

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

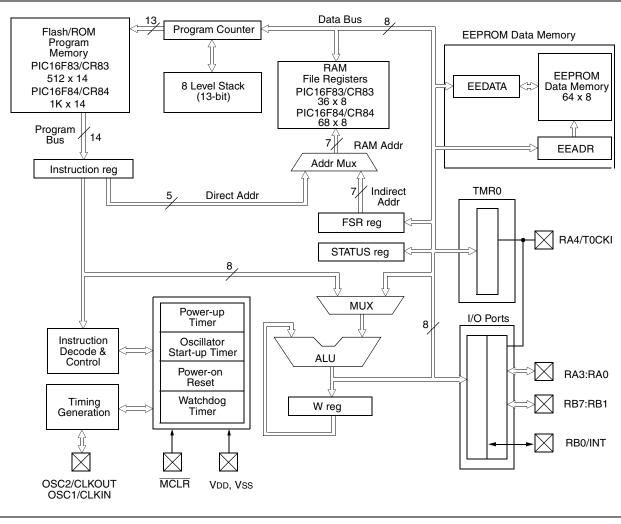
Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f83-04-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

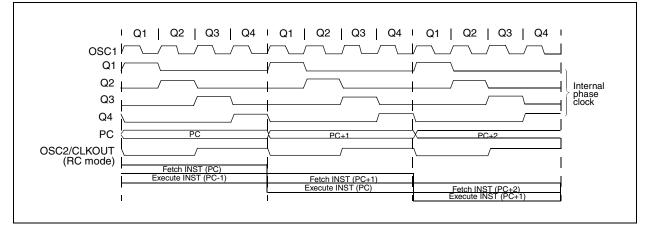

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register), and the other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

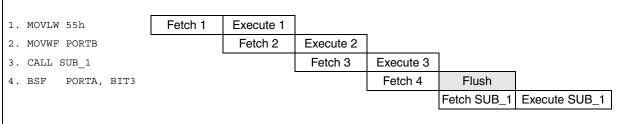
A simplified block diagram for the PIC16F8X is shown in Figure 3-1, its corresponding pin description is shown in Table 3-1.

3.1 <u>Clocking Scheme/Instruction Cycle</u>


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

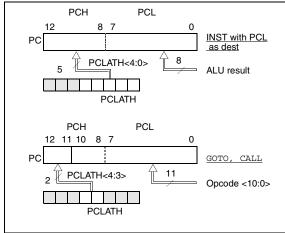
An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW



All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

4.3 Program Counter: PCL and PCLATH

The Program Counter (PC) is 13-bits wide. The low byte is the PCL register, which is a readable and writable register. The high byte of the PC (PC<12:8>) is not directly readable nor writable and comes from the PCLATH register. The PCLATH (PC latch high) register is a holding register for PC<12:8>. The contents of PCLATH are transferred to the upper byte of the program counter when the PC is loaded with a new value. This occurs during a CALL, GOTO or a write to PCL. The high bits of PC are loaded from PCLATH as shown in Figure 4-1.

FIGURE 4-1: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 word block). Refer to the application note *"Implementing a Table Read"* (AN556).

4.3.2 PROGRAM MEMORY PAGING

The PIC16F83 and PIC16CR83 have 512 words of program memory. The PIC16F84 and PIC16CR84 have 1K of program memory. The CALL and GOTO instructions have an 11-bit address range. This 11-bit address range allows a branch within a 2K program memory page size. For future PIC16F8X program memory expansion, there must be another two bits to specify the program memory page. These paging bits come from the PCLATH<4:3> bits (Figure 4-1). When doing a CALL or a GOTO instruction, the user must ensure that these page bits (PCLATH<4:3>) are programmed to the desired program memory page. If a CALL instruction (or interrupt) is executed, the entire 13-bit PC is "pushed" onto the stack (see next section). Therefore, manipulation of the PCLATH<4:3> is not required for the return instructions (which "pops" the PC from the stack).

Note:	The PIC16F8X ignores the PCLATH<4:3>								
	bits, which are used for program memory								
	pages 1, 2 and 3 (0800h - 1FFFh). The								
	use of PCLATH<4:3> as general purpose								
	R/W bits is not recommended since this								
	may affect upward compatibility with								
	future products.								

