

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	C251
Core Size	8/16-Bit
Speed	16MHz
Connectivity	EBI/EMI, I ² C, Microwire, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/tsc87251g2d-l16ce

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Description

Pinout

Figure 1. TSC80251G2D 40-pin DIP package

Signals

Table 2. Product Name Signal Description

Signal Name	Туре	Description	Alternate Function			
A17	0	18th Address Bit Output to memory as 18th external address bit (A17) in extended bus applications, depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).				
A16	0	17th Address Bit Output to memory as 17th external address bit (A16) in extended bus applications, depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 20).				
A15:8 ⁽¹⁾	0	Address Lines Upper address lines for the external bus.	P2.7:0			
AD7:0 ⁽¹⁾	I/O	Address/Data Lines Multiplexed lower address lines and data for the external memory.	P0.7:0			
ALE	0	Address Latch Enable ALE signals the start of an external bus cycle and indicates that valid address information are available on lines A16/A17 and A7:0. An external latch can use ALE to demultiplex the address from address/data bus.	_			
AWAIT#	I	Real-time Asynchronous Wait States Input When this pin is active (low level), the memory cycle is stretched until it becomes high. When using the Product Name as a pin-for-pin replacement for a 8xC51 product, AWAIT# can be unconnected without loss of compatibility or power consumption increase (on-chip pull-up). Not available on DIP package.	_			
CEX4:0	I/O	PCA Input/Output pins CEXx are input signals for the PCA capture mode and output signals for the PCA compare and PWM modes.	P1.7:3			
EA#	I	External Access Enable EA# directs program memory accesses to on-chip or off-chip code memory. For EA# = 0, all program memory accesses are off-chip. For EA# = 1, an access is on-chip ROM if the address is within the range of the on-chip ROM; otherwise the access is off-chip. The value of EA# is latched at reset. For devices without ROM on-chip, EA# must be strapped to ground.	_			
ECI	0	PCA External Clock input ECI is the external clock input to the 16-bit PCA timer.	P1.2			
MISO	I/O	SPI Master Input Slave Output line When SPI is in master mode, MISO receives data from the slave peripheral. When SPI is in slave mode, MISO outputs data to the master controller.	P1.5			
MOSI	I/O	SPI Master Output Slave Input line When SPI is in master mode, MOSI outputs data to the slave peripheral. When SPI is in slave mode, MOSI receives data from the master controller.	P1.7			
INT1:0#	I	External Interrupts 0 and 1 INT1#/INT0# inputs set IE1:0 in the TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0 are set by a falling edge on INT1#/INT0#. If bits IT1:0 are cleared, bits IE1:0 are set by a low level on INT1#/INT0#.	P3.3:2			

Table 7. System Management SFRs

Mnemonic	Name
PCON	Power Control
POWM	Power Management

Mnemonic	Name
CKRL	Clock Reload
WCON	Synchronous Real-Time Wait State Control

Table 8. Interrupt SFRs

Mnemonic	Name
IE0	Interrupt Enable Control 0
IE1	Interrupt Enable Control 1
IPH0	Interrupt Priority Control High 0

Table 9.	Key	/board	Interface	SFRs
	T\C	ybouru	menace	01103

Mnemonic	Name
P1IE	Port 1 Input Interrupt Enable
P1F	Port 1 Flag

IPH1	Interrupt Priority Control High 1
IPL1	Interrupt Priority Control Low 1

Interrupt Priority Control Low 0

Mnemonic Name

IPL0

Mnemonic	Name
P1LS	Port 1 Level Selection

Table 12. Configuration Byte 1UCONFIG1

7	6	5	4	3	2	1	0
CSIZE	-	-	INTR	WSB	WSB1#	WSB0#	EMAP#
Bit Number	Bit Mnem	ionic I	Description				
7	CSIZE TSC87251G2D		On-Chip Code Memory Size bit ⁽¹⁾ Clear to select 16 KB of on-chip code memory (TSC87251G1D product). Set to select 32 KB of on-chip code memory (TSC87251G2D product).				
	TSC8025 TSC8325	1G2D F 1G2D \$	Reserved Set this bit when	writing to UCC	ONFIG1.		
6	-	F	Reserved Set this bit when writing to UCONFIG1.				
5	-		Reserved Set this bit when writing to UCONFIG1.				
4	INTF	۲ ۲ ۲ ۲	Interrupt Mode bit ⁽²⁾ Clear so that the interrupts push two bytes onto the stack (the two lower bytes of the PC register). Set so that the interrupts push four bytes onto the stack (the three bytes of the PC register and the PSW1 register).				
3	WSE	3	Wait State B bit ⁽³⁾ Clear to generate one wait state for memory region 01:. Set for no wait states for memory region 01:.				
2	WSB	1# \	Vait State B bits	5			
1	WSB)# () }	Select the number of wait states for RD#, WR# and PSEN# signals for external memory accesses (only region 01:).WSB1#WSB0#Number of Wait States003012101110				
0	EMAF	2# F 5 F	On-Chip Code Memory Map bit Clear to map the upper 16 KB of on-chip code memory (at FF:4000h- FF:7FFFh) to the data space (at 00:C000h-00:FFFFh). Set not to map the upper 16 KB of on-chip code memory (at FF:4000 FF:7FFFh) to the data space.			FF:4000h- at FF:4000h-	

Notes: 1. The CSIZE is only available on EPROM/OTPROM products.

2. Two or four bytes are transparently popped according to INTR when using the RETI instruction. INTR must be set if interrupts are used with code executing outside region FF:.

3. Use only for Step A compatibility; set this bit when WSB1:0# are used.

Instruction Set Summary

This section contains tables that summarize the instruction set. For each instruction there is a short description, its length in bytes, and its execution time in states (one state time is equal to two system clock cycles). There are two concurrent processes limiting the effective instruction throughput:

- Instruction Fetch
- Instruction Execution

Table 20 to Table 32 assume code executing from on-chip memory, then the CPU is fetching 16-bit at a time and this is never limiting the execution speed.

