

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	16MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/tsc87251g2d-l16cb

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Typical Operating Current:11 mA at 3V
- Typical Power-down Current: 1 μA
- Temperature Ranges: Commercial (0°C to +70°C), Industrial (-40°C to +85°C), Automotive ((-40°C to +85°C) ROM only)
- Option: Extended Range (-55°C to +125°C)
- Packages: PDIL 40, PLCC 44 and VQFP 44
- Options: Known Good Dice and Ceramic Packages

Description

The TSC80251G2D products are derivatives of the Atmel Microcontroller family based on the 8/16-bit C251 Architecture. This family of products is tailored to 8/16-bit microcontroller applications requiring an increased instruction throughput, a reduced operating frequency or a larger addressable memory space. The architecture can provide a significant code size reduction when compiling C programs while fully preserving the legacy of C51 assembly routines.

The TSC80251G2D derivatives are pin and software compatible with standard 80C51/Fx/Rx/Rx+ with extended on-chip data memory (1 Kbyte RAM) and up to 256 kilobytes of external code and data. Additionally, the TSC83251G2D and TSC87251G2D provide on-chip code memory: 32 kilobytes ROM and 32 kilobytes EPROM/OTPROM respectively.

They provide transparent enhancements to Intel's xC251Sx family with an additional Synchronous Serial Link Controller (SSLC supporting TWI, μ Wire and SPI protocols), a Keyboard interrupt interface, a dedicated Baud Rate Generator for UART, and Power Management features.

TSC80251G2D derivatives are optimized for speed and for low power consumption on a wide voltage range.

Note: 1. This Datasheet provides the technical description of the TSC80251G2D derivatives. For further information on the device usage, please request the TSC80251 Programmer's Guide and the TSC80251G1D Design Guide and errata sheet.

Typical Applications • ISDN Terminals

- High-Speed Modems
- PABX (SOHO)
- Line Cards
- DVD ROM and Players
- Printers
- Plotters
- Scanners
- Banking Machines
- Barcode Readers
- Smart Cards Readers
- High-End Digital Monitors
- High-End Joysticks
- High-end TV's

Table 2.	Produ	ct Name Signal Description (Continued)	
Signal Name	Туре	Description	Alternate Function
T1:0	I/O	Timer 1:0 External Clock Inputs When timer 1:0 operates as a counter, a falling edge on the T1:0 pin increments the count.	-
T2	I/O	Timer 2 Clock Input/Output For the timer 2 capture mode, T2 is the external clock input. For the Timer 2 clock-out mode, T2 is the clock output.	P1.0
T2EX	I	Timer 2 External Input In timer 2 capture mode, a falling edge initiates a capture of the timer 2 registers. In auto-reload mode, a falling edge causes the timer 2 register to be reloaded. In the up-down counter mode, this signal determines the count direction: 1 = up, 0 = down.	P1.1
тхр	0	Transmit Serial Data TXD outputs the shift clock in serial I/O mode 0 and transmits data in serial I/O modes 1, 2 and 3.	P3.1
VDD	PWR	Digital Supply Voltage Connect this pin to +5V or +3V supply voltage.	-
VPP	I	Programming Supply Voltage The programming supply voltage is applied to this input for programming the on-chip EPROM/OTPROM.	-
VSS	GND	Circuit Ground Connect this pin to ground.	-
VSS1	GND	Secondary Ground 1 This ground is provided to reduce ground bounce and improve power supply bypassing. Connection of this pin to ground is recommended. However, when using the TSC80251G2D as a pin-for-pin replacement for a 8xC51 product, VSS1 can be unconnected without loss of compatibility. Not available on DIP package.	Ι
VSS2	GND	Secondary Ground 2 This ground is provided to reduce ground bounce and improve power supply bypassing. Connection of this pin to ground is recommended. However, when using the TSC80251G2D as a pin-for-pin replacement for a 8xC51 product, VSS2 can be unconnected without loss of compatibility. Not available on DIP package.	_
WAIT#	I	Real-time Synchronous Wait States Input The real-time WAIT# input is enabled by setting RTWE bit in WCON (S:A7h). During bus cycles, the external memory system can signal 'system ready' to the microcontroller in real time by controlling the WAIT# input signal.	P1.6
WCLK	0	Wait Clock Output The real-time WCLK output is enabled by setting RTWCE bit in WCON (S:A7h). When enabled, the WCLK output produces a square wave signal with a period of one half the oscillator frequency.	P1.7
WR#	0	Write Write signal output to external memory.	P3.6
XTAL1	I	Input to the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, its output is connected to this pin. XTAL1 is the clock source for internal timing.	-