4.4 Stack

The PIC16FXX has an 8 deep x 13-bit wide hardware stack (Figure 4-1). The stack space is not part of either program or data space and the stack pointer is not readable or writable.

The entire 13-bit PC is "pushed" onto the stack when a CALL instruction is executed or an interrupt is acknowledged. The stack is "popped" in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a push or a pop operation.

Note:	There are no instruction mnemonics
	called push or pop. These are actions that
	occur from the execution of the CALL,
	RETURN, RETLW, and RETFIE instruc-
	tions, or the vectoring to an interrupt
	address.

The stack operates as a circular buffer. That is, after the stack has been pushed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

If the stack is effectively popped nine times, the PC value is the same as the value from the first pop.

Note: There are no status bits to indicate stack overflow or stack underflow conditions.

5.3 I/O Programming Considerations

5.3.1 BI-DIRECTIONAL I/O PORTS

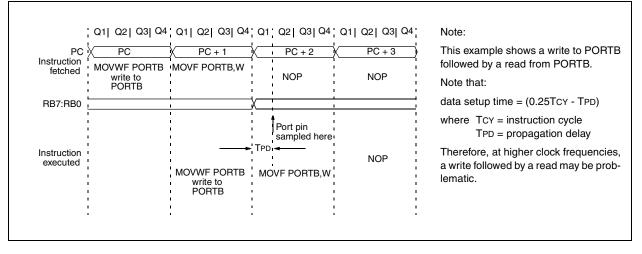
Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (i.e., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch is unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (i.e., BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output current may damage the chip.

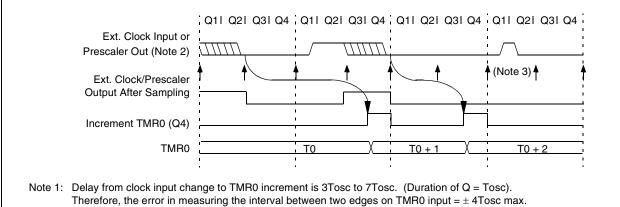
5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-5). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such that the pin voltage stabilizes (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

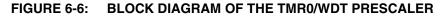

Example 5-1 shows the effect of two sequential read-modify-write instructions (e.g., ${\tt BCF}\,,\,\,{\tt BSF},\, etc.)$ on an I/O port.

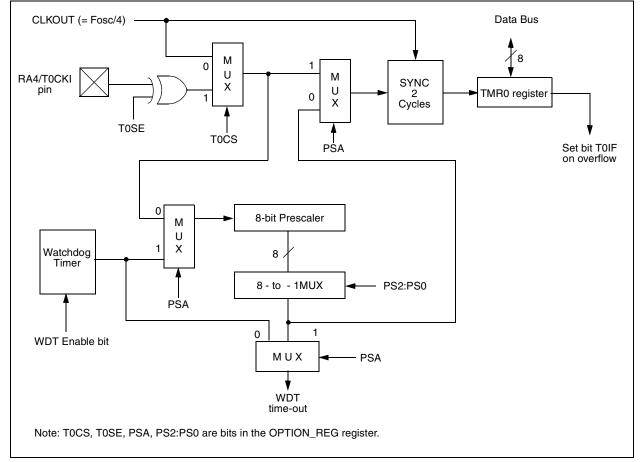
EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

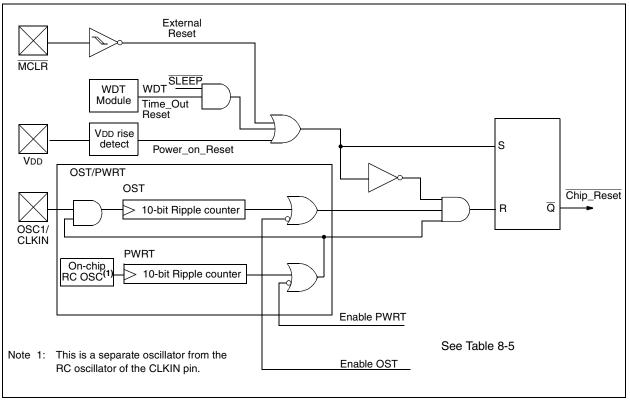
;Initial PORT settings: PORTB<7:4> Inputs ; PORTB<3:0> Outputs ;PORTB<7:6> have external pull-ups and are ;not connected to other circuitry