If the code is fetched from external memory, a pre-fetch queue will store instructions ahead of execution to optimize the memory bandwidth usage when slower instructions are executed. However, the effective speed may be limited depending on the average size of instructions (for the considered section of the program flow). The maximum average instruction throughput is provided by Table 14 depending on the external memory configuration (from Page Mode to Non-Page Mode and the maximum number of wait states). If the average size of instructions is not an integer, the maximum effective throughput is found by pondering the number of states for the neighbor integer values.

Average size		Non-page Mode (states)					
of Instructions (bytes)	Page Mode (states)	0 Wait State	1 Wait State	2 Wait States	3 Wait States	4 Wait States	
1	1	2	3	4	5	6	
2	2	4	6	8	10	12	
3	3	6	9	12	15	18	
4	4	8	12	16	20	24	
5	5	10	15	20	25	30	

 Table 14.
 Minimum Number of States per Instruction for given Average Sizes

If the average execution time of the considered instructions is larger than the number of states given by Table 14, this larger value will prevail as the limiting factor. Otherwise, the value from Table 14 must be taken. This is providing a fair estimation of the execution speed but only the actual code execution can provide the final value.

Table 15 to Table 19 provide notation for Instruction Operands.

Notation for Instruction Operands

.

Table 15. Notation for Direct Addressing

Direct Address	Description	C251	C51
dir8	A direct 8-bit address. This can be a memory address (00h-7Fh) or a SFR address (80h-FFh). It is a byte (default), word or double word depending on the other operand.	3	3
dir16	A 16-bit memory address (00:0000h-00:FFFFh) used in direct addressing.	3	_

CompareCM	1P <dest>, <sr< th=""><th>rc>dest opnd - src opnd</th><th></th><th></th><th></th><th></th></sr<></dest>	rc>dest opnd - src opnd				
	- doots		Binary	Mode	Source Mode	
Mnemonic	<src>⁽²⁾</src>	Comments	Bytes	States	Bytes	States
	Rmd, Rms	Register with register	3	2	2	1
	WRjd, WRjs	Word register with word register	3	3	2	2
	DRkd, DRks	Dword register with dword register	3	5	2	4
	Rm, #data	Register with immediate data	4	3	3	2
	WRj, #data16	Word register with immediate 16-bit data	5	4	4	3
	DRk, #0data16	Dword register with zero-extended 16-bit immediate data	5	6	4	5
CMP	DRk, #1data16	Dword register with one-extended 16-bit immediate data	5	6	4	5
	Rm, dir8	Direct address (on-chip RAM or SFR) with byte register	4	3 ⁽¹⁾	3	2 ⁽¹⁾
	WRj, dir8	Direct address (on-chip RAM or SFR) with word register	4	4	3	3
	Rm, dir16	Direct address (64K) with byte register	5	3 ⁽²⁾	4	2 ⁽²⁾
	WRj, dir16	Direct address (64K) with word register	5	4 ⁽³⁾	4	3 ⁽³⁾
	Rm, at WRj	Indirect address (64K) with byte register	4	3 ⁽²⁾	3	2 ⁽²⁾
	Rm, at DRk	Indirect address (16M) with byte register	4	4 ⁽²⁾	3	3 ⁽²⁾

Table 22. Summary of Compare Instructions

Notes: 1. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

- 2. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
- 3. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

$Move^{(1)}MOV \le est>$, $\le rc>dest opnd \leftarrow src opnd$							
			Binary Mode Source		Source	e Mode	
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Bytes	States	Bytes	States	
MOV	Rmd, Rms	Byte register to byte register	3	2	2	1	
MOV	WRjd, WRjs	Word register to word register	3	2	2	1	
MOV	DRkd, DRks	Dword register to dword register	3	3	2	2	
MOV	Rm, #data	Immediate 8-bit data to byte register	4	3	3	2	
MOV	WRj, #data16	Immediate 16-bit data to word register	5	3	4	2	
MOV	DRk, #0data16	zero-ext 16bit immediate data to dword register	5	5	4	4	
MOV	DRk, #1data16	one-ext 16bit immediate data to dword register	5	5	4	4	
MOV	Rm, dir8	Direct address (on-chip RAM or SFR) to byte register	4	3 ⁽³⁾	3	2 ⁽³⁾	
MOV	WRj, dir8	Direct address (on-chip RAM or SFR) to word register	4	4	3	3	
MOV	DRk, dir8	Direct address (on-chip RAM or SFR) to dword register	4	6	3	5	
MOV	Rm, dir16	Direct address (64K) to byte register	5	3 ⁽⁴⁾	4	2 ⁽⁴⁾	
MOV	WRj, dir16	Direct address (64K) to word register	5	4 ⁽⁵⁾	4	3 ⁽⁵⁾	
MOV	DRk, dir16	Direct address (64K) to dword register	5	6 ⁽⁶⁾	4	5 ⁽⁶⁾	
MOV	Rm, at WRj	Indirect address (64K) to byte register	4	3(4)	3	2 ⁽⁴⁾	
MOV	Rm, at DRk	Indirect address (16M) to byte register	4	4 ⁽⁴⁾	3	3 ⁽⁴⁾	
MOV	WRjd, at WRjs	Indirect address (64K) to word register	4	4 ⁽⁵⁾	3	3 ⁽⁵⁾	
MOV	WRj, at DRk	Indirect address (16M) to word register	4	5 ⁽⁵⁾	3	4 ⁽⁵⁾	
MOV	dir8, Rm	Byte register to direct address (on-chip RAM or SFR)	4	4 ⁽³⁾	3	3 ⁽³⁾	
MOV	dir8, WRj	Word register to direct address (on-chip RAM or SFR)	4	5	3	4	
MOV	dir8, DRk	Dword register to direct address (on-chip RAM or SFR)	4	7	3	6	
MOV	dir16, Rm	Byte register to direct address (64K)	5	4 ⁽⁴⁾	4	3 ⁽⁴⁾	
MOV	dir16, WRj	Word register to direct address (64K)	5	5 ⁽⁵⁾	4	4 ⁽⁵⁾	
MOV	dir16, DRk	Dword register to direct address (64K)	5	7 ⁽⁶⁾	4	6 ⁽⁶⁾	
MOV	at WRj, Rm	Byte register to indirect address (64K)	4	4 ⁽⁴⁾	3	3 ⁽⁴⁾	
MOV	at DRk, Rm	Byte register to indirect address (16M)	4	5 ⁽⁴⁾	3	4 ⁽⁴⁾	
MOV	at WRjd, WRjs	Word register to indirect address (64K)	4	5 ⁽⁵⁾	3	4 ⁽⁵⁾	
MOV	at DRk, WRj	Word register to indirect address (16M)	4	6 ⁽⁵⁾	3	5 ⁽⁵⁾	
MOV	Rm, at WRj +dis16	Indirect with 16-bit displacement (64K) to byte register	5	6 ⁽⁴⁾	4	5 ⁽⁴⁾	
MOV	WRj, at WRj +dis16	Indirect with 16-bit displacement (64K) to word register	5	7 ⁽⁵⁾	4	6 ⁽⁵⁾	
MOV	Rm, at DRk +dis24	Indirect with 16-bit displacement (16M) to byte register	5	7 ⁽⁴⁾	4	6 ⁽⁴⁾	