 Table 2.
 Product Name Signal Description (Continued)

Table 2.	Product Name Signal Description	(Continued)
----------	---------------------------------	-------------

Signal Name	Туре	Description	Alternate Function
XTAL2	ο	Output of the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, leave XTAL2 unconnected.	_

Note: The description of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the Non-Page mode chip configuration. If the chip is configured in Page mode operation, port 0 carries the lower address bits (A7:0) while port 2 carries the upper address bits (A15:8) and the data (D7:0).

Configuration Byte 1

Table 13. Address Ranges and Usage of RD#, WR# and PSEN# Signals

RD1	RD0	P1.7	P3.7/RD#	PSEN#	WR#	External Memory
0	0	A17	A16	Read signal for all external memory locations	Write signal for all external memory locations	256 KB
0	1	I/O pin	A16	Read signal for all external memory locations	Write signal for all external memory locations	128 KB
1	0	I/O pin	I/O pin	Read signal for all external memory locations	Write signal for all external memory locations	64 KB
1	1	I/O pin	Read signal for regions 00: and 01:	Read signal for regions FE: and FF:	Write signal for all external memory locations	2 × 64 KB ⁽¹⁾

Notes: 1. This selection provides compatibility with the standard 80C51 hardware which has separate external memory spaces for data and code.

Instruction Set Summary

This section contains tables that summarize the instruction set. For each instruction there is a short description, its length in bytes, and its execution time in states (one state time is equal to two system clock cycles). There are two concurrent processes limiting the effective instruction throughput:

- Instruction Fetch
- Instruction Execution

Table 20 to Table 32 assume code executing from on-chip memory, then the CPU is fetching 16-bit at a time and this is never limiting the execution speed.

If the code is fetched from external memory, a pre-fetch queue will store instructions ahead of execution to optimize the memory bandwidth usage when slower instructions are executed. However, the effective speed may be limited depending on the average size of instructions (for the considered section of the program flow). The maximum average instruction throughput is provided by Table 14 depending on the external memory configuration (from Page Mode to Non-Page Mode and the maximum number of wait states). If the average size of instructions is not an integer, the maximum effective throughput is found by pondering the number of states for the neighbor integer values.

Average size		Non-page Mode (states)					
of Instructions (bytes)	Page Mode (states)	0 Wait State	1 Wait State	2 Wait States	3 Wait States	4 Wait States	
1	1	2	3	4	5	6	
2	2	4	6	8	10	12	
3	3	6	9	12	15	18	
4	4	8	12	16	20	24	
5	5	10	15	20	25	30	

 Table 14.
 Minimum Number of States per Instruction for given Average Sizes

If the average execution time of the considered instructions is larger than the number of states given by Table 14, this larger value will prevail as the limiting factor. Otherwise, the value from Table 14 must be taken. This is providing a fair estimation of the execution speed but only the actual code execution can provide the final value.

Table 15 to Table 19 provide notation for Instruction Operands.

Notation for Instruction Operands

.

Table 15. Notation for Direct Addressing

Direct Address	Description	C251	C51
dir8	A direct 8-bit address. This can be a memory address (00h-7Fh) or a SFR address (80h-FFh). It is a byte (default), word or double word depending on the other operand.	3	з
dir16	A 16-bit memory address (00:0000h-00:FFFFh) used in direct addressing.	3	_