'								
;					PORT	latch	PORT	pins
;								
	BCF	PORTB,	7	;	01pp	ppp	11pp	ppp
	BCF	PORTB,	6	;	10pp	ppp	11pp	ppp
	BSF	STATUS	, RPO	;				
	BCF	TRISB,	7	;	10pp	ppp	11pp	ppp
	BCF	TRISB,	6	;	10pp	ppp	10pp	ppp
:								

;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).


FIGURE 5-5: SUCCESSIVE I/O OPERATION





2: External clock if no prescaler selected, Prescaler output otherwise.

3: The arrows ↑ indicate where sampling occurs. A small clock pulse may be missed by sampling.

FIGURE 8-8: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

TABLE 8-3 RESET CONDITION FOR PROGRAM COUNTER AND THE STATUS REGISTER

Condition	Program Counter	STATUS Register
Power-on Reset	000h	0001 1xxx
MCLR Reset during normal operation	000h	000u uuuu
MCLR Reset during SLEEP	000h	0001 0uuu
WDT Reset (during normal operation)	000h	0000 luuu
WDT Wake-up	PC + 1	uuu0 0uuu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu

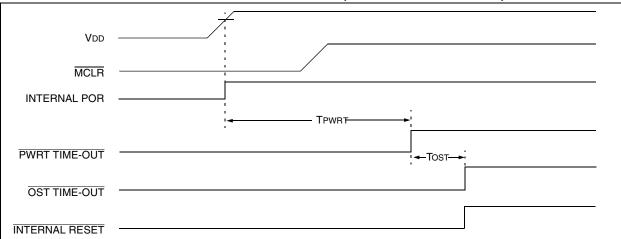
Legend: u = unchanged, x = unknown.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

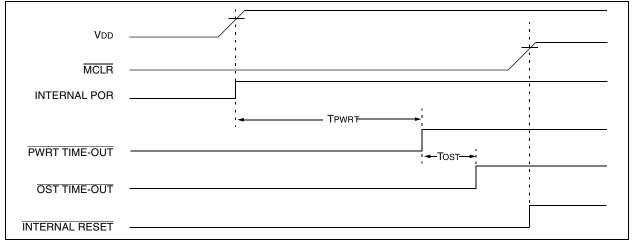
Register	Address	Power-on Reset	MCLR Reset during: – normal operation – SLEEP WDT Reset during nor- mal operation	Wake-up from SLEEP: – through interrupt – through WDT Time-out
W	_	XXXX XXXX	սսսս սսսս	սսսս սսսս
INDF	00h			
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h	0000h	0000h	PC + 1 ⁽²⁾
STATUS	03h	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	04h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEDATA	08h	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEADR	09h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
INDF	80h			
OPTION_REG	81h	1111 1111	1111 1111	uuuu uuuu
PCL	82h	0000h	0000h	PC + 1
STATUS	83h	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	84h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	սսսս սսսս
EECON1	88h	0 x000	0 q000	0 uuuu
EECON2	89h			
PCLATH	8Ah	0 0000	0 0000	u uuuu
INTCON	8Bh	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾

TABLE 8-4 RESET CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0',


q = value depends on condition.

Note 1: One or more bits in INTCON will be affected (to cause wake-up).


2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: Table 8-3 lists the reset value for each specific condition.

FIGURE 8-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 8-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

8.7 <u>Time-out Sequence and Power-down</u> Status Bits (TO/PD)

On power-up (Figure 8-10, Figure 8-11, Figure 8-12 and Figure 8-13) the time-out sequence is as follows: First PWRT time-out is invoked after a POR has expired. Then the OST is activated. The total time-out will vary based on oscillator configuration and PWRTE configuration bit status. For example, in RC mode with the PWRT disabled, there will be no time-out at all.

