA)	-0.5		0.3·V _{DD}	V	
V_{IL2}	Input Low Voltage (EA#)	0		0.2·V _{DD} - 0.3	V	
V _{IH}	Input high Voltage (except XTAL1, RST, SCL, SDA)	0.2·V _{DD} + 0.9		V _{DD} + 0.5	V	
$V_{IH1}^{(5)}$	Input high Voltage (XTAL1, RST, SCL, SDA)	0.7·V _{DD}		V _{DD} + 0.5	V	
V _{OL}	Output Low Voltage (Ports 1, 2, 3)			0.3 0.45 1.0	V	$I_{OL} = 100 \ \mu A^{(1)(2)}$ $I_{OL} = 1.6 \ m A^{(1)(2)}$ $I_{OL} = 3.5 \ m A^{(1)(2)}$
V _{OL1}	Output Low Voltage (Ports 0, ALE, PSEN#, Port 2 in Page Mode during External Address)			0.3 0.45 1.0	V	$I_{OL} = 200 \ \mu A^{(1)(2)}$ $I_{OL} = 3.2 \ m A^{(1)(2)}$ $I_{OL} = 7.0 \ m A^{(1)(2)}$
V _{OH}	Output high Voltage (Ports 1, 2, 3, ALE, PSEN#)	V _{DD} - 0.3 V _{DD} - 0.7 V _{DD} - 1.5			V	$\begin{split} I_{OH} &= -10 \; \mu A^{(3)} \\ I_{OH} &= -30 \; \mu A^{(3)} \\ I_{OH} &= -60 \; \mu A^{(3)} \end{split}$
V _{OH1}	Output high Voltage (Port 0, Port 2 in Page Mode during External Address)	V _{DD} - 0.3 V _{DD} - 0.7 V _{DD} - 1.5			V	I _{OH} = -200 μA I _{OH} = -3.2 mA I _{OH} = -7.0 mA
V_{RET}	V _{DD} data retention limit			1.8	V	
I _{IL0}	Logical 0 Input Current (Ports 1, 2, 3)			- 50	μA	V _{IN} = 0.45 V
I _{IL1}	Logical 1 Input Current (NMI)			+ 50	μA	V _{IN} = V _{DD}
I _{LI}	Input Leakage Current (Port 0)			± 10	μA	0.45 V < V _{IN} < V _{DD}
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3 - AWAIT#)			- 650	μA	V _{IN} = 2.0 V
R _{RST}	RST Pull-Down Resistor	40	110	225	kΩ	
CIO	Pin Capacitance		10		pF	T _A = 25°C
I _{DD}	Operating Current		20 25 35	25 30 40	mA	F_{OSC} = 12 MHz F_{OSC} = 16 MHz F_{OSC} = 24 MHz
I _{DL}	Idle Mode Current		5 6.5 9.5	8 10 14	mA	F_{OSC} = 12 MHz F_{OSC} = 16 MHz F_{OSC} = 24 MHz
I _{PD}	Power-Down Current		2	20	μA	$V_{RET} < V_{DD} < 5.5 V$
V_{PP}	Programming supply voltage	12.5		13	V	$T_A = 0$ to +40°C
I _{PP}	Programming supply current	1		75	mA	T _A = 0 to +40°C

Low Voltage Versions - Commercial & Industrial

Table 56.	DC Characteristics;	V _{DD} = 2.7 to	5.5 V, T _A	= -40 to +85°C
-----------	---------------------	--------------------------	-----------------------	----------------