Register	Description	C251	C51
at Ri	A memory location (00h-FFh) addressed indirectly via byte registers R0 or R1	_	3
Rn n	Byte register R0-R7 of the currently selected register bank Byte register index: n = 0-7	_	3
Rm Rmd Rms m, md, ms	Byte register R0-R15 of the currently selected register file Destination register Source register Byte register index: m, md, ms = 0-15	3	-
WRj WRjd WRjs at WRj at WRj +dis16 j, jd, js	Word register WR0, WR2,, WR30 of the currently selected register file Destination register Source register A memory location (00:0000h-00:FFFFh) addressed indirectly through word register WR0-WR30, is the target address for jump instructions. A memory location (00:0000h-00:FFFFh) addressed indirectly through word register (WR0-WR30) + 16-bit signed (two's complement) displacement value Word register index: j, jd, js = 0-30	3	_
DRk DRkd DRks at DRk at DRk +dis16 k, kd, ks	Dword register DR0, DR4,, DR28, DR56, DR60 of the currently selected register file Destination register Source register A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register DR0-DR28, DR56 and DR60, is the target address for jump instruction A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register (DR0-DR28, DR56, DR60) + 16-bit (two's complement) signed displacement value Dword register index: k, kd, ks = 0, 4, 8, 28, 56, 60	3	_

Table 19. Notation for Register Operands

4. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

 $IncrementINC < dest>dest opnd \leftarrow dest opnd + 1$

IncrementINC <dest>, <src>dest opnd \leftarrow dest opnd + src opnd

 $DecrementDEC < dest>dest opnd \leftarrow dest opnd - 1$

 $\texttt{DecrementDEC <dest>, <src>dest opnd \leftarrow dest opnd - src opnd}$

			Binary	Mode	Source Mode	
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	States
	A	ACC by 1	1	1	1	1
INC DEC	Rn	Register by 1	1	1	2	2
	dir8	Direct address (on-chip RAM or SFR) by 1	2	2 ⁽²⁾	2	2 ⁽²⁾
	at Ri	Indirect address by 1	1	3	2	4
INC	Rm, #short	Byte register by 1, 2, or 4	3	2	2	1
DEC	WRj, #short	Word register by 1, 2, or 4	3	2	2	1
INC	DRk, #short	Double word register by 1, 2, or 4	3	4	2	3
DEC	DRk, #short	Double word register by 1, 2, or 4	3	5	2	4
INC	DPTR	Data pointer by 1	1	1	1	1

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

MOV	WRj, at WRj +dis24	Indirect with 16-bit displacement (16M) to word register	5	8 ⁽⁵⁾	4	7 ⁽⁵⁾
MOV	at WRj +dis16, Rm	Byte register to indirect with 16-bit displacement (64K)	5	6 ⁽⁴⁾	4	5 ⁽⁴⁾
MOV	at WRj +dis16, WRj	Word register to indirect with 16-bit displacement (64K)	5	7 ⁽⁵⁾	4	6 ⁽⁵⁾
MOV	at DRk +dis24, Rm	Byte register to indirect with 16-bit displacement (16M)	5	7 ⁽⁴⁾	4	6 ⁽⁴⁾
MOV	at DRk +dis24, WRj	Word register to indirect with 16-bit displacement (16M)	5	8(5)	4	7 ⁽⁵⁾

Notes: 1. Instructions that move bits are in Table 27.

2. Move instructions unique to the C251 Architecture.

3. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

4. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).

5. If this instruction addresses external memory location, add 2(N+1) to the number of states (N: number of wait states).

6. If this instruction addresses external memory location, add 4(N+2) to the number of states (N: number of wait states).

			Binary	Mode	Source	e Mode
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	State
	A, Rn	ACC and register	1	3	2	4
ХСН	A, dir8	ACC and direct address (on-chip RAM or SFR)	2	3 ⁽³⁾	2	3 ⁽³⁾
	A, at Ri	ACC and indirect address	1	4	2	5
XCHD	A, at Ri	ACC low nibble and indirect address (256 bytes)	1	4	2	5
	dir8	Push direct address onto stack	2	2 ⁽²⁾	2	2(2
	#data	Push immediate data onto stack	4	4	3	3
PUSH	#data16	Push 16-bit immediate data onto stack	5	5	4	5
F 0311	Rm	Push byte register onto stack	3	4	2	3
	WRj	Push word register onto stack	3	5	2	4
	DRk	Push double word register onto stack	3	9	2	8
	dir8	Pop direct address (on-chip RAM or SFR) from stack	2	3 ⁽²⁾	2	3(2
POP	Rm	Pop byte register from stack	3	3	2	2
	WRj	Pop word register from stack	3	5	2	4
	DRk	Pop double word register from stack	3	9	2	8