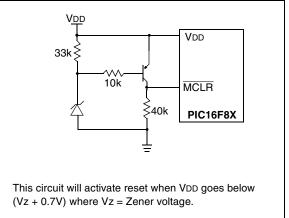
TABLE 8-5TIME-OUT IN VARIOUSSITUATIONS

Oscillator	Powe	Wake-up		
Configuration	PWRT Enabled	PWRT Disabled	from SLEEP	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024Tosc	
RC	72 ms	_	_	

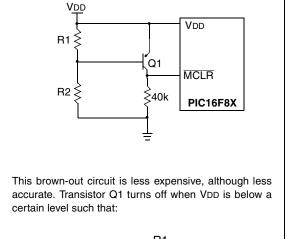
Since the time-outs occur from the POR reset pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high, execution will begin immediately (Figure 8-10). This is useful for testing purposes or to synchronize more than one PIC16F8X device when operating in parallel.

Table 8-6 shows the significance of the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits. Table 8-3 lists the reset conditions for some special registers, while Table 8-4 lists the reset conditions for all the registers.

TABLE 8-6STATUS BITS AND THEIRSIGNIFICANCE


то	PD	Condition
1	1	Power-on Reset
0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
x	0	Illegal, PD is set on POR
0	1	WDT Reset (during normal operation)
0	0	WDT Wake-up
1	1	MCLR Reset during normal operation
1	0	MCLR Reset during SLEEP or interrupt
		wake-up from SLEEP

8.8 Reset on Brown-Out


A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset a PIC16F8X device when a brown-out occurs, external brown-out protection circuits may be built, as shown in Figure 8-14 and Figure 8-15.

FIGURE 8-14: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 8-15: BROWN-OUT PROTECTION CIRCUIT 2

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

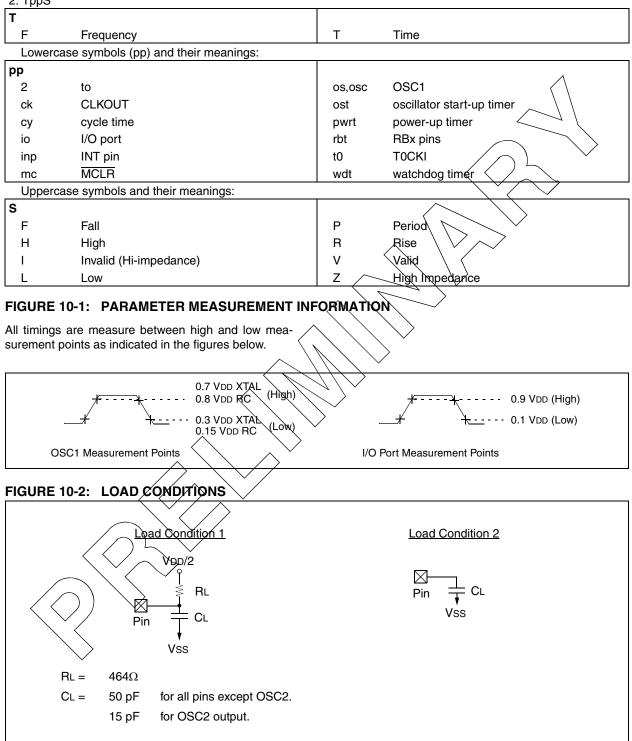
PIC16F8X

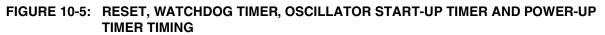
NOP	No Operation						
Syntax:	[label]	NOP					
Operands:	None						
Operation:	No opera	ition					
Status Affected:	None						
Encoding:	00	0000	0xx0	0000			
Description:	No operati	ion.					
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	No-Opera tion	No-Opera tion	No-Operat ion			
Example	NOP						