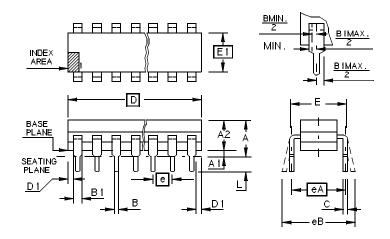
Symbol	Parameter	Min	Typical ⁽⁴⁾	Max	Units	Test Conditions
V _{IL}	Input Low Voltage (except EA#, SCL, SDA)	-0.5		0.2·V _{DD} - 0.1	V	
$V_{IL1}^{(5)}$	Input Low Voltage (SCL, SDA)	-0.5		0.3·V _{DD}	v	
V _{IL2}	Input Low Voltage (EA#)	0		0.2·V _{DD} - 0.3	V	
V _{IH}	Input high Voltage (except XTAL1, RST, SCL, SDA)	0.2·V _{DD} + 0.9		V _{DD} + 0.5	V	
$V_{\rm IH1}^{(5)}$	Input high Voltage (XTAL1, RST, SCL, SDA)	0.7·V _{DD}		V _{DD} + 0.5	v	
V _{OL}	Output Low Voltage (Ports 1, 2, 3)			0.45	v	$I_{OL} = 0.8 \text{ mA}^{(1)(2)}$
V _{OL1}	Output Low Voltage (Ports 0, ALE, PSEN#, Port 2 in Page Mode during External Address)			0.45	v	$I_{OL} = 1.6 \text{ mA}^{(1)(2)}$
V _{OH}	Output high Voltage (Ports 1, 2, 3, ALE, PSEN#)	0.9·V _{DD}			v	I _{OH} = -10 μA ⁽³⁾
V _{OH1}	Output high Voltage (Port 0, Port 2 in Page Mode during External Address)	0.9·V _{DD}			v	I _{OH} = -40 μA
V _{RET}	V _{DD} data retention limit			1.8	V	
I _{ILO}	Logical 0 Input Current (Ports 1, 2, 3 - AWAIT#)			- 50	μΑ	V _{IN} = 0.45 V
I _{IL1}	Logical 1 Input Current (NMI)			+ 50	μA	V _{IN} = V _{DD}
I _{LI}	Input Leakage Current (Port 0)			± 10	μA	0.45 V < V _{IN} < V _{DD}
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3)			- 650	μA	V _{IN} = 2.0 V
R _{RST}	RST Pull-Down Resistor	40	110	225	kΩ	
C _{IO}	Pin Capacitance		10		pF	T _A = 25°C
I _{DD}	Operating Current		4 8 9 11	8 11 12 14	mA	$\begin{array}{c} 5 \text{ MHz, } \text{V}_{\text{DD}} < 3.6 \text{ V} \\ 10 \text{ MHz, } \text{V}_{\text{DD}} < 3.6 \text{ V} \\ 12 \text{ MHz, } \text{V}_{\text{DD}} < 3.6 \text{ V} \\ 16 \text{ MHz, } \text{V}_{\text{DD}} < 3.6 \text{ V} \end{array}$
I _{DL}	Idle Mode Current		0.5 1.5 2 3	1 4 5 7	mA	$\begin{array}{c} 5 \mbox{ MHz, } V_{\rm DD} < 3.6 \mbox{ V} \\ 10 \mbox{ MHz, } V_{\rm DD} < 3.6 \mbox{ V} \\ 12 \mbox{ MHz, } V_{\rm DD} < 3.6 \mbox{ V} \\ 16 \mbox{ MHz, } V_{\rm DD} < 3.6 \mbox{ V} \end{array}$
I _{PD}	Power-Down Current		1	10	μA	V _{RET} < V _{DD} < 3.6 V

Notes: 1. Under steady-state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum IOL per port pin: 10 mA

Maximum IOL per 8-bit port: Port 0 26 mA

Ports 1-315 mA

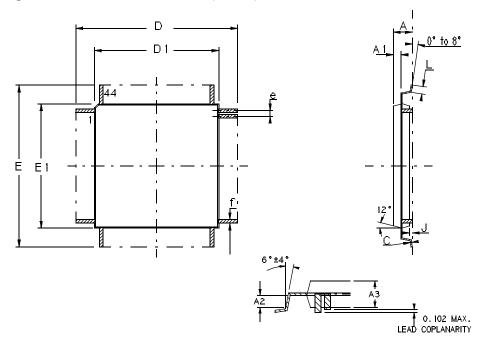

Packages

List of Packages

- PDIL 40
- CDIL 40 with window
- PLCC 44
- CQPJ 44 with window
- VQFP 44 (10x10)