Table 28. Summary of Exchange, Push and Pop Instructions

Exchange bytesXCH A, <src>(A) \leftrightarrow src opnd

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

3. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Table 29.	Summar	of Conditional Jump Instructions ((1/2)
-----------	--------	------------------------------------	-------

Jump conditional on statusJcc rel(PC) \leftarrow (PC) + size (instr); IF [cc] THEN (PC) \leftarrow (PC) + rel							
	<dest>,</dest>		Binary	Binary Mode		Source Mode	
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States	
JC	rel	Jump if carry	2	1/4 ⁽³⁾	2	1/4 ⁽³⁾	
JNC	rel	Jump if not carry	2	1/4 ⁽³⁾	2	1/4 ⁽³⁾	
JE	rel	Jump if equal	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JNE	rel	Jump if not equal	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JG	rel	Jump if greater than	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JLE	rel	Jump if less than, or equal	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JSL	rel	Jump if less than (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JSLE	rel	Jump if less than, or equal (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JSG	rel	Jump if greater than (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	
JSGE	rel	Jump if greater than or equal (signed)	3	2/5 ⁽³⁾	2	1/4 ⁽³⁾	

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. States are given as jump not-taken/taken.

3. In internal execution only, add 1 to the number of states of the 'jump taken' if the destination address is internal and odd.

Add 3 if it addresses a Peripheral SFR.

- 5. If this instruction addresses an I/O Port (Px, x = 0-3), add 3 to the number of states. Add 5 if it addresses a Peripheral SFR.
- 6. In internal execution only, add 1 to the number of states of the 'jump taken' if the destination address is internal and odd.

Table 31. Summary of Unconditional Jump Instructions

Absolute jumpAJMP <src>(PC) \leftarrow (PC) +2; (PC)_{10:0} \leftarrow src opnd Extended jumpEJMP <src>(PC) \leftarrow (PC) + size (instr); (PC)_{23:0} \leftarrow src opnd Long jumpLJMP <src>(PC) \leftarrow (PC) + size (instr); (PC)_{15:0} \leftarrow src opnd Short jumpSJMP rel(PC) \leftarrow (PC) +2; (PC) \leftarrow (PC) +rel Jump indirectJMP at A +DPTR(PC)_{23:16} \leftarrow FFh; (PC)_{15:0} \leftarrow (A) + (DPTR) No operationNOP(PC) \leftarrow (PC) +1

	-dott		<dest>,</dest>		Binary Mode		Source Mode	
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States		
AJMP	addr11	Absolute jump	2	3 ⁽²⁾⁽³⁾	2	3 ⁽²⁾⁽³⁾		
EJMP	addr24	Extended jump	5	6 ⁽²⁾⁽⁴⁾	4	5 ⁽²⁾⁽⁴⁾		
EJIVIP	at DRk	Extended jump (indirect)	3	7 ⁽²⁾⁽⁴⁾	2	6 ⁽²⁾⁽⁴⁾		
LJMP	at WRj	Long jump (indirect)	3	6 ⁽²⁾⁽⁴⁾	2	5 ⁽²⁾⁽⁴⁾		
LJIMP	addr16	Long jump (direct address)	3	5 ⁽²⁾⁽⁴⁾	3	5 ⁽²⁾⁽⁴⁾		
SJMP	rel	Short jump (relative address)	2	4 ⁽²⁾⁽⁴⁾	2	4 ⁽²⁾⁽⁴⁾		
JMP	at A +DPTR	Jump indirect relative to the DPTR	1	5 ⁽²⁾⁽⁴⁾	1	5 ⁽²⁾⁽⁴⁾		
NOP		No operation (Jump never)	1	1	1	1		

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

- 2. In internal execution only, add 1 to the number of states if the destination address is internal and odd.
- 3. Add 2 to the number of states if the destination address is external.
- 4. Add 3 to the number of states if the destination address is external.