Table 27. Summary of Bit Instructions

Clear B	BitCLR <dest>dest opn</dest>	d ← 0

Set BitSETB <dest>dest opnd \leftarrow 1

 $\textbf{Complement BitCPL <dest>dest opnd} \leftarrow \varnothing \textbf{ bit}$

AND Carry with BitANL CY, $\langle src \rangle(CY) \leftarrow (CY) \land src opnd$

AND Carry with Complement of BitANL CY, /<src>(CY) \leftarrow (CY) $\land \varnothing$ src opnd

OR Carry with BitORL CY, <src>(CY) \leftarrow (CY) \lor src opnd

OR Carry with Complement of BitORL CY, /<src>(CY) \leftarrow (CY) $\vee \varnothing$ src opnd

Move Bit to CarryMOV CY, $\langle crc \rangle (CY) \leftarrow src opnd$

Move Bit from CarryMOV <dest>, CYdest opnd \leftarrow (CY)

	<dest></dest>		Binary Mode		Source Mode	
Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
	CY	Clear carry	1	1	1	1
CLR	bit51	Clear direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit	Clear direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾
	CY	Set carry	1	1	1	1
SETB	bit51	Set direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit	Set direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾
	CY	Complement carry	1	1	1	1
CPL	bit51	Complement direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit	Complement direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾
	CY, bit51	And direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	CY, bit	And direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
ANL	CY, /bit51	And complemented direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	CY, /bit	And complemented direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
	CY, bit51	Or direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	CY, bit	Or direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
ORL	CY, /bit51	Or complemented direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
	CY, /bit	Or complemented direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
	CY, bit51	Move direct bit to carry	2	1 ⁽²⁾	2	1 ⁽²⁾
MOV	CY, bit	Move direct bit to carry	4	3 ⁽²⁾	3	2 ⁽²⁾
	bit51, CY	Move carry to direct bit	2	2 ⁽³⁾	2	2 ⁽³⁾
	bit, CY	Move carry to direct bit	4	4 ⁽³⁾	3	3 ⁽³⁾

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

3. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

dest opn	d ← ((SP)); (SF	P) ← (SP) -1	Dimon	Mada	Course	Mada
Mnemonic	<dest>, <src>⁽¹⁾</src></dest>	Comments	Binary	States	Bytes	States
	A, Rn	ACC and register	1	3	2	4
ХСН	A, dir8	ACC and direct address (on-chip RAM or SFR)	2	3 ⁽³⁾	2	3 ⁽³⁾
	A, at Ri	ACC and indirect address	1	4	2	5
XCHD	A, at Ri	ACC low nibble and indirect address (256 bytes)	1	4	2	5
	dir8	Push direct address onto stack	2	2 ⁽²⁾	2	2 ⁽²⁾
	#data	Push immediate data onto stack	4	4	3	3
	#data16	Push 16-bit immediate data onto stack	5	5	4	5
PU3H	Rm	Push byte register onto stack	3	4	2	3
	WRj	Push word register onto stack	3	5	2	4
	DRk	Push double word register onto stack	3	9	2	8
	dir8	Pop direct address (on-chip RAM or SFR) from stack	2	3 ⁽²⁾	2	3(2)
POP	Rm	Pop byte register from stack	3	3	2	2
	WRj	Pop word register from stack	3	5	2	4
	DRk	Pop double word register from stack	3	9	2	8

Table 28. Summary of Exchange, Push and Pop Instructions

Exchange bytesXCH A, <src>(A) \leftrightarrow src opnd

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. If this instruction addresses an I/O Port (Px, x = 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

3. If this instruction addresses an I/O Port (Px, x = 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Table 32.	Summar	of Call and	Return	Instructions
-----------	--------	-------------	--------	--------------