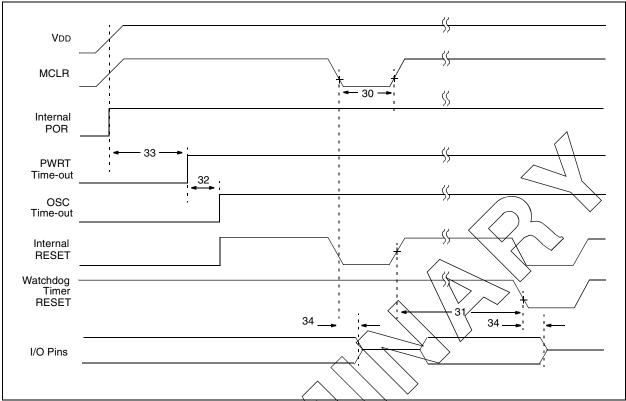
RETFIE	Return fi	rom Inter	rupt			
Syntax:	[label]	RETFIE				
Operands:	None					
Operation:	$\begin{array}{l} TOS \to F \\ 1 \to GIE \end{array}$	PC,				
Status Affected:	None					
Encoding:	0 0	0000	0000	1001		
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.					
Words:	1					
Cycles:	2					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
1st Cycle	Decode	No-Opera tion	Set the GIE bit	Pop from the Stack		
2nd Cycle	No-Operat ion	No-Opera tion	No-Opera tion	No-Operat ion		
Example	RETFIE					

After Interrupt PC = TOS GIE = 1

OPTION	Load Option Register					
Syntax:	[label] OPTION					
Operands:	None					
Operation:	$(W) \rightarrow OPTION$					
Status Affected:	None					
Encoding:	00 0000 0110 0010					
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code com- patibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.					
Words:	1					
Cycles:	1					
Example						
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.					


PIC16F8X


RETLW	Return v	vith Liter	al in W		RETURN	Return f	rom Sub	routine	
Syntax:	[<i>label</i>] RETLW k			Syntax:	[label]	RETUR	N		
Operands:	$0 \le k \le 2$	55			Operands:	None			
Operation:	$k \rightarrow (W);$				Operation:	$TOS \rightarrow F$	ъС		
	$TOS \rightarrow F$	ъС			Status Affected:	None			
Status Affected:	None				Encoding:	00	0000	0000	1000
Encoding:	11	01xx	kkkk	kkkk	Description:	Return fro	m subrout	ine. The st	ack is
Description:	The W reg bit literal 'k loaded fro	<. The pro	gram coun	iter is		POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.			
	return add	Iress). This			Words:	1			
Manda.	instructior	1.			Cycles:	2			
Words:	1				Q Cycle Activity:	Q1	Q2	Q3	Q4
Cycles:	2	00	00	04	1st Cycle	Decode	No-Opera		Pop from
Q Cycle Activity:	Q1	Q2	Q3	Q4			tion	tion	the Stack
1st Cycle	Decode	Read literal 'k'	No-Opera tion	Write to W, Pop from the Stack	2nd Cycle	No-Operat ion	No-Opera tion	No-Opera tion	No-Opera tion
2nd Cycle		No-Opera		No-Operat	Example	RETURN			
	No-Operat ion	tion	tion	ion		After Inte	errupt		
			•					TOS	
Example	CALL TABL	;offset	tains tabl value has table						
TABLE	• ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;								
	•								
	• RETLW kn ; End of table								
	Before Instruction								
			0x07						
	After Inst		value of k	3					
				-					


TABLE 10-2 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

- 1. TppS2ppS
- 2. TppS

Parameter			$\langle \ \rangle$	\searrow			
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	1000*	_		ns	$2.0V \leq V\text{DD} \leq 6.0V$
31	Twdt	Watchdog Timer Time-out Period (No Prescater)	7*	18	33 *	ms	VDD = 5.0V
32	Tost	Oscillation Start-up Timer Period		1024Tosc		ms	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28 *	72	132 *	ms	VDD = 5.0V
34	Tioz	I/O Hi-impedance from MCLR Low	_	_	100 *	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 50, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested

11.1 DC CHARACTERISTICS:

PIC16CR84, PIC16CR83 (Commercial, Industrial)