To preserve the secrecy of the encryption key byte sequence, the Encryption Array can not be verified.

- Notes: 1. When a MOVC instruction is executed, the content of the ROM is not encrypted. In order to fully protect the user program code, the lock bit level 1 (see Table 33) must always be set when encryption is used.
 - 2. If the encryption feature is implemented, the portion of the on-chip code memory that does not contain program code should be filled with "random" byte values to prevent the encryption key sequence from being revealed.

Signature Bytes The TSC80251G2D derivatives contain factory-programmed Signature Bytes. These bytes are located in non-volatile memory outside the memory address space at 30h, 31h, 60h and 61h. To read the Signature Bytes, perform the procedure described in section Verify Algorithm, using the verify signature mode (see Table 37). Signature byte values are listed in Table 35.

		Signature Address	Signature Data
Vendor	Atmel	30h	58h
Architecture	C251	31h	40h
Memory	32 kilobytes EPROM or OTPROM	60h	F7h
Niemory	32 kilobytes MaskROM or ROMless		77h
Revision	TSC80251G2D derivative	61h	FDh

Table 35. Signature Bytes (Electronic ID)

Programming Algorithm Figure 6 shows the hardware setup needed to program the TSC87251G2D EPROM/OTPROM areas:

- The chip has to be put under reset and maintained in this state until completion of the programming sequence.
- PSEN# and the other control signals (ALE and Port 0) have to be set to a high level.
- Then PSEN# has to be to forced to a low level after two clock cycles or more and it
 has to be maintained in this state until the completion of the programming sequence
 (see below).
- The voltage on the EA# pin must be set to V_{DD}.
- The programming mode is selected according to the code applied on Port 0 (see Table 36). It has to be applied until the completion of this programming operation.
- The programming address is applied on Ports 1 and 3 which are respectively the Most Significant Byte (MSB) and the Least Significant Byte (LSB) of the address.
- The programming data are applied on Port 2.
- The EPROM Programming is done by raising the voltage on the EA# pin to V_{PP}, then by generating a low level pulse on ALE/PROG# pin.
- The voltage on the EA# pin must be lowered to V_{DD} before completing the programming operation.
- It is possible to alternate programming and verifying operation (See Paragraph Verify Algorithm). Please make sure the voltage on the EA# pin has actually been lowered to V_{DD} before performing the verifying operation.

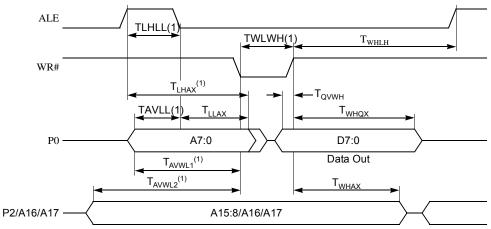
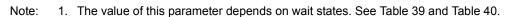
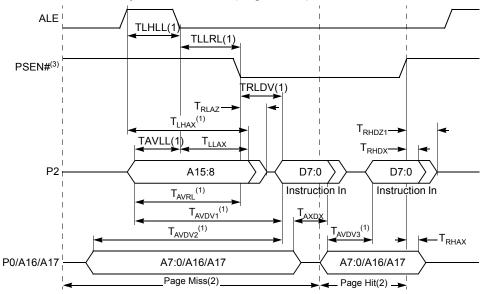




Figure 10. External Bus Cycle: Data Write (Non-Page Mode)

Waveforms in Page Mode

Figure 11. External Bus Cycle: Code Fetch (Page Mode)

- Note: 1. The value of this parameter depends on wait states. See Table 39 and Table 40.
 - A page hit (i.e., a code fetch to the same 256-byte "page" as the previous code fetch) requires one state (2·T_{OSC});

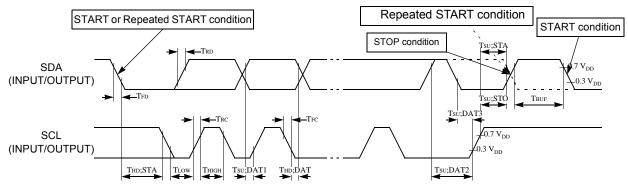
a page miss requires two states ($4 \cdot T_{OSC}$).