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		ACALL <src></src>	$(PC) \leftarrow (PC) + 2$ push $(PC)_{45}$				
Extended callECALL <src>(PC) \leftarrow (PC) + size (instr); push (PC)_{23.0}; (PC)_{23.0} \leftarrow src opnd Long callLCALL <src>(PC) \leftarrow (PC) + size (instr); push (PC)_{15.0}; (PC)_{15.0} \leftarrow src opnd Return from subroutineERETpop (PC)_{15.0} Extended return from subroutineERETpop (PC)_{23.0}; Return from interruptRAP(PC) \leftarrow (PC) + size (instr); IF [INTR = 1] THEN pop (PC)_{23.0}; pop (PSW1) Trap interruptTRAP(PC) \leftarrow (PC) + size (instr); IF [INTR = 1] THEN push (PC)_{15.0} IF [INTR = 1] THEN push (PC)_{15.0} IF [INTR = 1] THEN push (PSW1); push (PC)_{23.0} $\frac{\text{dests}}{\text{sccs}^{(1)}} \frac{\text{comments}}{\text{comments}} \frac{\text{Binary Mode}}{\text{Bytes}} \frac{\text{Source Mode}}{\text{Bytes}} \frac{\text{States}}{\text{2} g^{(2)(3)}} 2 g^{(2)(3)}$ ECALL addr11 Absolute subroutine call 2 $g^{(2)(3)}$ 2 $g^{(2)(3)}$ ECALL $\frac{\text{at DRk}}{\text{addr24}} \frac{\text{Extended subroutine call}}{\text{addr24}} \frac{5}{\text{14}^{(2)(3)}} \frac{114^{(2)(3)}}{2} 2 g^{(2)(3)}} 2 g^{(2)(3)}$ ECALL $\frac{\text{at WRj}}{\text{addr16}} \text{ Long subroutine call} \frac{3}{3} g^{(2)(3)} \frac{3}{3} g^{(2)(3)}} \frac{9^{(2)(3)}}{2} 2 g^{(2)(3)}}$ RET Return from subroutine call 3 $g^{(2)(3)} \frac{3}{3} g^{(2)(3)}} \frac{9^{(2)(3)}}{3} \frac{3}{3} g^{(2)(3)}}$ RET Return from subroutine return 3 $g^{(2)} 2 8^{(2)}$ RET Return from interrupt 1 $7^{(2)} \frac{1}{1} 7^{(2)} \frac{7^{(2)}}{1} \frac{1}{3} \frac{7^{(2)}}{1} \frac{1}{3}$</src></src>	(PC) _{10:0}	\leftarrow src opnd	(i c) (i c) · 2, public (i c) _{15:0} ,				
$(PC)_{230} \leftarrow \text{ src opnd}$ $Long callLCALL < \text{src>}(PC) \leftarrow (PC) + \text{size (instr); push (PC)}_{15.0};$ $(PC)_{15.0} \leftarrow \text{src opnd}$ Return from subroutineRETpop (PC)_{15.0} Extended return from subroutineRETpop (PC)_{23.0} Return from interruptRETIIF [INTR = 0] THEN pop (PC)_{15.0} IF [INTR = 1] THEN pop (PC)_{23.0}; pop (PSW1) Trap interruptTRAP(PC) \leftarrow (PC) + size (instr); IF [INTR = 0] THEN push (PC)_{15.0} IF [INTR = 1] THEN push (PC)_{15.0} IF [INTR = 1] THEN push (PSW1); push (PC)_{23.0} $\frac{\text{cdest>,}}{\text{csrc>}^{(1)}} \frac{\text{comments}}{\text{Comments}} \frac{\text{Binary Mode}}{\text{Bytes}} \frac{\text{Source Mode}}{\text{Bytes}}$ $\frac{\text{ACALL}}{\text{addr11}} \text{Absolute subroutine call} \qquad 2 9^{(2)(3)} 2 9^{(2)(3)}$ $\frac{\text{cALL}}{\text{addr24}} \text{Extended subroutine call} 5 14^{(2)(3)} 4 13^{(2)(3)}$ $\frac{\text{cALL}}{\text{addr24}} \text{Extended subroutine call} 5 14^{(2)(3)} 2 9^{(2)(3)}$ $\frac{\text{cALL}}{\text{addr16} \text{Long subroutine call}} 3 9^{(2)(3)} 3 9^{(2)(3)}$ $\frac{\text{RET}}{\text{RET}} \text{Return from subroutine call} 1 7^{(2)} 1 7^{(2)}$ $\frac{\text{RET}}{\text{RET}} \text{Extended subroutine return} 3 9^{(2)} 2 8^{(2)}$ $\frac{\text{RET}}{\text{RET}} \text{Return from interrupt} 1 7^{(2)(4)} 1 7^{(2)(4)}$ $\frac{\text{RET}}{\text{RET}} \text{Return from interrupt} 2 12^{(4)} 1 11^{(4)}$	Extended cal	IECALL <src></src>	$(PC) \leftarrow (PC) + size (instr); push (PC)_2$	3:0;			
Long callLCALL <src>(PC) \leftarrow (PC) + size (instr); push (PC)_{15:0}; (PC)_{15:0} \leftarrow src opnd Return from subroutineRETpop (PC)_{15:0} Extended return from subroutineRETpop (PC)_{23:0} Return from interruptRETIIF [INTR = 0] THEN pop (PC)_{15:0} IF [INTR = 1] THEN pop (PC)_{23:0}; pop (PSW1) Trap interruptTRAP(PC) \leftarrow (PC) + size (instr); IF [INTR = 1] THEN push (PC)_{15:0} IF [INTR = 1] THEN push (PC)_{23:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{23:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (P(3)) IF [INTR = 1] THEN push (PC)_{15:0} I = 2 (</src>	(PC) _{23:0}	$\leftarrow src opnd$		0.0			