DC Characteristics Power Supply Pins				Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)					
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
D001 D001A	Vdd	Supply Voltage	4.0 4.5	_	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5*	—	—	V	Device in SLEEP mode		
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	—	Vss	—	V	See section on Power-on Reset for details		
D004	Svdd	VDD rise rate to ensure internal Power-on Reset signal	0.05*	—	—	V/ms	See section on Power-on Reset for details		
D010 D010A	IDD	Supply Current ⁽²⁾		1.8 7.3	4.5 10	mA mA	RC and XT ose configuration ⁽⁴⁾ Fosc = 4.0 MHz, VDD = 5.5V Fosc = 4.0 MHz, VDD = 5.5V (During EERROM programming) HS ose configuration (PIC16CR84-10)		
D013		(0)		5	10	mA<	Fosc = 10 MHz, VDD = 5.5V		
D020 D021 D021A	IPD	Power-down Current ⁽³⁾		7.0 1.0 1.0	28 14 16	μΑ μΑ μΑ	$V_{DD} = 4.0V$, WDT enabled, industrial $V_{DD} = 4.0V$, WDT disabled, commercial $V_{DD} = 4.0V$, WDT disabled, industrial		

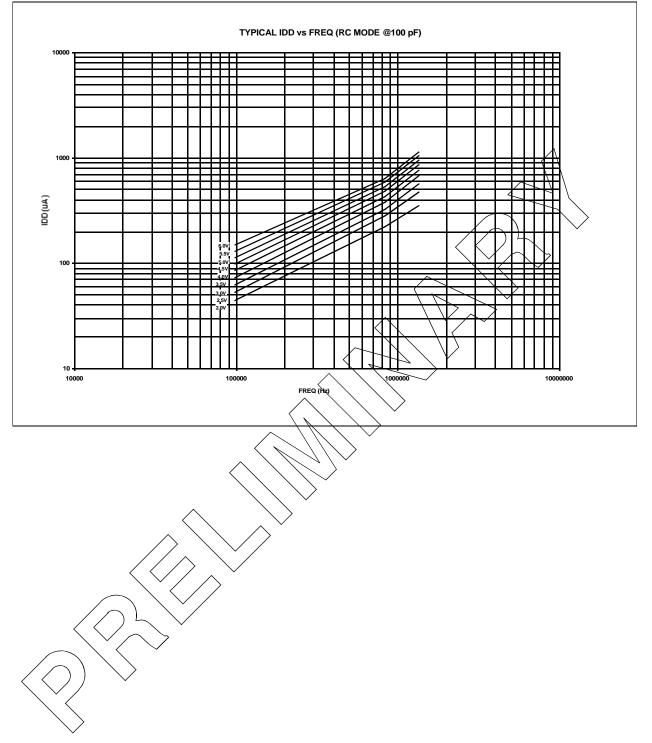
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

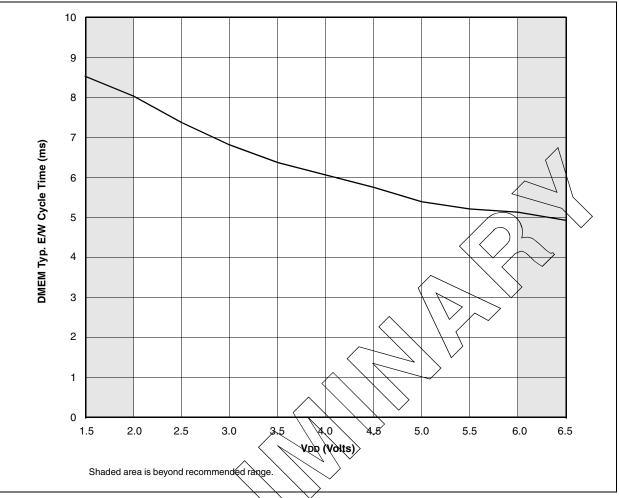
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


OSC1=external square wave, from rail to rail, all I/O pins tristated, pulled to VDD, T0CKI = VDD, $\overline{MCLR} = VDD$; WDT applied displayed as approximate

MCLR = VDD; WDT enabled/disabled as specified.


3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IB = VpD/2Rext (mA) with Rext in kOhm.