During a sequence of page hits, PSEN# remains low until the end of the last page-hit cycle.

AC Characteristics - SSLC: TWI Interface

Timings

Table 47. TWI Interface AC Timing; V_{DD} = 2.7 to 5.5 V, T_{A} = -40 to 85°C


		INPUT	OUTPUT
Symbol	Parameter	Min Max	Min Max
THD; STA	Start condition hold time	14·Tclcl ⁽⁴⁾	4.0 μs ⁽¹⁾
TLOW	SCL low time	16·Tclcl ⁽⁴⁾	4.7 μs ⁽¹⁾
Тнідн	SCL high time	14·Tclcl ⁽⁴⁾	4.0 μs ⁽¹⁾
Trc	SCL rise time	1 μs	_(2)
TFC	SCL fall time	0.3 μs	0.3 μs ⁽³⁾
Tsu; DAT1	Data set-up time	250 ns	20.TCLCL ⁽⁴⁾ - TRD
Tsu; DAT2	SDA set-up time (before repeated START condition)	250 ns	1 μs ⁽¹⁾
Ts∪; DAT3	SDA set-up time (before STOP condition)	250 ns	8.TCLCL ⁽⁴⁾
THD; DAT	Data hold time	0 ns	8.TCLCL ⁽⁴⁾ - TFC
Ts∪; STA	Repeated START set-up time	14·Tclcl ⁽⁴⁾	4.7 μs ⁽¹⁾
Tsu; STO	STOP condition set-up time	14·Tclcl ⁽⁴⁾	4.0 μs ⁽¹⁾
Твиғ	Bus free time	14·Tclcl ⁽⁴⁾	4.7 μs ⁽¹⁾
Trd	SDA rise time	1 μs	_(2)
Tfd	SDA fall time	0.3 μs	0.3 μs ⁽³⁾

Notes: 1. At 100 kbit/s. At other bit-rates this value is inversely proportional to the bit-rate of 100 kbit/s.

- 2. Determined by the external bus-line capacitance and the external bus-line pull-up resistor, this must be < 1 $\mu s.$
- Spikes on the SDA and SCL lines with a duration of less than 3. TCLCL will be filtered out. Maximum capacitance on bus-lines SDA and SCL = 400 pF.
- 4. TCLCL = T_{OSC} = one oscillator clock period.

Waveforms


Figure 18. TWI Waveforms

54 AT/TSC8x251G2D

Figure 24. EPROM Verifying Waveforms

AC Characteristics - External Clock Drive and Logic Level References

Definition of Symbols

Table 53. External Clock Timing Symbol Definitions

Signals					
С	C Clock				

Conditions				
Н	High			
L	Low			
Х	No Longer Valid			

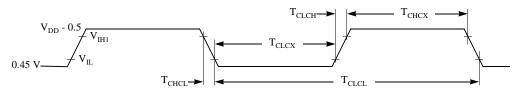

Timings

Table 54. External Clock AC Timings; V_{DD} = 4.5 to 5.5 V, T_A = -40 to +85°C

Symbol	Parameter	Min	Max	Unit
F _{osc}	Oscillator Frequency		24	MHz
T _{CHCX}	High Time	10		ns
T _{CLCX}	Low Time	10		ns
T _{CLCH}	Rise Time	3		ns
T _{CHCL}	Fall Time	3		ns

Waveforms

Figure 25. External Clock Waveform

- Notes: 1. During AC testing, all inputs are driven at V_{DD} -0.5 V for a logic 1 and 0.45 V for a logic 0.
 - 2. Timing measurements are made on all outputs at $V_{\rm IH}$ min for a logic 1 and $V_{\rm IL}$ max for a logic 0.