$(PC)_{15:0} \leftarrow \text{ src opnd}$ Return from subroutineRETpop (PC)_{15:0} Extended return from subroutineRETpop (PC)_{23:0} Return from interruptRETIIF [INTR = 0] THEN pop (PC)_{15:0} IF [INTR = 1] THEN pop (PC)_{23:0} pop (PSW1) Trap interruptRAP(PC) \leftarrow (PC) + size (instr); IF [INTR = 0] THEN push (PC)_{15:0} IF [INTR = 1] THEN push (PC)_{15:0} RET at the extended subroutine call (indirect) and the push (PC)_{13:0} and t	Long callLCA	LL <src>(PC</src>) \leftarrow (PC) + size (instr); push (PC) _{15:0} ;				
Return from subroutineRETpop (PC)15:0Extended return from interruptRETIIF [INTR = 0] THEN pop (PC)15:0IF [INTR = 1] THEN pop (PC)23:0: pop (PSW1)Trap interruptTRAP(PC) \leftarrow (PC) + size (instr);IF [INTR = 0] THEN push (PC)15:0IF [INTR = 1] THEN push (PC)23:0Mnemonic <a block"="" href="https://www.sec.ed/states-stat</td><td>(PC)<sub>15:0</sub></td><td><math>\leftarrow</math> src opnd</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Extended return from subroutineERETpop (PC)<sub>23:0</sub>
Return from interruptRETIIF [INTR = 0] THEN pop (PC)<sub>15:0</sub>
IF [INTR = 1] THEN pop (PC)<sub>23:0</sub>; pop (PSW1)
Trap interruptTRAP(PC) <math>\leftarrow</math> (PC) + size (instr);
IF [INTR = 0] THEN push (PC)<sub>15:0</sub>
IF [INTR = 1] THEN push (PC)<sub>15:0</sub>
IF [INTR = 1] THEN push (PSW1); push (PC)<sub>23:0</sub>
Mnemonic <math>\frac{\langle \text{dest} \rangle}{\langle \text{src} \rangle^{(1)}}</math> Comments <math> </math></td><td>Return from s</td><td>subroutineRE</td><td>Tpop (PC)<sub>15:0</sub></td><td></td><td></td><td></td><td></td></tr><tr><td>Return from interruptRE IIIF [INTR = 0] THEN pop (PC)15:0
IF [INTR = 1] THEN pop (PC)23:0; pop (PSW1)
Trap interruptTRAP(PC) (- (PC) + size (instr);
IF [INTR = 0] THEN push (PC)15:0
IF [INTR = 1] THEN push (PSW1); push (PC)23:0Binary ModeSource ModeMnemonic<a cdest>,
<src>(-1)CommentsBinary ModeSource ModeMnemonicaddr11Absolute subroutine call2<math>9^{(2)(3)}</math>2<math>9^{(2)(3)}</math>ECALLaddr11Absolute subroutine call (indirect)3<math>14^{(2)(3)}</math>2<math>13^{(2)(3)}</math>ECALLat DRkExtended subroutine call (indirect)3<math>14^{(2)(3)}</math>2<math>9^{(2)(3)}</math>LCALLat WRjLong subroutine call (indirect)3<math>10^{(2)(3)}</math>2<math>9^{(2)(3)}</math>RETReturn from subroutine call3<math>9^{(2)(3)}</math>3<math>9^{(2)(3)}</math>RETReturn from subroutine return3<math>9^{(2)}</math>2<math>8^{(2)}</math>RETExtended subroutine return3<math>9^{(2)}</math>2<math>8^{(2)}</math>RETReturn from interrupt1<math>7^{(2)(4)}</math>1<math>7^{(2)(4)}</math>RETJump to the trap interrupt vector2<math>12^{(4)}</math>1<math>11^{(4)}</math></td><td>Extended retu</td><td>urn from subr</td><td>outineERETpop (PC)<sub>23:0</sub></td><td></td><td></td><td></td><td></td></tr><tr><td>In [INTR = 0] THEN pop (FOURT)Trap interruptTRAP(PC) <math>\leftarrow</math> (PC) + size (instr);
IF [INTR = 0] THEN push (PC)15:0
IF [INTR = 1] THEN push (PSW1); push (PC)23:0Mnemonic<math>< < dest >, < src >^{(1)}</math>CommentsBinary ModeSource ModeMnemonicaddr11Absolute subroutine call2<math>9^{(2)(3)}</math>2<math>9^{(2)(3)}</math>ACALLaddr11Absolute subroutine call (indirect)3<math>14^{(2)(3)}</math>2<math>13^{(2)(3)}</math>ECALLaddr24Extended subroutine call (indirect)3<math>10^{(2)(3)}</math>2<math>9^{(2)(3)}</math>LCALLat WRjLong subroutine call (indirect)3<math>10^{(2)(3)}</math>2<math>9^{(2)(3)}</math>addr16Long subroutine call3<math>9^{(2)(3)}</math>3<math>9^{(2)(3)}</math>RETReturn from subroutine call3<math>9^{(2)}</math>2<math>8^{(2)}</math>RETReturn from interrupt1<math>7^{(2)}</math>1<math>7^{(2)}</math>RETLine Return from interrupt1<math>7^{(2)(4)}</math>1<math>7^{(2)(4)}</math>RAPJump to the trap interrupt vector2<math>12^{(4)}</math>1<math>11^{(4)}</math></td><td>Return from I</td><td>nterruptRET</td><td><math display=">P(PC)_{15:0} = 0 P(PC)_{15:0}							
IF [INTR = 0] THEN push (PC)15:0 IF [INTR = 1] THEN push (PSW1); push (PC)23:0Mnemonic <src>'(1)CommentsBinary ModeSource ModeACALLaddr11Absolute subroutine call2$9^{(2)(3)}$2$9^{(2)(3)}$ECALLaddr24Extended subroutine call (indirect)3$14^{(2)(3)}$2$13^{(2)(3)}$ECALLaddr24Extended subroutine call (indirect)3$14^{(2)(3)}$2$13^{(2)(3)}$LCALLat WRjLong subroutine call (indirect)3$10^{(2)(3)}$2$9^{(2)(3)}$addr16Long subroutine call3$9^{(2)(3)}$3$9^{(2)(3)}$RETReturn from subroutine call1$7^{(2)}$1$7^{(2)}$ERETExtended subroutine return3$9^{(2)}$2$8^{(2)}$RETImage: Return from interrupt1$7^{(2)(4)}$1$7^{(2)(4)}$RAPJump to the trap interrupt vector2$12^{(4)}$1$11^{(4)}$</src>	Tran interrunt	TRAP(PC) ←	-(PC) + size (instr)				