FIGURE 12-21: TYPICAL DATA MEMORY ERASE/WRITE CYCLE TIME VS. VDD

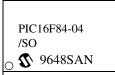
TABLE 12-2 INPUT CAPACITANCE*

Pin Name	Typical Capa	acitance (pF)
	18L PDIP	18L SOIC
PORTA	5.0	4.3
POBTB	5.0	4.3
	17.0	17.0
OSCIŲCĽKĮM	4.0	3.5
OSCZYCLKOUT	4.3	3.5
СС тоскі	3.2	2.8

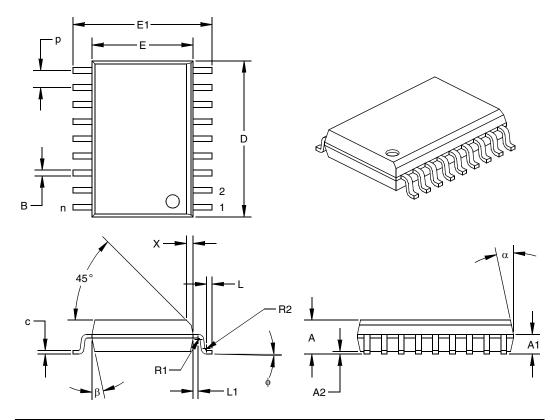
All capacitance values are typical at 25°C. A part to part variation of $\pm 25\%$ (three standard deviations) should be taken into account.

13.0 PACKAGING INFORMATION

13.1 Package Marking Information


Example

18L SOIC


Example

L	.egend:	XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.				
N	I	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.					

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Pitch	р		0.050			1.27	
Number of Pins	n		18			18	
Overall Pack. Height	А	0.093	0.099	0.104	2.36	2.50	2.64
Shoulder Height	A1	0.048	0.058	0.068	1.22	1.47	1.73
Standoff	A2	0.004	0.008	0.011	0.10	0.19	0.28
Molded Package Length	D‡	0.450	0.456	0.462	11.43	11.58	11.73
Molded Package Width	E‡	0.292	0.296	0.299	7.42	7.51	7.59
Outside Dimension	E1	0.394	0.407	0.419	10.01	10.33	10.64
Chamfer Distance	Х	0.010	0.020	0.029	0.25	0.50	0.74
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25
Foot Length	L	0.011	0.016	0.021	0.28	0.41	0.53
Foot Angle	φ	0	4	8	0	4	8
Radius Centerline	L1	0.010	0.015	0.020	0.25	0.38	0.51
Lead Thickness	С	0.009	0.011	0.012	0.23	0.27	0.30
Lower Lead Width	B [†]	0.014	0.017	0.019	0.36	0.42	0.48
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

Controlling Parameter.

[†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

PIC16F8X PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	-XX X /XX XXX Frequency Temperature Package Pattern Range Range	Examples: a) PIC16F84 -04/P 301 = Commercial temp., PDIP package, 4 MHz, normal
Device	PIC16F8X ⁽²⁾ , PIC16F8XT ⁽³⁾ PIC16LF8X ⁽²⁾ , PIC16LF8XT ⁽³⁾ PIC16F8XA ⁽²⁾ , PIC16F8XAT ⁽³⁾ PIC16LF8XA ⁽²⁾ , PIC16LF8XAT ⁽³⁾ PIC16CR8X ⁽²⁾ , PIC16CR8XT ⁽³⁾ PIC16LCR8X ⁽²⁾ , PIC16LCR8XT ⁽³⁾	 VDD limits, QTP pattern #301. b) PIC16LF84 - 04I/SO = Industrial temp., SOIC package, 200 kHz, Extended VDD limits. c) PIC16CR84 - 10I/P = ROM program memory, Industrial temp., PDIP package, 10MHz, normal VDD limits.
Frequency Range	04 = 4 MHz 10 = 10 MHz 20 = 20 MHz	Note 1: b = blank
Temperature Range	$b^{(1)} = 0^{\circ}C \text{ to } +70^{\circ}C \text{ (Commercial)}$ I = -40°C to +85°C (Industrial)	2: F = Standard VDD range LF = Extended VDD range CR = ROM Version, Standard VDD
Package Pattern	P = PDIP SO = SOIC (Gull Wing, 300 mil body) SS = SSOP 3-digit Pattern Code for QTP, ROM (blank otherwise)	range LCR = ROM Version, Extended VDD range 3: T = in tape and reel - SOIC, SSOP
		packages only.

SALES AND SUPPORT

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office.
- 2. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820