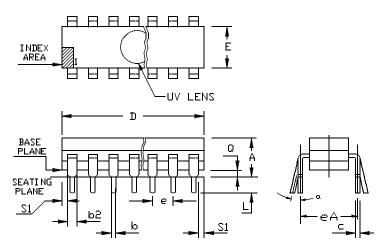
DC Characteristics

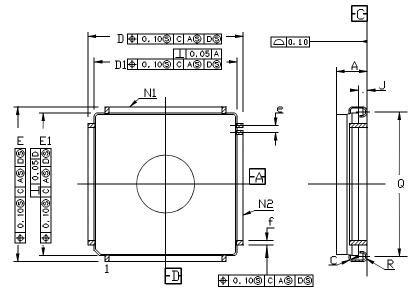
High Speed Versions - Commercial, Industrial, and Automotive

Symbol	Parameter	Min	Typical ⁽⁴⁾	Max	Units	Test Conditions
V _{IL}	Input Low Voltage (except EA#, SCL, SDA)	-0.5		0.2·V _{DD} - 0.1	V	
$V_{IL1}^{(5)}$	Input Low Voltage (SCL, SDA)	-0.5		0.3·V _{DD}	V	
V_{IL2}	Input Low Voltage (EA#)	0		0.2·V _{DD} - 0.3	V	
V _{IH}	Input high Voltage (except XTAL1, RST, SCL, SDA)	0.2·V _{DD} + 0.9		V _{DD} + 0.5	V	
$V_{IH1}^{(5)}$	Input high Voltage (XTAL1, RST, SCL, SDA)	0.7·V _{DD}		V _{DD} + 0.5	V	
V _{OL}	Output Low Voltage (Ports 1, 2, 3)			0.3 0.45 1.0	V	$I_{OL} = 100 \ \mu A^{(1)(2)}$ $I_{OL} = 1.6 \ m A^{(1)(2)}$ $I_{OL} = 3.5 \ m A^{(1)(2)}$
V _{OL1}	Output Low Voltage (Ports 0, ALE, PSEN#, Port 2 in Page Mode during External Address)			0.3 0.45 1.0	V	$I_{OL} = 200 \ \mu A^{(1)(2)}$ $I_{OL} = 3.2 \ m A^{(1)(2)}$ $I_{OL} = 7.0 \ m A^{(1)(2)}$
V _{OH}	Output high Voltage (Ports 1, 2, 3, ALE, PSEN#)	V _{DD} - 0.3 V _{DD} - 0.7 V _{DD} - 1.5			V	$\begin{split} I_{OH} &= -10 \ \mu A^{(3)} \\ I_{OH} &= -30 \ \mu A^{(3)} \\ I_{OH} &= -60 \ \mu A^{(3)} \end{split}$
V _{OH1}	Output high Voltage (Port 0, Port 2 in Page Mode during External Address)	V _{DD} - 0.3 V _{DD} - 0.7 V _{DD} - 1.5			V	I _{OH} = -200 μA I _{OH} = -3.2 mA I _{OH} = -7.0 mA
V_{RET}	V _{DD} data retention limit			1.8	V	
I _{IL0}	Logical 0 Input Current (Ports 1, 2, 3)			- 50	μA	V _{IN} = 0.45 V
I _{IL1}	Logical 1 Input Current (NMI)			+ 50	μA	V _{IN} = V _{DD}
I _{LI}	Input Leakage Current (Port 0)			± 10	μA	0.45 V < V _{IN} < V _{DD}
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3 - AWAIT#)			- 650	μA	V _{IN} = 2.0 V
R _{RST}	RST Pull-Down Resistor	40	110	225	kΩ	
CIO	Pin Capacitance		10		pF	T _A = 25°C
I _{DD}	Operating Current		20 25 35	25 30 40	mA	F_{OSC} = 12 MHz F_{OSC} = 16 MHz F_{OSC} = 24 MHz
I _{DL}	Idle Mode Current		5 6.5 9.5	8 10 14	mA	F_{OSC} = 12 MHz F_{OSC} = 16 MHz F_{OSC} = 24 MHz
I _{PD}	Power-Down Current		2	20	μA	$V_{RET} < V_{DD} < 5.5 V$
V_{PP}	Programming supply voltage	12.5		13	V	$T_A = 0$ to +40°C
I _{PP}	Programming supply current	1		75	mA	T _A = 0 to +40°C