IF [INTR = 1] THEN push (PSW1); push (PC)_{23:0Mnemonic strestriction.com Binary ModeSource ModeMnemonic strestriction.com Binary ModeSource ModeMnemonicaddr11Absolute subroutine call2 $9^{(2)(3)}$ 2 $9^{(2)(3)}$ ACALLaddr11Absolute subroutine call2 $9^{(2)(3)}$ 2 $9^{(2)(3)}$ ECALLat DRkExtended subroutine call (indirect)3 $14^{(2)(3)}$ 2 $13^{(2)(3)}$ addr24Extended subroutine call (indirect)3 $10^{(2)(3)}$ 2 $9^{(2)(3)}$ LCALLat WRjLong subroutine call (indirect)3 $10^{(2)(3)}$ 2 $9^{(2)(3)}$ addr16Long subroutine call3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ 2 $8^{(2)(3)}$ RETReturn from subroutine call3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ 2 $8^{(2)(3)}$ RETReturn from subroutine return3 $9^{(2)}$ 2 $8^{(2)}$ RETLong burboutine return3 $9^{(2)}$ 2 $8^{(2)}$ RETLong burboutine return3 $9^{(2)}$ 1 $7^{(2)(4)}$ RETLong burboutine return3 $9^{(2)}$ 2 $8^{(2)}$ RETLong burboutine return3 $9^{(2)}$ 1 $7^{(2)(4)}$ RETLong burboutine return3 $9^{(2)}$ 1 $7^{(2)(4)}$ RETReturn from interrupt <th< td=""><td>IF [INTR</td><td>R = 0] THEN p</td><td>$(PC)_{150}$</td><td></td><td></td><td></td><td></td></th<>	IF [INTR	R = 0] THEN p	$(PC)_{150}$				
Mnemonic <dest>, <src>^(1)CommentsBinary ModeSource ModeACALLaddr11Absolute subroutine call2$9^{(2)(3)}$2$9^{(2)(3)}$ACALLaddr11Absolute subroutine call (indirect)3$14^{(2)(3)}$2$9^{(2)(3)}$ECALLat DRkExtended subroutine call (indirect)3$14^{(2)(3)}$2$13^{(2)(3)}$addr24Extended subroutine call (indirect)5$14^{(2)(3)}$4$13^{(2)(3)}$LCALLat WRjLong subroutine call (indirect)3$10^{(2)(3)}$2$9^{(2)(3)}$addr16Long subroutine call3$9^{(2)(3)}$3$9^{(2)(3)}$RETReturn from subroutine1$7^{(2)}$1$7^{(2)}$ERETExtended subroutine return3$9^{(2)}$2$8^{(2)}$RETIReturn from interrupt1$7^{(2)(4)}$1$7^{(2)(4)}$TRAPJump to the trap interrupt vector2$12^{(4)}$1$11^{(4)}$</src></dest>	IF [INTR	R = 1] THEN p	bush (PSW1); push (PC) $_{23:0}$				
MnemonicCommentsBytesStatesBytesStatesACALLaddr11Absolute subroutine call2 $9^{(2)(3)}$ 2 $9^{(2)(3)}$ ACALLaddr11Absolute subroutine call2 $9^{(2)(3)}$ 2 $9^{(2)(3)}$ ECALLat DRkExtended subroutine call (indirect)3 $14^{(2)(3)}$ 2 $13^{(2)(3)}$ addr24Extended subroutine call5 $14^{(2)(3)}$ 4 $13^{(2)(3)}$ LCALLat WRjLong subroutine call (indirect)3 $10^{(2)(3)}$ 2 $9^{(2)(3)}$ addr16Long subroutine call3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ RETReturn from subroutine1 $7^{(2)}$ 1 $7^{(2)}$ ERETExtended subroutine return3 $9^{(2)}$ 2 $8^{(2)}$ RETIReturn from interrupt1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ TRAPJump to the trap interrupt vector2 $12^{(4)}$ 1 $11^{(4)}$		-doot-		Binary	Mode	Source	e Mode
ACALLaddr11Absolute subroutine call2 $9^{(2)(3)}$ 2 $9^{(2)(3)}$ ECALLat DRkExtended subroutine call (indirect)3 $14^{(2)(3)}$ 2 $13^{(2)(3)}$ addr24Extended subroutine call5 $14^{(2)(3)}$ 4 $13^{(2)(3)}$ LCALLat WRjLong subroutine call (indirect)3 $10^{(2)(3)}$ 2 $9^{(2)(3)}$ addr16Long subroutine call3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ RETReturn from subroutine1 $7^{(2)}$ 1 $7^{(2)}$ ERETExtended subroutine return3 $9^{(2)}$ 2 $8^{(2)}$ RETIReturn from interrupt1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ TRAPJump to the trap interrupt vector2 $12^{(4)}$ 1 $11^{(4)}$	Mnemonic	<src>⁽¹⁾</src>	Comments	Bytes	States	Bytes	States
at DRk Extended subroutine call (indirect) 3 $14^{(2)(3)}$ 2 $13^{(2)(3)}$ addr24 Extended subroutine call 5 $14^{(2)(3)}$ 4 $13^{(2)(3)}$ LCALL at WRj Long subroutine call (indirect) 3 $10^{(2)(3)}$ 2 $9^{(2)(3)}$ addr16 Long subroutine call 3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ RET Return from subroutine 1 $7^{(2)}$ 1 $7^{(2)}$ ERET Extended subroutine return 3 $9^{(2)}$ 2 $8^{(2)}$ RETI Return from interrupt 1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ RAP Jump to the trap interrupt vector 2 $12^{(4)}$ 1 $11^{(4)}$	ACALI			<u> </u>	- (2)(2)	0	o ⁽²⁾⁽³⁾