PDIL 40 - Mechanical Outline

Figure 33. Plastic Dual In Line


Table 57. PDIL Package Size

MM Inch					
	M	м	Inch		
	Min	Мах	Min	Мах	
А	-	5.08	-	.200	
A1	0.38	-	.015	-	
A2	3.18	4.95	.125	.195	
В	0.36	0.56	.014	.022	
B1	0.76	1.78	.030	.070	
С	0.20	0.38	.008	.015	
D	50.29	53.21	1.980	2.095	
E	15.24	15.87	.600	.625	
E1	12.32	14.73	.485	.580	
е	2.54 B.S.C.		.100 B.S.C.		
eA	15.24 B.S.C.		.600 B.S.C.		
eB	-	17.78	-	.700	
L	2.93	3.81	.115	.150	
D1	0.13	-	.005	-	

VQFP 44 (10x10) -Mechanical Outline

Figure 37. Shrink Quad Flat Pack (Plastic)

Table 61.	VQFP	Package Size
-----------	------	--------------

	М	М	Inch		
	Min	Мах	Min	Max	
A	-	1.60	-	.063	
A1	0.64 REF		.025 REF		
A2	0.64 REF		.025REF		
A3	1.35	1.45	.053	.057	
D	11.90	12.10	.468	.476	
D1	9.90	10.10	.390	.398	
E	11.90	12.10	.468	.476	
E1	9.90	10.10	.390	.398	
J	0.05	-	.002	6	
L	0.45	0.75	.018	.030	
е	0.80 BSC		.0315 BSC		
f	0.35 BSC		.014 BSC		

Ordering Information

AT/TSC80251G2D ROMIess

Part Number	ROM	Description			
High Speed Versions 4.5 to 5.5 V, Commercial and Industrial					
TSC80251G2D-16CB	ROMless	16 MHz, Commercial 0° to 70°C, PLCC 44			
TSC80251G2D-24CB	ROMless	24 MHz, Commercial 0° to 70°C, PLCC 44			
TSC80251G2D-24CE	ROMless	24 MHz, Commercial 0° to 70°C, VQFP 44			
TSC80251G2D-24IA	ROMless	24 MHz, Industrial -40° to 85°C, PDIL 40			
TSC80251G2D-24IB	ROMless	24 MHz, Industrial -40° to 85°C, PLCC 44			
AT80251G2D-SLSUM	ROMless	24 MHz, Industrial & Green -40° to 85°C, PLCC 44			
AT80251G2D-3CSUM	ROMless	24 MHz, Industrial & Green -40° to 85°C, PDIL 40			
AT80251G2D-RLTUM	ROMless	24 MHz, Industrial & Green -40° to 85°C, VQFP 44			
Low Voltage Versions 2.7 to 5.5 V					
TSC80251G2D-L16CB	ROMless	16 MHz, Commercial, PLCC 44			
TSC80251G2D-L16CE	ROMless	16 MHz, Commercial, VQFP 44			
AT80251G2D-SLSUL	ROMless	16 MHz, Industrial & Green, PLCC 44			
AT80251G2D-RLTUL	ROMless	16 MHz, Industrial & Green, VQFP 44			

AT/TSC83251G2D 32 kilobytes MaskROM

Part Number ⁽¹⁾	ROM	Description		
High Speed Versions 4.5 to 5.5 V, Commercial and Industrial				
TSC251G2Dxxx-16CB	32K MaskROM	16 MHz, Commercial 0° to 70°C, PLCC 44		
TSC251G2Dxxx-24CB	32K MaskROM	24 MHz, Commercial 0° to 70°C, PLCC 44		
TSC251G2Dxxx-24CE	32K MaskROM	24 MHz, Commercial 0° to 70°C, VQFP 44		
TSC251G2Dxxx-24IA	32K MaskROM	24 MHz, Industrial -40° to 85°C, PDIL 40		
TSC251G2Dxxx-24IB	32K MaskROM	24 MHz, Industrial -40° to 85°C, PLCC 44		
AT251G2Dxxx-SLSUM	32K MaskROM	24 MHz, Industrial & Green -40° to 85°C, PLCC 44		
AT251G2Dxxx-3CSUM	32K MaskROM	24 MHz, Industrial & Green -40° to 85°C, PDIL 40		
AT251G2Dxxx-RLTUM	32K MaskROM	24 MHz, Industrial & Green -40° to 85°C, VQFP 44		
AT251G2Dxxx-SLSTM	32K MaskROM	24 MHz, Automotive & Green -40° to 85°C, PLCC 44		