CDIL 40 with Window -Mechanical Outline

Figure 34. Ceramic Dual In Line




Table 58. CDIL Package Size

	ММ		In	ch
	Min	Мах	Min	Мах
A	-	5.71	-	.225
b	0.36	0.58	.014	.023
b2	1.14	1.65	.045	.065
с	0.20	0.38	.008	.015
D	-	53.47	-	2.105
E	13.06	15.37	.514	.605
e	2.54 B.S.C.		.100 B.S.C.	
eA	15.24	B.S.C.	.600 B.S.C.	
L	3.18	5.08	.125	.200
Q	0.38	1.40	.015	.055
S1	0.13	-	.005	-
а	0 - 15 0 - 15			15
N	40			

Figure 36. Ceramic Quad Pack J

CQPJ 44 with Window -Mechanical Outline

Table 60.	CQPJ Package Size
-----------	-------------------

	ММ		Inch	
	Min	Max	Min	Max
A	-	4.90	-	.193
С	0.15	0.25	.006	.010
D - E	17.40	17.55	.685	.691
D1 - E1	16.36	16.66	.644	.656
e	1.27 TYP		.050 TYP	
f	0.43	0.53	.017	.021
J	0.86	1.12	.034	.044
Q	15.49	16.00	.610	.630
R	0.86 TYP		.034 TYP	
N1	11		11	
N2	11		11	

Part Number ⁽¹⁾	ROM	Description			
Low Voltage Versions 2.7 to 5.5 V					
TSC251G2Dxxx-L16CB	32K MaskROM	16 MHz, Commercial 0° to 70°C, PLCC 44			
TSC251G2Dxxx-L16CE	32K MaskROM	16 MHz, Commercial 0° to 70°C, VQFP 44			
AT251G2Dxxx-SLSUL	32K MaskROM	16 MHz, Industrial & Green, PLCC 44			
AT251G2Dxxx-RLTUL	32K MaskROM	16 MHz, Industrial & Green, VQFP 44			

Note: 1. xxx: means ROM code, is Cxxx in case of encrypted code.

AT/TSC87251G2D OTPROM

Part Number	ROM	Description			
High Speed Versions 4.5 to 5.5 V, Commercial and Industrial					
TSC87251G2D-16CB	32K OTPROM	16 MHz, Commercial 0° to 70°C, PLCC 44			
TSC87251G2D-24CB	32K OTPROM	24 MHz, Commercial 0° to 70°C, PLCC 44			
TSC87251G2D-24CED	32K OTPROM	24 MHz, Commercial 0° to 70°C, VQFP 44			
TSC87251G2D-24IA	32K OTPROM	24 MHz, Industrial -40° to 85°C, PDIL 40			
TSC87251G2D-24IB	32K OTPROM	24 MHz, Industrial -40° to 85°C, PLCC 44			
AT87251G2D-SLSUM	32K OTPROM	24 MHz, Industrial & Green -40° to 85°C, PLCC 44			
AT87251G2D-3CSUM	32K OTPROM	24 MHz, Industrial & Green -40° to 85°C, PDIL 40			
AT87251G2D-RLTUM	32K OTPROM	24 MHz, Industrial & Green -40° to 85°C, VQFP 44			
Low Voltage Versions 2.7 to 5.5 V					
TSC87251G2D-L16CB	32K OTPROM	16 MHz, Commercial 0° to 70°C, PLCC 44			
TSC87251G2D-L16CED	32K OTPROM	16 MHz, Commercial 0° to 70°C, VQFP 44			
AT87251G2D-SLSUL	32K OTPROM	16 MHz, Industrial & Green, 0° to 70°C, PLCC 44			
AT87251G2D-RLTUL	32K OTPROM	16 MHz, Industrial & Green, 0° to 70°C, VQFP 44			

Document Revision History

Changes from 1. Added automotive qualification, and ordering information for ROM product version.

- 4135D to 4135E
- 1. Absolute Maximum Ratings added for automotive product version.

Changes from 4135E to 4135F

AIMEL