ECALL addr24 Extended subroutine call 5 $14^{(2)(3)}$ 4 $13^{(2)(3)}$ LCALL at WRj Long subroutine call (indirect) 3 $10^{(2)(3)}$ 2 $9^{(2)(3)}$ addr16 Long subroutine call 3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ RET Return from subroutine 1 $7^{(2)}$ 1 $7^{(2)}$ ERET Extended subroutine return 3 $9^{(2)}$ 2 $8^{(2)}$ RETI Return from interrupt 1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ TRAP Jump to the trap interrupt vector 2 $12^{(4)}$ 1 $11^{(4)}$	/ IO/ IEE	addr11	Absolute subroutine call	2	9(2)(3)	2	9
LCALLat WRjLong subroutine call (indirect)3 $10^{(2)(3)}$ 2 $9^{(2)(3)}$ addr16Long subroutine call3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ RETReturn from subroutine1 $7^{(2)}$ 1 $7^{(2)}$ ERETExtended subroutine return3 $9^{(2)}$ 2 $8^{(2)}$ RETIReturn from interrupt1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ TRAPJump to the trap interrupt vector2 $12^{(4)}$ 1 $11^{(4)}$		addr11 at DRk	Extended subroutine call (indirect)	3	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾	2	13 ⁽²⁾⁽³⁾
addr16 Long subroutine call 3 $9^{(2)(3)}$ 3 $9^{(2)(3)}$ RET Return from subroutine 1 $7^{(2)}$ 1 $7^{(2)}$ ERET Extended subroutine return 3 $9^{(2)(3)}$ 2 $8^{(2)}$ RETI Return from interrupt 1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ RETI Return from interrupt vector 2 $12^{(4)}$ 1 $11^{(4)}$	ECALL	addr11 at DRk addr24	Extended subroutine call (indirect) Extended subroutine call	2 3 5	9 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾ 14 ⁽²⁾⁽³⁾	2 2 4	13 ⁽²⁾⁽³⁾ 13 ⁽²⁾⁽³⁾
RET Return from subroutine 1 $7^{(2)}$ 1 $7^{(2)}$ ERET Extended subroutine return 3 $9^{(2)}$ 2 $8^{(2)}$ RETI Return from interrupt 1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ TRAP Jump to the trap interrupt vector 2 $12^{(4)}$ 1 $11^{(4)}$	ECALL	addr11 at DRk addr24 at WRj	Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect)	2 3 5 3	$ \begin{array}{c} g^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \end{array} $	2 2 4 2	$ \begin{array}{c} 9^{(2)(3)} \\ 13^{(2)(3)} \\ 9^{(2)(3)} \end{array} $
ERETExtended subroutine return3 $9^{(2)}$ 2 $8^{(2)}$ RETIReturn from interrupt1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ TRAPJump to the trap interrupt vector2 $12^{(4)}$ 1 $11^{(4)}$	ECALL	addr11 at DRk addr24 at WRj addr16	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call	2 3 5 3 3	$9^{(2)(3)}$ $14^{(2)(3)}$ $14^{(2)(3)}$ $10^{(2)(3)}$ $9^{(2)(3)}$	2 2 4 2 3	$\begin{array}{c} 9^{(2)(3)} \\ 13^{(2)(3)} \\ 9^{(2)(3)} \\ 9^{(2)(3)} \end{array}$
RETI Return from interrupt 1 $7^{(2)(4)}$ 1 $7^{(2)(4)}$ TRAP Jump to the trap interrupt vector 2 $12^{(4)}$ 1 $11^{(4)}$	ECALL LCALL RET	addr11 at DRk addr24 at WRj addr16	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call Return from subroutine	2 3 5 3 3 1	$\begin{array}{c} g^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \\ g^{(2)(3)} \\ 7^{(2)} \end{array}$	2 2 4 2 3 1	$ \begin{array}{c} 9^{(2)}(3) \\ 13^{(2)}(3) \\ 9^{(2)}(3) \\ 9^{(2)}(3) \\ 7^{(2)} \end{array} $
TRAP Jump to the trap interrupt vector 2 12 ⁽⁴⁾ 1 11 ⁽⁴⁾	ECALL LCALL RET ERET	addr11 at DRk addr24 at WRj addr16	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call Return from subroutine Extended subroutine return	2 3 5 3 3 1 3	$\begin{array}{c} g^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \\ g^{(2)(3)} \\ 7^{(2)} \\ g^{(2)} \end{array}$	2 2 4 2 3 1 2	$\begin{array}{c} 9^{(2)} \\ 13^{(2)(3)} \\ 9^{(2)(3)} \\ 9^{(2)(3)} \\ 7^{(2)} \\ 8^{(2)} \end{array}$
	ECALL LCALL RET ERET RETI	addr11 at DRk addr24 at WRj addr16	Absolute subroutine call Extended subroutine call (indirect) Extended subroutine call Long subroutine call (indirect) Long subroutine call Return from subroutine Extended subroutine return Return from interrupt	2 3 5 3 3 1 3 1 1	$\begin{array}{c} g^{(2)(3)} \\ 14^{(2)(3)} \\ 14^{(2)(3)} \\ 10^{(2)(3)} \\ g^{(2)(3)} \\ 7^{(2)} \\ g^{(2)} \\ 7^{(2)(4)} \end{array}$	2 2 4 2 3 1 2 1	$\begin{array}{c} 9^{(2)}(3) \\ 13^{(2)(3)} \\ 9^{(2)(3)} \\ 9^{(2)(3)} \\ 7^{(2)} \\ 8^{(2)} \\ 7^{(2)(4)} \end{array}$

Notes: 1. A shaded cell denotes an instruction in the C51 Architecture.

2. In internal execution only, add 1 to the number of states if the destination/return address is internal and odd.

- 3. Add 2 to the number of states if the destination address is external.
- 4. Add 5 to the number of states if INTR = 1.

AC Characteristics - Commercial & Industrial

AC Characteristics - External Bus Cycles

Definition of Symbols

Table 38. External Bus Cycles Timing Symbol Definitions

Signals					
А	Address				
D	Data In				
L	ALE				
Q	Data Out				
R	RD#/PSEN#				
W	WR#				

Conditions				
Н	High			
L	Low			
V	Valid			
х	No Longer Valid			
Z Floating				

Timings

Test conditions: capacitive load on all pins = 50 pF.

Table 39 and Table 40 list the AC timing parameters for the TSC80251G2D derivatives with no wait states. External wait states can be added by extending PSEN#/RD#/WR# and or by extending ALE. In these tables, Note 2 marks parameters affected by one ALE wait state, and Note 3 marks parameters affected by PSEN#/RD#/WR# wait states.

Figure 8 to Figure 13 show the bus cycles with the timing parameters.

Waveforms in Non-Page Mode Figure 8. External Bus Cycle: Code Fetch (Non-Page Mode)

Note: 1. The value of this parameter depends on wait states. See Table 39 and Table 40.

Note: 1. The value of this parameter depends on wait states. See Table 39 and Table 40.

Figure 12. External Bus Cycle: Data Read (Page Mode)

Figure 13. External Bus Cycle: Data Write (Page Mode)

AC Characteristics - Real-Time Synchronous Wait State

Definition of Symbols

Table 41. Real-Time Synchronous Wait Timing Symbol Definitions

Signals				
С	WCLK			
R	RD#/PSEN#			
W	WR#			
Y	WAIT#			

Conditions				
L	Low			
V	Valid			
Х	No Longer Valid			

50 AT/TSC8x251G2D

Notes: 1. Under steady-state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum IOL per port pin: 10 mA

Maximum IOL per 8-bit port:Port 0 26 mA

Ports 1-3 15 mA

Maximum Total IOL for all: Output Pins 71 mA

If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 2. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low-level outputs of ALE and Ports 1, 2, and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from high to low. In applications where capacitive loading exceeds 100 pF, the noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify ALE or other signals with a Schmitt Trigger or CMOS-level input logic.
- Capacitive loading on Ports 0 and 2 causes the V_{OH} on ALE and PSEN# to drop below the specification when the address lines are stabilizing.
- 4. Typical values are obtained using V_{DD} = 5 V and T_A = 25°C. They are not tested and there is not guarantee on these values.
- The input threshold voltage of SCL and SDA meets the TWI specification, so an input voltage below 0.3 V_{DD} will be recognized as a logic 0 while an input voltage above 0.7 V_{DD} will be recognized as a logic 1.

Note: 1. The clock prescaler is not used: $F_{OSC} = F_{XTAL}$.

Maximum Total IOL for all:Output Pins71 mA

If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 2. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low-level outputs of ALE and Ports 1, 2, and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from high to low. In applications where capacitive loading exceeds 100 pF, the noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify ALE or other signals with a Schmitt Trigger or CMOS-level input logic.
- Capacitive loading on Ports 0 and 2 causes the V_{OH} on ALE and PSEN# to drop below the specification when the address lines are stabilizing.
- 4. Typical values are obtained using V_{DD} = 3 V and T_A = 25°C. They are not tested and there is not guarantee on these values.
- The input threshold voltage of SCL and SDA meets the TWI specification, so an input voltage below 0.3 V_{DD} will be recognized as a logic 0 while an input voltage above 0.7 V_{DD} will be recognized as a logic 1.

Note: 1.The clock prescaler is not used: $F_{OSC} = F_{XTAL}$.

I_{DD} , I_{DL} and I_{PD} Test Conditions

Figure 31. I_{DL} Test Condition, Idle Mode

Figure 32. I_{PD} Test Condition, Power-Down Mode

Packages

List of Packages

- PDIL 40
- CDIL 40 with window
- PLCC 44
- CQPJ 44 with window
- VQFP 44 (10x10)

PDIL 40 - Mechanical Outline

Figure 33. Plastic Dual In Line

Table 57. PDIL Package Size

	ММ		Inc	ch
	Min	Мах	Min	Мах
A	-	5.08	-	.200
A1	0.38	-	.015	-
A2	3.18	4.95	.125	.195
В	0.36	0.56	.014	.022
B1	0.76	1.78	.030	.070
С	0.20	0.38	.008	.015
D	50.29	53.21	1.980	2.095
E	15.24	15.87	.600	.625
E1	12.32	14.73	.485	.580
е	2.54 B.S.C.		.100	B.S.C.
eA	15.24	B.S.C.	.600 B.S.C.	
eB	-	17.78	-	.700
L	2.93	3.81	.115	.150
D1	0.13	-	.005	-

CDIL 40 with Window -Mechanical Outline

Figure 34. Ceramic Dual In Line

Table 58. CDIL Package Size

	ММ		Inch	
	Min	Max	Min	Max
A	-	5.71	-	.225
b	0.36	0.58	.014	.023
b2	1.14	1.65	.045	.065
с	0.20	0.38	.008	.015
D	-	53.47	-	2.105
E	13.06	15.37	.514	.605
е	2.54 B.S.C.		.100 B.S.C.	
eA	15.24 B.S.C.		.600 B.S.C.	
L	3.18	5.08	.125	.200
Q	0.38	1.40	.015	.055
S1	0.13	-	.005	-
а	0 - 15		0 - 15	
N	40			

VQFP 44 (10x10) -Mechanical Outline

Figure 37. Shrink Quad Flat Pack (Plastic)

Table 61.	VQFP Pad	ckage Size
-----------	----------	------------

	ММ		Inch	
	Min	Max	Min	Max
А	-	1.60	-	.063
A1	0.64 REF		.025 REF	
A2	0.64 REF		.025REF	
A3	1.35	1.45	.053	.057
D	11.90	12.10	.468	.476
D1	9.90	10.10	.390	.398
E	11.90	12.10	.468	.476
E1	9.90	10.10	.390	.398
J	0.05	-	.002	6
L	0.45	0.75	.018	.030
e	0.80 BSC		.0315 BSC	
f	0.35 BSC		.014 BSC	

Options (Please

- ROM code encryption • consult Atmel sales)
 - Tape & Reel or Dry Pack ٠
 - Known good dice ٠
 - Extended temperature range: -55°C to +125°C •

Product Markings

ROMIess versions

ATMEL Part number Mask ROM versions

ATMEL Customer Part number Part Number YYWW . Lot Number

OTP versions

ATMEL Part number

YYWW . Lot Number

YYWW . Lot Number